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ABSTRACT

We propose VirtualFlow, a system leveraging a novel abstraction called virtual node processing to decouple the
model from the hardware. In each step of training or inference, the batch of input data is split across virtual nodes
instead of hardware accelerators (e.g., GPUs and TPUs). Mapping multiple virtual nodes to each accelerator
and processing them sequentially effectively time slices the batch, thereby allowing users to reduce the memory
requirements of their workloads and mimic large batch sizes on small clusters. Using this technique, VirtualFlow
enables many new use cases, such as reproducing training results across different hardware, resource elasticity,
and heterogeneous training. In our evaluation, our implementation of VirtualFlow for TensorFlow achieved strong
convergence guarantees across different hardware with out-of-the-box hyperparameters, up to 48% lower job
completion times with resource elasticity, and up to 42% higher throughput with heterogeneous training.

1 INTRODUCTION

Modern deep learning frameworks, such as Tensor-
Flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019),
tightly couple the model and the underlying hardware. This
forces them to make a number of simplifying assumptions
about the environment in which deep learning jobs are
run. First, a model’s convergence behavior is not preserved
across different hardware configurations. Instead, the bur-
den falls on the user to retune the hyperparameters and apply
custom optimization techniques in order to achieve the same
training results (Goyal et al., 2017; Jia et al., 2018; You et al.,
2019). Second, resource allocations are tied to the lifetime
of a job; any adjustment to a job’s allocation requires inter-
rupting the job and restarting it from checkpoints. Third, the
set of resources allocated to a job must be homogeneous.

In light of recent trends, however, the above assumptions fall
short in today’s real world circumstances. First, the scale
of deep learning workloads continues to rise dramatically:
model sizes have grown to billions of parameters (Shoeybi
et al., 2019; Rosset, 2020; Brown et al., 2020), dataset sizes
to hundreds of GBs (Deng et al., 2009; Raffel et al., 2019),
and batch sizes to 64K and above (Jia et al., 2018; Sun et al.,
2019). Hardware advances have been slow to catch up, how-
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Figure 1. Virtual node processing. A batch is split into 16 equally
sized virtual nodes (colored shapes), which are distributed among
the GPUs. Virtual nodes assigned to the same GPUs are executed
sequentially, allowing 4 GPUs to train the same model as 16 GPUs
using the same set of hyperparameters, including the batch size.

ever, leading to high computational requirements for these
larger workloads. For instance, BERT has been pre-trained
on 16 TPUs (Devlin et al., 2018) and up to 1024 TPUs (You
et al., 2019), and Megatron-LM, with 8.3 billion parameters,
has been trained on 512 V100 (32GB) GPUs (Shoeybi et al.,
2019). But given the inability to preserve convergence be-
havior across hardware, these results are often not repeatable
for researchers who cannot afford these resources.

Second, shared clusters with a heterogeneous mix of GPUs
are increasingly common. For instance, Microsoft re-
ports using a large, multi-tenant cluster consisting of thou-
sands of GPUs of various types shared among hundreds of
users (Jeon et al., 2019). Resource heterogeneity is also
common in small research lab settings, which often accumu-
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late multiple generations of GPUs over the years (Narayanan
et al., 2020). Yet systems today are unable to leverage this
heterogeneity for individual training jobs.

1.1 New Challenges

These recent trends raise new important challenges or exac-
erbate existing ones for today’s deep learning workloads:

High resource requirement. Many new workloads require
large clusters of expensive hardware accelerators that are
inaccessible to most users.

Lack of experimentation. With the increase in scale, users
may wish to experiment on a small testbed before deploying
the model on a large cluster. However, this is not possible
today: the original batch size will not fit within the mem-
ory limits of the testbed, and changing the batch size may
compromise the convergence of the model.

Lack of reproducibility. More generally, reproducing the
same model convergence behavior across different hardware
typically requires readjusting important hyperparameters
such as the batch size and the learning rate (Goyal et al.,
2017; Sun et al., 2019; Jia et al., 2018). This is cumbersome
in practice, and techniques proposed for one workload often
do not work for another (Shallue et al., 2018).

Adapting to dynamic resource availability. Existing at-
tempts to dynamically adjust a job’s resource allocation
must interrupt and restart the job (Xiao et al., 2018; Peng
et al., 2018; Narayanan et al., 2020), since resource allo-
cations are static in today’s frameworks. However, this is
inefficient, because each adjustment can take minutes (Or
et al., 2020). Further, the batch size may change across
restarts, potentially affecting the convergence of the model.

Adapting to heterogeneous environments. Today, jobs
are restricted to single types of accelerators. Being able to
additionally utilize leftover accelerators of different types
can lead to faster jobs and higher cluster utilization.

1.2 Decoupling Model from Hardware

All of the above challenges largely stem from a central
drawback in today’s deep learning systems: a tight cou-
pling between the model and the underlying hardware. In
this paper, we argue that systems-level constraints should
be decoupled from application-level semantics. A model
should converge to the same accuracy regardless of the set
of resources it is trained on. Performance should degrade
gracefully with the amount of resources assigned to a job.
The user should be able to tune the model’s hyperparameters
once and train the model everywhere, and the result should
be the same across different hardware configurations.

The same philosophy can be observed in many big-data ana-
Iytics systems. In MapReduce-style batch processing (Dean
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Figure 2. Mapping between virtual nodes and accelerators is flex-
ible, but only virtual nodes affect model convergence. Thus,
changes to resource allocations are hidden from the application.

& Ghemawat, 2004; Zaharia et al., 2012) and stream pro-
cessing workloads (Apache Storm; Apache Flink; Zaharia
et al., 2013), the system always computes the same answers
regardless of the level of parallelism and the amount of re-
sources assigned to the job. The input data is sliced into
many small partitions to be processed in multiple sequential
waves of tasks, and the job would not fail if the amount of
data processed in a single wave did not fit in the aggregate
memory of the system.

1.3 Virtual Node Processing

Towards this goal of separating the model from the hard-
ware, this paper introduces virtual nodes as a substrate for
distributing computation across hardware accelerators (Fig-
ure 1). In this paradigm, each batch of the input data is
partitioned among virtual nodes instead of hardware ac-
celerators. One or more virtual nodes are then mapped to
each hardware accelerator and processed sequentially on the
accelerator, thus producing one or more MapReduce-style
waves of execution within each step of training or inference.

VirtualFlow’s approach leverages the insight that all virtual
nodes share the same model parameters. This allows the
model to be cached in each accelerator’s memory at the
beginning of each step and efficiently reused by all virtual
nodes mapped to that accelerator. The gradients produced by
these virtual nodes are then aggregated into a shared mem-
ory buffer on the accelerator, thus adding a small, constant
overhead independent of the number of virtual nodes (§3.1).

Virtual node processing allows VirtualFlow to preserve
model convergence behavior across different hardware by
fixing the total number of virtual nodes, and thus the batch
size and other hyperparameters. Instead, only the mapping
between virtual nodes and hardware accelerators need to be
adjusted (Figure 2). This enables new important use cases:

Lower resource requirement. Workloads that previously
required large clusters can now be packed into smaller ones
by mapping many virtual nodes to each accelerator.

Reproducibility and experimentation on smaller test beds
is now possible, as results obtained by other users can now
be reproduced on a different set of resources without modi-
fication of any hyperparameter or optimization strategy.

Resource elasticity. Dynamically resizing a job while
maintaining convergence guarantees—previously an open
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challenge (Or et al., 2020)—is now possible. VirtualFlow
achieves this by redistributing the virtual nodes among the
new set of accelerators. When scaling out, important virtual
node state such as model parameters and certain stateful ker-
nels (e.g., batch normalization variables (Ioffe & Szegedy,
2015)) are migrated in an all-gather operation to bootstrap
the new workers (§4.1). Unlike in state-of-the-art schedulers,
the transition is seamless from the application’s perspective
and the job need not be restarted.

Heterogeneous training—combining multiple types of ac-
celerators in the same job—can be expressed as distributing
virtual nodes unevenly across the accelerators, thereby as-
signing more data to the more powerful types. Given a
workload and a set of heterogeneous resources, VirtualFlow
solves for the most efficient configuration(s) using offline
profiles (§5.1) and ensures training correctness by perform-
ing weighted gradient synchronizations (§5.2).

We implemented VirtualFlow on top of TensorFlow and
evaluated the system on a set of representative models
(ResNet (He et al., 2016), BERT (Devlin et al., 2018), Trans-
former (Vaswani et al., 2017)). To showcase the benefits
of heterogeneous training in a multi-tenant setting, we also
extended Gavel (Narayanan et al., 2020) to consider hetero-
geneous allocations (§6.4.1). In our evaluation, VirtualFlow
demonstrates strong model convergence guarantees across
different hardware, improves cluster utilization by 20% and
reduces job completion time by 48% with elasticity, and im-
proves job throughput by 42% with heterogeneous training.

2 BACKGROUND

In this section, we describe two important ways deep learn-
ing workloads are tightly coupled with the underlying hard-
ware in state-of-the-art systems (§2.1, §2.2), then discuss
the target setting of this paper (§2.3).

2.1 Hyperparameters Tied to Hardware

Hyperparameters, such as the batch size, learning rate, and
dropout rate, have important effects on the convergence of a
model. The batch size refers to the number of input exam-
ples, e.g., images or sentences, processed within a training
or inference step. Each batch is divided evenly among the
accelerators, which are assumed to be homogeneous.

Using larger batch sizes generally improves training and
inference throughput. Within a single accelerator, the local
batch size is often set to the maximum size possible within
the limits of the accelerator’s memory capacity. Across
multiple accelerators, the global batch size is simply the
sum of all local batch sizes across the accelerators. Thus, a
larger global batch size leads to higher levels of parallelism.

However, prior work has shown that large batch sizes tend

to deteriorate model convergence (Keskar et al., 2016). In
order to preserve convergence behavior while scaling a
workload, various efforts have proposed to adjust hyper-
parameters dependent on the batch size, such as the learning
rate (Goyal et al., 2017), or even to apply custom optimiza-
tion algorithms (Sun et al., 2019; You et al., 2017; 2019).

Hurdles for reproducibility. Thus, reproducing existing
results on a different set of hardware requires significant
effort and expertise. In some cases, it is even impossible.
For example, the results from training the the BERT model
using a batch size of 32K examples on 1024 TPUs (You
et al., 2019) and 1472 GPUs (Narasimhan, 2019) cannot
be reproduced on a smaller test bed of 16 GPUs, as the
same batch size would not fit in the smaller cluster’s GPU
memory. On the other hand, reducing the batch size would
inevitably lead to very different convergence trajectories
that require retuning various hyperparameters. This poses a
major hurdle for experimentation as well as scaling.

2.2 Inflexible Model Graph

Another source of coupling between the model and the hard-
ware lies in the model graph, which specifies the network
of operations to perform on the input data. Today’s frame-
works compile and optimize this graph once at the beginning
of training and reuse it for the rest of the job. In addition
to tensor operations, information regarding the underlying
cluster configuration is also embedded in the model graph.
In both TensorFlow and PyTorch, for instance, the graph
is defined under a distribution strategy that specifies how
model parameters should be synchronized.

Hurdles for resource elasticity. Once the model graph is
created under a particular distribution strategy, subsequent
training will use synchronization operations that involve a
fixed set of accelerators. Adjusting a job’s resource alloca-
tion would involve rebuilding the entire graph under a new
distribution strategy and reloading previously trained model
parameters from a checkpoint, an expensive process that can
take minutes (Or et al., 2020). Further, as discussed in §2.1,
changing the amount of resources in the middle of a job can
lead to adverse effects on the model’s convergence.

2.3 Data Parallel, Synchronous Training

The most common form of parallelism in distributed deep
learning workloads is data parallelism, where the each ac-
celerator processes its share of the input batch independently.
This is in contrast to model parallelism, which partitions, in-
stead of replicates, the model graph across the accelerators,
and is used primarily for extremely large models that do not
fit in the memory of a single accelerator.

In modern workloads, data parallelism is typically com-
bined with synchronous training, which enforces a synchro-
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Figure 3. Memory footprint of virtual node processing in a single training step. The model parameters and the gradient buffer are shared
across all virtual nodes on each accelerator, while the memory used in each forward and backward pass is specific to individual virtual
nodes. Memory overhead from the gradient buffer is a small constant independent of the number of virtual nodes V' per accelerator.

nization barrier at the end of each step, and is shown to
have better convergence properties than asynchronous train-
ing (Chen et al., 2016). Gradients can be synchronized using
either the parameter server architecture (Li et al., 2014) or
the all-reduce architecture (Thakur et al., 2005; Sergeev &
Del Balso, 2018), though the latter is increasingly common.

This paper targets data parallel, synchronous training,
though many of the techniques proposed are also applicable
to the model parallel setting. This is explored further in §7.

3 VIRTUAL NODE PROCESSING

The core concept in VirtualFlow is virtual node processing,
a layer of indirection between the model and the hardware.
From the model’s perspective, virtual nodes, rather than
accelerators, perform the computation. As long as the total
number of virtual nodes is unchanged, the batch size and
thus the convergence of the model also remains the same.

3.1 Virtual Node Execution

Each batch of the input data is split among the virtual nodes
in a manner analogous to how a job in MapReduce is divided
into tasks. Virtual nodes assigned to the same hardware ac-
celerator are processed sequentially, while virtual nodes
assigned to different accelerators are still processed in paral-
lel. This produces one or more waves of execution, similar
to MapReduce workloads where the number of tasks is often
a small multiple of the number of CPU slots in the system.

Figure 3 traces the steps involved in processing a single
batch of data with virtual node processing. In each train-
ing step, VirtualFlow computes V' forward and backward
passes, where V' is the number of virtual nodes on each
accelerator. During the forward pass, VirtualFlow computes
the activations while prefetching inputs for the next virtual
node in the background (Step 1). At the end of the back-
ward pass (Step 2), local gradients are aggregated into a
gradient buffer shared across all virtual nodes on the accel-
erator (Step 3). After all virtual nodes have been processed,
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Figure 4. Memory usage in the first 3 steps of training ResNet-50
on ImageNet on a single 2080 Ti GPU, broken down by category.
Activations constitute the vast majority of memory usage at the
peak. The first step is slower due to initial graph optimizations.

the locally aggregated gradients are synchronized across the
cluster (Step 4) and each accelerator applies the averaged
gradients to its copy of the model as before (Step 5).

3.2 Memory Overhead

The gradient buffer in VirtualFlow is a source of memory
overhead (Figure 3). However, because this buffer is shared
among all virtual nodes assigned to the same accelerator, the
memory overhead is a constant independent of the number
of virtual nodes on the accelerator. The size of this buffer
is the same as the model, which is a small fraction of the
peak memory usage for most workloads. Instead, memory
usage is typically dominated by activations computed during
the forward pass, which scale with the batch size while the
model does not. For example, in Figure 4, the activations
required over 8GB, while the model is only around 100MB.

3.3 Time and Resource Trade-off

Today’s deep learning systems are a special case of virtual
node processing that uses one virtual node per hardware
accelerator (Figure 5a). However, this is only one possible
configuration in the trade-off space between time and re-
source requirements. VirtualFlow divides the compution in
each batch in the time dimension as well as in the spatial
dimension (Figure 5b and c), processing the virtual nodes as-
signed to the same accelerators sequentially. This provides
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nodes assigned to each hardware accelerator. The design space for
today’s deep learning workloads is limited to only (a).

users with the freedom to gracefully fall back to running on
fewer accelerators with longer training times.

This flexibility is crucial to model reproducibility, experi-
mentation, and hyperparameter exploration. By preserving
convergence behavior across different hardware configura-
tions (e.g., Figure 5a, b, and ¢), VirtualFlow allows users
to replicate training results produced by others regardless
of the resources used. Experimentation on smaller testbeds
is now possible by using many virtual nodes on each accel-
erator to mimic the larger deployment. On the other hand,
users can explore the effects of using previously inaccessi-
ble batch sizes on the same set of resources by increasing
the number of virtual nodes used on each accelerator.

4 RESOURCE ELASTICITY

Elasticity is widely used in batch processing (Or, 2014),
stream processing (Gedik et al., 2013), cluster manage-
ment (Szczepkowski & Wielgus, 2016), and cloud comput-
ing (AWS; Azure; GCE), enabling higher cluster utilization
and lower job completion time. In this section, we describe
how VirtualFlow can bring the same benefits to distributed
deep learning workloads by expressing elasticity in terms
of redistributing virtual nodes across accelerators.

4.1 Redistributing Virtual Nodes

VirtualFlow maintains a mapping between virtual nodes and
hardware accelerators, but this mapping need not be fixed
over time. To enable resource elasticity, virtual nodes can be
redistributed dynamically across the accelerators assigned
to a job in response to cluster demand. When redistributing
virtual nodes, the total number of virtual nodes remains the
same, and so adjustments to a job’s resource allocation are
seamless from the perspective of the application.

When scaling out, certain virtual node state must be mi-
grated to the new accelerators, including the model parame-
ters and certain stateful kernels. One example of the latter
is the batch normalization moving mean and variance (loffe
& Szegedy, 2015), which are computed independently on
each accelerator and never synchronized. Bootstrapping

Algorithm 1: Elastic WES Scheduler

1 function schedule (running_jobs, job_queue):

2 new_allocations = expand current allocations

3 while job_queue not empty do

4 fair_allocations = compute fair shares(

5 running_jobs, job_queue.peek())

6 if no higher priority job allocations are affected then
7 new_allocations = fair_allocations
8
9

running_jobs += job_queue.dequeue()
else
10 | break
11 resize jobs(new_allocations)

new workers without also migrating these stateful kernels
would effectively reset their internal state, potentially hurt-
ing convergence. VirtualFlow migrates these stateful kernels
as well as the model parameters through an all-gather opera-
tion performed on the new workers. This process typically
takes less than a second (similar to all-reduce) and only
takes place once per resource adjustment.

4.2 Elastic Weighted Fair Sharing (WFS)

To showcase the benefits of expressing elasticity in terms
of virtual nodes, we built a simple event-driven scheduler
that dynamically resizes deep learning jobs based on their
relative weighted fair shares (WFS) (Demers et al., 1989).
These fair shares are computed based on the priority of the
jobs, which can be set to arbitrary attributes of the job to
express a variety of scheduling objectives, such as Shortest
Job First (SJF) and Shortest Remaining Time First (SRTF).
The main scheduling logic is summarized in Algorithm 1.

This scheduler has two important distinctions from exist-
ing GPU cluster schedulers (Xiao et al., 2018; Peng et al.,
2018; Narayanan et al., 2020). First, resource adjustments
need not interrupt the jobs and restart them from check-
points. Second, while existing schedulers dynamically ad-
just cluster-wide resource allocations, they are unable to
resize individual jobs without potentially hurting model con-
vergence. However, not being able to resize individual jobs
leads to lost opportunities for more efficient scheduling. As
an example, suppose job A demands 2 GPUs and job B
demands 8 GPUs and there are no other jobs in the queue. If
there are 8 GPUs in total, jobs A and B will never be able to
run at the same time, and 6 GPUs will have to go idle for the
entire duration of job A. Regardless of the scheduling policy,
being able to dynamically adjust the resource requirement of
each job will generate many new scheduling opportunities,
potentially leading to higher cluster utilization (§6.3).

5 HETEROGENEOUS TRAINING

An important assumption made by state-of-the-art frame-
works is resource allocations must be homogeneous. Virtu-
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Figure 6. (Left) VirtualFlow heterogeneous training overview. (Right) Splitting a batch evenly across a set of uneven resources is
inefficient. In this workload, we wish to train ResNet-50 on ImageNet on 2 V100 GPUs and 2 P100 GPUs with a global batch size of
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alFlow relaxes this assumption by allowing users to com-
bine multiple accelerator types in the same job, potentially
leading to significant improvements in job throughput and
cluster utilization. There are two main challenges involved,
however. First, how to distribute virtual nodes across hetero-
geneous resources efficiently (§5.1)? Second, how to pro-
vide the same semantics as homogeneous training (§5.2)?

5.1 Virtual Node Assignment

The key intuition is to assign more virtual nodes to the
resource types with higher compute capabilities, so as to
balance the step times across the different accelerator types.
This allows users to scale their workloads by reducing the
amount of computation required on the each type of acceler-
ator, thereby improving the overall throughput.

For additional flexibility in deciding how to split the batch
across the heterogeneous set of resources, we further relax
the constraint that the size of each virtual node must be the
same across all accelerators. Then, determining an efficient
assignment of virtual nodes involves two steps, as outlined
in Figure 6 (left). First, VirtualFlow performs an offline
profile of the given workload on all target accelerator types.
Then, using these offline profiles, VirtualFlow solves for a
configuration that minimizes the overall step time.

5.1.1 Offline Profile

To generate an offline profile, VirtualFlow runs the given
workload on a single hardware accelerator at a time across
all batch sizes of interest that fit in the accelerator’s memory.
Due to memory alignment, we only consider batch sizes that
are powers of 2 or power-of-2-like numbers (e.g., 48, 192,
768), which are the mid-points between adjacent powers
of 2. The process is then repeated on all accelerator types
and the result is a set of throughput over batch size curves
(Figure 6, left), one for each accelerator type.

For each batch size, we only need to run a few steps (e.g.,
20) to arrive at a representative average throughput, since the
performance is typically consistent across steps. Therefore,
the entire process typically takes no longer than 10 minutes,
a small fraction of the job duration for many deep learning
workloads, which can run for many hours or even days.

5.1.2 Heterogeneous Solver

To understand why a solver is necessary, consider the sce-
nario in Figure 6 (right), in which we are given 2 V100
GPUs and 2 P100 GPUgs, all with 16GB of memory capac-
ity. A naive, even split of the batch would assign the same
amount of data and the same number of virtual nodes to
each GPU, regardless of the GPU type. However, this con-
figuration is inefficient, because, for this workload, V100
GPUs are 4x as fast as P100 GPUs, so the system will be
bottlenecked on the P100 GPUs, leaving the V100 GPUs
idle for a large fraction of the training time. Instead, an un-
even split that assigns more data in each batch to the V100
GPUs will result in a much shorter (44%) overall step time.

In order to arrive at an appropriate split across the different
accelerator types, we formulate the problem as follows. For
simplicity, we treat the resources as GPUs:

Objective  min max (¢;(b;) - v; + comm)
Constraint Z n; b, -v; =B

Solve for  b;,vi,n; Vi
B = Global batch size
b; = Per virtual node batch size for GPU type ¢
v; = Number of virtual nodes on each GPU of type ¢
t;(b;) = Step time on GPU type i
n; = Number of GPUs of type ¢
comm = Communication overhead

This objective aims to equalize the step times across all
GPU types so as to minimize the overall step time, which
is bottlenecked by the slowest GPU. We multiply the step
time by the number of virtual nodes v; to reflect the fact
that virtual nodes on a given GPU are executed sequen-
tially. The step times for each GPU type ¢; are constants
supplied by offline profiles computed previously (§5.1.1).
The communication overhead comm can be estimated as
part of the offline profile by taking the difference between
the distributed and single GPU step times, using a per GPU
batch size of 1 and synthetic input examples to isolate the
time spent on gradient synchronization.



VirtualFlow: Decoupling Deep Learning Models from the Underlying Hardware

The solver falls back to recommending homogeneous allo-
cations when there are no heterogeneous combinations that
can improve the throughput of the job. This can happen
if the compute capabilities are vastly different across the
GPU types, and there are not enough of the slower GPUs to
compensate for the discrepancy in performance.

5.2 Correctness

An important goal of VirtualFlow is to preserve training
semantics regardless of the underlying hardware. However,
naively applying existing gradient synchronization and data
sharding techniques can lead to incorrect results.

Gradient synchronization. Existing implementations of
gradient synchronization first take a local average of the
gradients computed on each accelerator, then take a global
average of these local averages across all accelerators. On
heterogeneous resources, however, this method can produce
incorrect gradients. For instance, suppose we assign 6 input
examples to GPUO and 2 input examples to GPU1 in each
batch. Taking a simple average will result in:

_ 0 + ...+ g6 + 3(g97 + gs)

1 (91 +...+g5) 1 (g7+gs)

2 6 T3 2 12

where the gradients on GPU1 are weighed disproportion-
ately compared to the rest. Instead, VirtualFlow performs a
weighted average during gradient synchronization:

§(g1+...+ga) n 1 (g7+gs)

4 6 4 2

_ g1+ ...+ gs
8

This ensures all gradients are considered equally regardless
of how the data is distributed across the accelerators.

Data sharding. Similarly, existing sharding techniques
assume the batch is split evenly across the accelerators.
Naively reusing these techniques for heterogeneous training
will result in certain input examples being observed more
often than others. VirtualFlow maintains the exactly-once
data semantics of homogeneous training by sharding the
dataset unevenly to match the relative local batch sizes (e.g.,
4:1) across the different accelerator types.

6 EVALUATION

We implemented VirtualFlow with resource elasticity and
heterogeneous training support on top of TensorFlow 2.4 in
2700+ lines of code. For elasticity, we used the same mech-
anisms as (Or et al., 2020), in which Horovod (Sergeev &
Del Balso, 2018) was used as the narrow waist communica-
tion layer that connects a changing set of worker processes.
In this section, we evaluate VirtualFlow’s effectiveness in
reproducing results across different hardware (§6.2), provid-
ing elasticity while preserving model semantics (§6.3), and
enabling heterogeneous training (§6.4).
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Figure 7. Reproducibility: VirtualFlow preserves the conver-
gence trajectory across different numbers of GPUs by fixing the
batch size at 8192. Naively attempting to reproduce the same
workload on fewer GPUs without retuning the hyperparameters
(TF*) yields lower accuracies and different convergence behavior.

6.1 Experimental Setup

End-to-end reproducibility and elasticity experiments are
performed on 2 servers, each with 8 NVIDIA V100 GPUs
(16GB), 64 Intel Xeon CPUs (2.2Ghz), and 250GB of
DRAM, connected over a 16 Gbps connection. Heteroge-
neous training experiments additionally use 2 extra similar
servers, each with 4 NVIDIA P100 GPUs (16GB). Explo-
ration and microbenchmark experiments use 2 NVIDIA
GeForce RTX 2080Ti GPUs on a server with 32 Intel(R)
Xeon(R) E5-2620v4 CPUs (2.1GHz) and 64GB of DRAM.

6.2 Reproducibility

We demonstrate VirtualFlow’s reproducibility using two
well-known workloads: ResNet-50 (He et al., 2016) on
ImageNet (Deng et al., 2009) and BERT (Devlin et al.,
2018) fine-tuning on GLUE (Wang et al., 2019). We varied
the number of GPUs while fixing the global batch sizes, and
observed almost identical convergence trajectories across
different allocations for both workloads.

Baseline. We compare VirtualFlow with a version of vanilla
TensorFlow that does not retune hyperparameters across
batch sizes (TF*). For example, for ResNet, we do not
apply the linear scaling rule (Goyal et al., 2017) to adjust the
learning rate when simulating large workloads on smaller
sets of GPUs. This setup is motivated by the fact that these
optimization techniques are workload-specific and difficult
to identify for arbitrary workloads (Shallue et al., 2018).

6.2.1 ResNet-50 on ImageNet

In this experiment, we train ResNet-50 on the ImageNet
dataset for 90 epochs using a fixed batch size of 8192, a
widely used benchmark that is known to converge to the
vicinity of 76% (Goyal et al., 2017; He et al., 2016; Gross
& Wilber, 2016). To demonstrate VirtualFlow can preserve
convergence across GPU types, we ran this workload on
both V100 and RTX 2080Ti GPUs. Each V100 GPU can fit
a batch of 256 examples at a given time, so we use 32 total
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VirtualFlow TF* QNLI SST-2 CoLA
GPUs BS VNgpy  Acc (%) BS Acc (%) GPUs BS VNgpu Acc (%) Acc(%) Acc (%)
1 8192 32 75.92 256 69.25 1 64 8 90.86 92.07 83.01
2 8192 16 75.96 512 67.30 2 64 4 91.05 92.35 84.08
4 8192 8 75.99 1024 70.68 4 64 2 90.86 92.20 83.50
8 8192 4 75.83 2048 73.04 8 64 1 90.88 91.86 82.45
16 8192 2 75.68 - - Target 64 - 90.90 91.97 8236
2f 8192 32 76.01 - -
Target 8102 e 76265 e - Table 2. Reproducibility: Final top-1 validation accuracies for

Table 1. Reproducibility: Final top-1 validation accuracies for
the same ResNet-50 experiment shown in Figure 7. VirtualFlow
preserves the target accuracy of 76% (% 0.5%) regardless of the
number of GPUs assigned, while the naive solution (TF*) diverges.
VNgpu refers to number of virtual nodes per GPU, f refers to
training on RTX 2080Ti GPUs instead of on V100 GPUs, and
refers to the accuracy achieved in (Goyal et al., 2017)

virtual nodes for these runs. For the smaller RTX 2080Ti
GPUs, we use 64 total virtual nodes instead.

Table 1 demonstrates VirtualFlow can reproduce the target
accuracy for all runs (£0.5%) across different numbers and
types of GPUs. Previously, this workload required 32 V100
GPUs. With VirtualFlow, however, the user can reproduce
the results for the same workload on even a single GPU.
In contrast, attempts to reproduce this workload on fewer
GPUs without retuning the hyperparameters (TF*) led to
diverged models, e.g., doing so on 1 GPU led to a final
accuracy of only 69.25%, far short of the target 76%. Addi-
tionally, VirtualFlow preserves not only the final accuracy
but also the entire convergence trajectory (Figure 7).

6.2.2 BERT-BASE Finetuning on GLUE

We also fine-tuned BERT-BASE on the GLUE dataset
(QNLI, SST-2, and CoLA) using a fixed batch size of 64.
For QNLI and SST-2, we use 1/10th of the original dataset
in each epoch and train for 20 epochs. For CoLA, we train
on the whole dataset for 50 epochs. As before, VirtualFlow
was able to reproduce the target accuracies (obtained by
running vanilla TensorFlow) across different numbers of
GPUs for all GLUE tasks by preserving the batch size and
the total number of virtual nodes (Table 2). Unlike in the
ResNet case, however, the baseline also happened to con-
verge to the same accuracies in these workloads (not shown).
This illustrates that these workloads are less sensitive to a
changing batch size within this range (8 to 64). While Vir-
tualFlow did not lead to higher accuracies in this case, it
still guaranteed that results for the batch size of 64 can be
consistently reproduced across different sets of resources.

6.3 Resource Elasticity

In this section, we evaluate VirtualFlow’s ability to dynam-
ically resize a job while preserving model semantics and
highlight the cluster-level benefits of this approach.

fine-tuning BERT-BASE across 3 GLUE tasks using VirtualFlow.
VirtualFlow was able to reproduce the same training results as the
state-of-the-art on a variety of number of GPUs. Previously, a
batch size of 64 would not fit in the memory of 1 V100 GPU.
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Figure 8. Elasticity with VirtualFlow reduces the makespan by
38% and the job completion time (JCT) for the highest priority job
by 45%, while preserving model accuracies. In this workload, 3
jobs share 4 V100 GPUs on a single machine.

6.3.1 Elastic Scheduling with Three Jobs

Using the scheduler described in §4.2, we ran two traces
with and without VirtualFlow. The first is a simple 3-job
trace designed to illustrate a scenario in which elasticity can
have significant effects on cluster-level objectives. Job 0
fine-tunes BERT-BASE on SST-2, Job 1 trains ResNet-56
on cifar10 (Krizhevsky), and Job 2 fine-tunes BERT-BASE
on QNLI. The BERT jobs both demand 4 GPUs, while the
ResNet job demands only 2 GPUs. The jobs arrive in the
order of increasing priority, with Job 2 being the highest.

Figure 8 compares running this trace with the elastic, WFS
scheduler in VirtualFlow to running it with a simple, non-
elastic priority scheduler. With VirtualFlow, existing jobs
downsize as soon as a new job with priority arrives. With
the static priority scheduler, however, the high priority Job 2
is stuck behind Job 1 for a long time, leaving 2 GPUs idle
for the entire duration of Job 1.

Observe that although all 3 jobs resized over the course of
their respective lifetimes in the VirtualFlow case, they all
converged to the same accuracies as their counterparts in
the simple priority scheduler case. Thus, the VirtualFlow
scheduler is able to reduce the makespan by 38% and the
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Figure 9. Elasticity with VirtualFlow (top) increases average clus-
ter utilization by 19.5% and reduces makespan by 45.5%, com-
pared to a simple priority scheduler (bottom) that does not perform
elasticity. Each colored box corresponds to a job. Boxes resize for
the elastic scheduler but not for the static scheduler.
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Figure 10. Elasticity: In the same 20 job experiment shown in
Figure 9, VirtualFlow reduces the median JCT by 47.6% and the
median queuing delay by 99.3% by resizing jobs dynamically.

high priority job completion time (JCT) by 45%, while
preserving the application-level semantics of each job.

6.3.2 Elastic Scheduling with Twenty Jobs

Next, we evaluate VirtualFlow on a more realistic trace
consisting of 20 jobs arriving according to a poisson distri-
bution, with an average load of 12 jobs per hour (average
interarrival time of 5 minutes). The workloads used in this
trace are selected uniformly at random from Table 4 (Ap-
pendix). To speed up the experiment, we train each job for
only a subset of the steps or epochs needed for convergence.

Figure 9 depicts the GPU allocations for both schedulers
over time. Enabling elasticity with VirtualFlow improved
average cluster utilization from 71.1% to 90.6%, reduced
the makespan by 45.5%, the median JCT by 47.6%, and the
median queuing delay by 99.3% (Figure 10).

6.4 Heterogeneous Training

Figure 11 demonstrates the effectiveness of heterogeneous
training across different sets of resources compared to homo-
geneous training. Detailed configurations regarding these
experiments can be found in Table 3.

Heterogeneous configuration H3 significantly outperformed
both the V100 only (by 42.3%) and the P100 only (by
52.4%) homogeneous configurations. Compared to HI and

V100 P100
Exp | Num BSgpuy VNgpu | Num BSgpu VNgru
Hla | 1+1 2048 8 1+1 2048 8
b| 1+1 3072 16 1+1 1024 4
c| 1+1 3072 32 1+1 1024 4
H2a | 1+1 3072 16 2+2 512 2
b | 1+1 3072 16 2+2 512 4
c| 1+1 3072 16 242 512 8
d| 1+1 3072 16 2+2 512 16
H3 | 1+1 2048 8 4+4 512 2

Table 3. Heterogeneous training configurations for ResNet-50 on
ImageNet (batch size 8192). Columns BSgpy and VNgpy refer
to the batch size and number of virtual nodes assigned to each
GPU of the given type respectively, and 1+1 in the Num column
refers to 2 servers with 1 GPU each.

2 V100 only 4 P100 only
w 2 P100 only 8 P100 only
o
£ 3000 1.42x Acc (%)
‘g 1.10x Hlb 75.97
S 2000
=) H2a 75.92
g 1000 H3 75.80
-'S 0 abc abcd

H1 H2 H3

Figure 11. Heterogeneous training can improve throughput by
up to 42% while converging to same target accuracy (76%) as ho-
mogeneous training. Experiment H3 had the largest improvement
because the V100 only and the P100 only throughputs are the most
similar. The specific configurations can be found in table 3.

H2, H3 is best able to balance the step times of the two
individual GPU types. This is because, for this workload,
V100 GPUs are roughly 4x as fast as P100 GPUs, and H3
uses 4 times as many P100 GPUs as V100 GPUs. In the
H1 group, the V100 only configuration is the most efficient
because there are not enough P100 GPUs to compensate for
the difference in performance. For this group, VirtualFlow’s
heterogeneous solver fell back on recommending the more
efficient V100 only configuration.

Importantly, all heterogeneous configurations converged to
the target accuracy of 76% (Goyal et al., 2017), the same
as homogeneous training. Further, VirtualFlow’s heteroge-
neous solver accurately predicted throughputs for this set of
experiments (Figure 12).

6.4.1 Heterogeneous Scheduler

To illustrate the benefits of VirtualFlow’s heterogeneous
training in a multi-tenant environment, we extended
Gavel (Narayanan et al., 2020) to additionally consider het-
erogeneous allocations. Although Gavel was designed for
heterogeneous clusters, it only considers homogeneous al-
locations. We evaluate our implementation in a simulated
environment consisting of 4 V100, 8 P100, and 16 K80
GPUs, drawing from a subset of the workloads in Table 4.
Following their evaluation, we use a round duration of 6
minutes and their formulation of the LAS objective.
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Figure 12. Heterogeneous solver produces throughputs within
5.6% of actual throughputs on average (experiments from Table 3).
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Figure 13. Het. scheduler: Extending Gavel (Narayanan et al.,
2020) to additionally consider heterogeneous allocations can re-
duce the average JCT by up to 29.2%. The cluster consists of 4
V100 GPUs, 8 P100 GPUs, and 16 K80 GPUs. (Simulation)
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Figure 14. Heterogeneous scheduler: An example trace where
Gavel (Narayanan et al., 2020) with heterogeneous allocations
(top) reduces the average job completion time by 26.4% compared
to Gavel without (bottom). Each colored box refers to an allocation,
and each hatched box refers to a heterogeneous allocation. In this
trace, 8 jobs arrive per hour on average. (Simulation)

In this experiment, using heterogeneous allocations allowed
the scheduler to reduce the average job completion time by
up to 29.2% (Figure 13). At higher job arrival rates, the
benefits of using heterogeneous allocations diminishes, how-
ever, and the system gracefully falls back to prior behavior.
Figure 14 illustrates a specific example of how individual
jobs can train faster on multiple types of GPUs if there are
idle resources, e.g., the rightmost job’s throughput improved
by 33.7% with 5 extra P100 GPUs in addition to the 16 K80
GPUs already assigned to it.

6.5 Microbenchmarks

Virtual node processing adds a gradient buffer to aggregate
gradients across virtual nodes. This gradient buffer is the
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Figure 15. Peak memory and throughput on a single RTX 2080Ti
GPU, normalized by the values from TensorFlow. Memory over-
head scales with the model size and is constant across virtual nodes
(top), while throughput scales with the number of virtual nodes for
large models, due to fewer model updates (bottom).
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Figure 16. Overhead on a single RTX 2080Ti GPU for batch sizes
that fit within the GPU’s memory, normalized by throughputs from
TensorFlow. The max batch sizes for ResNet-50, Transformer, and
BERT-LARGE on this GPU are 192, 3072, and 4 respectively.

same size of the model (Figure 15 top): larger models like
BERT see up to 16.2% memory overhead. Beyond 2 virtual
nodes, however, this memory overhead stays constant.

Figure 15 (bottom) plots the throughput across a range of
virtual nodes for the same three workloads. The global batch
size increases with the number of virtual nodes, and so the
frequency of potentially expensive model updates decreases
proportionally. For these workloads, using virtual nodes at
worst lowers the throughput by 4.2% but can increase it by
31.4% in some cases, especially when the model is large
(BERT), since updating large models is expensive.

Figure 16 plots the overhead for workloads that already fit
within the accelerator memory. In all workloads considered,
the overhead is minimal; the throughput of using virtual
nodes is within 88.4% of the throughput without using vir-
tual nodes. Note that for these single accelerator workloads,
the user can simply disable virtual nodes since the job likely
will not benefit from elasticity or heterogeneous training.

7 FUTURE DIRECTIONS

The virtual node abstraction is not limited to the above use
cases. For instance, VirtualFlow can be extended to support:

Fault tolerance. We can reuse existing elasticity mecha-
nisms to migrate virtual nodes from failed workers to re-
maining healthy ones, and then to the new replacement
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workers when they become available. This would ensure
training is uninterrupted from the application’s perspective.
In contrast, state-of-the-art solutions must restart the job
from potentially stale checkpoints if even a single worker
fails (Mohan et al., 2021), since the model graph does not
support changes in cluster membership.

Model parallelism. Training extremely large mod-
els (Brown et al., 2020; Rosset, 2020; Shoeybi et al., 2019)
relies on model parallelism, which partitions, instead of
replicates, the model across the accelerators in the system.
The model can be partitioned by layer or groups of layers (as
in pipeline parallelism (Huang et al., 2019)) and/or by slices
within each layer (spatial partitioning (Shazeer et al., 2018)).
In both cases, model parallelism is often used in conjunction
with data parallelism (Huang et al., 2019; Jia et al., 2019),
where each partition of the model is additionally replicated
across multiple accelerators, and the input batch is divided
evenly among these accelerators (Figure 17, top).

The techniques presented in this paper can still be applied to
this setting to reduce resource requirements along the batch
dimension. More specifically, within each model partition,
the input batch can be divided among virtual nodes rather
than accelerators as before. The system would effectively
unroll the data parallel pipelines into sequential forward and
backward passes (Figure 17, bottom), thus trading off com-
pute time for lower resource requirement. This would bring
the benefits of reproducibility, elasticity and heterogeneous
training to the model parallelism setting as well. Exploring
how to pipeline these virtual nodes for higher efficiency (as
in GPipe (Huang et al., 2019) and PipeDream (Narayanan
et al., 2019)) would be an interesting future direction.

8 RELATED WORK

Gradient accumulation. The execution of virtual nodes is
similar to gradient accumulation in PyTorch (Li et al., 2020)
and a variant of asynchronous training that synchronizes
gradients every k steps (Zhou & Cong, 2018; Wang & Joshi,
2019; Zhao et al., 2019). VirtualFlow is a generalization of
these approaches: virtual nodes not only allow users to simu-
late larger batch sizes, but also provide a general abstraction
that enables elasticity and heterogeneous training.

Virtual nodes. The use of virtual nodes to decouple from
hardware is not new. Chord (Stoica et al., 2001) uses virtual
nodes to map multiple ring segments to the same server,
and Dynamo (DeCandia et al., 2007) uses virtual nodes
to dynamically balance load across servers in the system.
VirtualFlow borrows from these ideas.

Elasticity mechanism. Resource elasticity for deep learn-
ing has been explored in (Or et al., 2020), and our imple-
mentation builds on top of the resizing mechanisms they
introduced. (Elastic Horovod) and (TorchElastic) also pro-
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Figure 17. Model parallelism combined with data parallelism today
(top), versus model parallelism with virtual nodes (bottom), which
halves the resource requirement for this job. This can be further
optimized by pipelining the virtual nodes, which would overlap
boxes F1 and F2 for example, as in GPipe (Huang et al., 2019).

vide elasticity mechanisms for deep learning. Unlike Vir-
tualFlow, however, these approaches do not provide model
convergence guarantees as they allow the global batch size
to change throughout training.

Cluster scheduling. Multi-tenant GPU cluster schedulers
such as Optimus (Peng et al., 2018), Tiresias (Gu et al.,
2019), Gandiva (Xiao et al., 2018), Themis (Mahajan et al.,
2020), and Gavel (Narayanan et al., 2020) dynamically mi-
grate jobs across GPUs to achieve various cluster-level ob-
jectives. However, unlike VirtualFlow, these approaches
constantly interrupt and restart jobs when adjusting their
resource allocations (e.g., every 6 minutes (Narayanan
et al., 2020)), and assume fixed resource requirements for
each job, thus limiting the scheduling options available.
Antman (Xiao et al., 2020) can adjust resource allocations
seamlessly by swapping to and from host memory, but only
for co-located jobs that share the same accelerators.

Heterogeneous training. Gavel (Narayanan et al., 2020) in-
troduces policies for heterogeneous clusters, but only makes
homogeneous allocations. Integrating their scheduler with
VirtualFlow’s heterogeneous training can open up additional
scheduling options and improve cluster utilization (§6.4.1).

9 CONCLUSION

VirtualFlow is an important step towards decoupling deep
learning models from the underlying hardware. With virtual
nodes, VirtualFlow allows users to reproduce training re-
sults consistently across different clusters, reap the benefits
of resource elasticity without worrying about model conver-
gence, and combine multiple accelerator types to improve
training throughput, all without a single change to the model
specification or the hyperparameters.

The benefits of virtual nodes are not limited to the use cases
explored in this paper. In the future, we expect to see more
complexities associated with resource management pushed
into the deep learning frameworks themselves, enabling the
user to focus on application-level objectives instead.
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A APPENDIX
A.1 Hyperparameter Exploration
Another use case of virtual nodes is to explore hyperparame-

ters previously inaccessible on the same set of resources. To
achieve this, we vary the number of virtual nodes, and con-

Model Dataset Batch sizes VNgpu
ResNet-56 cifar10 64, 128 1
256,512, 1024
ResNet-50 ImageNet 2048, 4096, 8192 1,2,4
BERT-BASE CoLA 8, 16, 32,64, 128 1,2
BERT-BASE SST-2 8, 16, 32, 64, 128 1,2
Transformer WMT 4096, 8192, 16384 1,2

32768, 65536

Table 4. Elasticity: Mix of workloads used in 20-job experiment.
Each job is selected uniformly at random from this set.

sequently the batch size, while holding the number of GPUs
constant, i.e., the opposite of the previous experiments. We
fine-tune BERT-LARGE on three GLUE tasks, RTE, SST-2,
and MRPC, for 10 epochs on a single RTX 2080Ti GPU.

Figure 18 plots the model convergence for this experiment.
Unlike before, since the batch size changes across runs, so
do the convergence trajectory and the final accuracy. This
allows the user to explore the convergence characteristics
of various batch sizes, without deploying the resources that
would have been necessary to run these batch sizes using
vanilla TensorFlow (e.g., 32 GPUs for a batch size of 128).

In some cases, VirtualFlow can even achieve higher accura-
cies in the batch sizes explored. For RTE (a reading entail-
ment task), using a larger batch size of 16 is now possible on
1 GPU, even though this batch size required 4 GPUs before.
This configuration ended up improving the final accuracy
by 7 percentage points on the same set of resources.

A.2 Model Update Frequency

Though not a main goal, an important side effect of using
virtual nodes is improved throughput. This results from
being able to use larger batch sizes than was previously
possible, which reduces the number of expensive gradient
synchronizations and model updates proportionally.

In the same set of experiments described in Appendix A.1,
using a larger batch size reduced the training time by lower-
ing the model update frequency for all the tasks considered.
(Figure 19). For RTE, using a batch size of 16, as enabled
by VirtualFlow, not only improved the final accuracy by
7.1%, but also improved the throughput by 18.5%. Using a
batch size of 128 further improved the throughput by 28.7%
without affecting convergence.

Thus, even if VirtualFlow did not improve the final accuracy
of the model (which was not a goal of VirtualFlow in the
first place), it can still help reduce the training time by
lowering the model update frequency. In the distributed
setting, this also reduces the number of expensive gradient
synchronizations across the network.
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Figure 18. Batch size exploration with VirtualFlow on a single RTX 2080 Ti GPU. VirtualFlow expands the space of possible batch sizes
on this GPU from 4 (TF) to [4, 8, 16, 32, 64, 128], and can support even larger batch sizes. In some cases, such as in RTE (left), being
able to access larger batch sizes can lead to significantly higher final accuracies (+7.1% with a batch size of 16).
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Figure 19. Batch size exploration. Throughputs of the same experiment shown in Figure 18. For RTE, using VirtualFlow not only leads
to higher accuracies, but also higher training throughputs (up to +18.5% using 16BS, or +28.7% using 128BS). Other tasks see similar
throughput improvements. The number at the bottom of each bar refers to the final accuracy achieved in that run, and the hatched bar
represents the configuration with the highest final accuracy within each task.



