
SPORC

Group Collaboration using
Untrusted Cloud Resources

1
SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10

Ariel J. Feldman, William P. Zeller, 
Michael J. Freedman, Edward W. Felten

Cloud deployment: pro & con

Cloud deployment is attractive

•  Scalable, highly available, globally accessible

•  Real-time collaboration

2
SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10

For user-facing applications: 
(e.g. word processing, calendaring, e-mail, IM)

But, thereʼs a price…

Must trust the cloud provider for
confidentiality and integrity

…
 

SPORC goals

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 3

Untrusted servers

•  Canʼt read user data

•  Canʼt tamper with user data without

risking detection

•  Clients can recover from tampering

Practical cloud apps

•  Flexible framework

•  Real-time collaboration

•  Work offline

Server

Making servers untrusted

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 4

Encrypted

state

App
logic

SPORC Serverʼs limited role:

•  Storage

•  Ordering msgs

State

Client 1

Copy of

state

App
logic

Client 2

Copy of

state

App
logic
 Client
App logic
 App logic

Server

Problem #1:

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 5

Client 1

Copy of

state

App
logic

Client 2

Copy of

state

App
logic
 Client

How do you keep clientsʼ
local copies consistent?

(esp. with offline access)

Server

Encrypted

state

Problem #2:

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 6

Client 1

Copy of

state

App
logic

Client 2

Copy of

state

App
logic
 Client

How do you deal with
a malicious server?

Server

Encrypted

state

Keeping clients in sync

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 7

Operational transformation (OT) [EG89]

(Used in Google Docs, EtherPad, etc.)

Alice
 Bob

Server

ins
“ABC”

ins
“DE”
 del 4
del 2
 ins

“ABC”

ins
“DE”

Ops:

State:
ABCDE
 ABCDE
ACDE
 ABCE

del 4
del 2

del 2
del 4

del 2
del 4

ACD
 ACE

del 2
del 3

T
 T

ACE
 ACE

OT can sync arbitrarily divergent clients

Ops:

State:

Dealing with a malicious server

Digital signatures arenʼt enough

Server can equivocate

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 8

A
 B
 C
 A
C
fork* consistency [LM07]

•  Honest server: linearizability

•  Malicious server: Alice and Bob

detect equivocation after
exchanging 2 messages

•  Embed history hash in every
message

Server can still fork the clients, but canʼt unfork

Client

Server

Client

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 9

Client app

Local

state

SPORC lib

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 10

Client app

Local

state

SPORC lib

Committed
 Pending

fork*

consistent

causally

consistent

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 11

Client app

Local

state

SPORC lib

Committed
 Pending

Server

Encrypted state

Encrypt
& sign

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 12

Client app

Local

state

SPORC lib

Committed
 Pending

Server

Encrypted state

Client

Verify &
decrypt

Compare
history hashes

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 13

Client app

Local

state

SPORC lib

Committed
 Pending

Server

Encrypted state

Client

Decrypt
& verify

T

System design

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 14

Client app

Local

state

SPORC lib

Committed
 Pending

Server

Encrypted state

Client

T

Access control

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 15

Challenges

•  Server canʼt do it — itʼs untrusted!

•  Preserving causality

•  Concurrency makes it harder

Solutions

•  Ops encrypted with symmetric key shared by clients

•  ACL changes are ops too

•  Concurrent ACL changes handled with barriers

Encrypted

state

Adding a user

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 16

Alice
 Bob

Server

Charlie
Group
members:

ModifyUserOp

Add “Charlie”

ECharlie_pk(k)

Removing a user

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 17

Alice
 Bob

Server

Charlie

Group
members:

ModifyUserOp

Rm “Charlie”

Ealice_pk(kʼ)

Ebob_pk(kʼ)

Ekʼ(k)

Charlie

BARRIER
 BARRIER

Barriers: dealing with concurrency

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 18

Alice
 Bob

Server

Group
members:
 Charlie

ModifyUserOp

Rm “Charlie”

Ek1(k)

Eve

ModifyUserOp

Rm “Eve”

Ek2(k)

ModifyUserOp

Rm “Eve”

Ek2(k)

10

ModifyUserOp

Rm “Charlie”

Ek1(k)

9
8

… 
ModifyUserOp

Rm “Eve”

Ek2(k1)

10

ModifyUserOp

Rm “Eve”

Ek2(k1)

Clients check on
the server

Recovering from a fork

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 19

Alice’s 
history: 

Bob’s 
history: 

Can use OT to resolve malicious forks too

Fork!

Implementation

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 20

Client lib + generic server

App devs only need to define ops and provide a

transformation function

Demo apps: key value store, browser-based
collaborative text editor

Java CLI version + browser-based version (GWT)

Evaluation

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 21

Setup

•  Tested Java CLI version

•  8-core 2.3 GHz AMD machines

•  1 for server

•  4 for clients (often >1 instance per machine)

•  Gigabit LAN

Microbenchmarks

•  Latency

•  Server throughput

•  Time-to-join (in paper)

Latency

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 22

Low load

(1 client writer)

High load

(all clients are writers)

(Text editor app)

Latency

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 23

Low load

(1 client writer)

High load

(all clients are writers)

(Text editor app)

Server throughput

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 24

 0

 4

 8

 12

 16

 20

 24

 0 1 2 4 8 16
 0

 400

 800

 1200

 1600

 2000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

O
p
er

at
io

n
s

p
er

 s
ec

o
n
d

Payload size (KB)

MB/s
ops/s

 0

 4

 8

 12

 16

 20

 24

 0 1 2 4 8 16
 0

 400

 800

 1200

 1600

 2000

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

O
p

er
at

io
n

s
p

er
 s

ec
o

n
d

Payload size (KB)

MB/s

Conclusion

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 25

Practical cloud apps + untrusted servers

Operational transformation + fork* consistency

Dynamic access control and key distribution

Recovery from malicious forks

Thank you

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 26

Questions?

ajfeldma@cs.princeton.edu

*

*http://www.snowpeak.com/tableware/cutlery/titanium-original-spork-sct-004.html

Comparison with Depot

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 27

Future work: SPORC + Depot? ;-)

SPORC  Depot 

Consistency with malicious servers  ✔  ✔ 
Consistency with malicious clients  ✔ 
Fork recovery  ✔  ✔ 
Work offline  ✔  ✔ 
Dynamic access control  ✔ 
Confiden:ality and key distribu:on  ✔ 

Depot exposes conflicts, but leaves it to the app to 
resolve them 

Time-to-join

SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 28

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2000 4000 6000 8000 10000

C
li

en
t

ti
m

e-
to

-j
o

in
 (

s)

Number of committed operations

Text Editor (w/ pending)
Key-Value (w/ pending)
Text Editor
Key-Value

