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Cloud deployment: pro & con


Cloud deployment is attractive

•  Scalable, highly available, globally accessible

•  Real-time collaboration
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For user-facing applications: 
(e.g. word processing, calendaring, e-mail, IM)


But, thereʼs a price…


Must trust the cloud provider for 
confidentiality and integrity


…
 



SPORC goals
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Untrusted servers

•  Canʼt read user data

•  Canʼt tamper with user data without 

risking detection

•  Clients can recover from tampering


Practical cloud apps

•  Flexible framework

•  Real-time collaboration

•  Work offline




Server


Making servers untrusted
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SPORC Serverʼs limited role:

•  Storage

•  Ordering msgs
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Problem #1:
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How do you keep clientsʼ 
local copies consistent?


(esp. with offline access)
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Problem #2:
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Keeping clients in sync
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Operational transformation (OT) [EG89]

(Used in Google Docs, EtherPad, etc.)
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OT can sync arbitrarily divergent clients


Ops:


State:




Dealing with a malicious server

Digital signatures arenʼt enough

Server can equivocate
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A
 B
 C
 A
C
fork* consistency [LM07]

•  Honest server: linearizability

•  Malicious server: Alice and Bob 

detect equivocation after 
exchanging 2 messages


•  Embed history hash in every 
message


Server can still fork the clients, but canʼt unfork


Client


Server


Client




System design
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System design
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System design
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System design
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System design
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System design
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Access control
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Challenges

•  Server canʼt do it — itʼs untrusted!

•  Preserving causality

•  Concurrency makes it harder


Solutions

•  Ops encrypted with symmetric key shared by clients 

•  ACL changes are ops too

•  Concurrent ACL changes handled with barriers


Encrypted

state




Adding a user
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Removing a user
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BARRIER
 BARRIER


Barriers: dealing with concurrency
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Recovering from a fork
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Alice’s 
history: 

Bob’s 
history: 

Can use OT to resolve malicious forks too


Fork!




Implementation
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Client lib + generic server

App devs only need to define ops and provide a 

transformation function


Demo apps: key value store, browser-based 
collaborative text editor


Java CLI version + browser-based version (GWT)




Evaluation
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Setup

•  Tested Java CLI version

•  8-core 2.3 GHz AMD machines


•  1 for server

•  4 for clients (often >1 instance per machine)


•  Gigabit LAN


Microbenchmarks

•  Latency

•  Server throughput

•  Time-to-join (in paper)




Latency
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Latency


SPORC: Group Collaboration using Untrusted Cloud Resources — OSDI 10/5/10
 23


Low load

(1 client writer)


High load

(all clients are writers)


(Text editor app)




Server throughput
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Conclusion
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Practical cloud apps + untrusted servers


Operational transformation + fork* consistency


Dynamic access control and key distribution


Recovery from malicious forks




Thank you
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Questions?


ajfeldma@cs.princeton.edu

*


*http://www.snowpeak.com/tableware/cutlery/titanium-original-spork-sct-004.html




Comparison with Depot
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Future work: SPORC + Depot? ;-)


SPORC  Depot 

Consistency with malicious servers  ✔  ✔ 
Consistency with malicious clients  ✔ 
Fork recovery  ✔  ✔ 
Work offline  ✔  ✔ 
Dynamic access control  ✔ 
Confiden:ality and key distribu:on  ✔ 

Depot exposes conflicts, but leaves it to the app to 
resolve them 



Time-to-join
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