
Be Fast, Cheap and in Control
with SwitchKV

Xiaozhou Li
Raghav Sethi

Michael Kaminsky

David G. Andersen

Michael J. Freedman

• Target: cluster-level storage for modern cloud services

 Massive number of small key-value objects

 Highly skewed and dynamic workloads

 Aggressive latency and throughput performance goals

• This talk: scale-out flash-based storage for this setting

Goal: fast and cost-effective key-value store

2

• How to handle the highly skewed and dynamic workloads?

• Today’s solution: data migration / replication

 system overhead

 consistency challenge

Key challenge: dynamic load balancing

3

time t

time t+x

Fast, small cache can ensure load balancing

4

flash-based backend nodes frontend cache node

E.g., 100 backends with hundreds of billions of items + cache with 10,000 entries

Need only cache O(nlogn) items to provide good load balance,

where n is the number of backend nodes. [Fan, SOCC’11]

• How to efficiently serve queries with cache and backend nodes?

• How to efficiently update the cache under dynamic workloads?

hottest queriesless-hot queries, better-balanced loads

• Cache must process all queries and handle misses

• In our case, cache is small and hit ratio could be low

 Throughput is bounded by the cache I/O

 High latency for queries for uncached keys

High overheads with traditional caching architectures

Look-aside Look-through

clients

backends cache

5

clients

backends cache (load balancer)

miss

Switches route requests directly to the appropriate nodes

• Latency can be minimized for all queries

• Throughput can scale out with # of backends

• Availability would not be affected by cache node failures

SwitchKV: content-aware routing

6

backends

cacheOpenFlow Switches

clients

controller

• Clients encode key information in packet headers

 Encode key hash in MAC for read queries

 Encode destination backend ID in IP for all queries

• Switches maintain forwarding rules and route query packets

Exploit SDN and switch hardware

7

L2 table

TCAM table

Packet In Packet Out

miss

hit
exact match rule per cached key

match rule per physical machine
Packet Out

to the cache

• New challenges for cache updates

 Only cache the hottest O(nlogn) items

 Limited switch rule update rate

• Goal: react quickly to workload changes with minimal updates

Keep cache and switch rules updated

8

cache backend

switch rule update top-k <key, load> list

(periodic)

fetch <key, value>

(instant)

bursty hot <key, value>

controller

• How well does a fast small cache improve the system
load balance and throughput?

• Does SwitchKV improve system performance compared
to traditional architectures?

• Can SwitchKV react quickly to workload changes?

Evaluation

9

Evaluation Platform

10

Reference backend

• 1 Gb link

• Intel Atom C2750 processor

• Intel DC P3600 PCIe-based SSD

• RocksDB with 120 million 1KB objects

• 99.4K queries per second

Evaluation Platform

Client
40 GbE

Xeon Server 1

Cache

40 GbE

Xeon Server 2

40 GbE

40 GbE

40 GbE

40 GbE

Pica8 P-3922
(OVS 2.3)

Backends

40 GbE 40 GbE

Xeon Server 3 Xeon Server 4

Ryu

Backends

of backends 128

backend tput 100 KQPS

keyspace size 10 billion

key size 16 bytes

value size 128 bytes

query skewness Zipf 0.99

cache size 10,000 entries

Default settings in this talk

11

• Use Intel DPDK to efficiently transfer packets and modify headers

• Client adjusts its sending rate, keep loss rate between 0.5% and 1%

Throughput with and without caching

12

Cache (10,000 entries)

Backends aggregate (with cache)

Backends aggregate (without cache)

Throughput vs. Number of backends

backend rate limit: 50KQPS, cache rate limit: 5MQPS

13

End-to-end latency vs. Throughput

14

Throughput with workload changes

Make 200 cold keys become the hottest keys every 10 seconds
15

Traditional cache update method

Periodic top-k updates only

Periodic top-k updates + instant bursty hot key updates

SwitchKV: high-performance and cost-efficient KV store

• Fast, small cache guarantees backend load balancing

• Efficient content-aware OpenFlow switching

 Low (tail) latency

 Scalable throughput

 High availability

• Keep high performance under highly dynamic workloads

Conclusion

16

