Serval: An End-Host Stack for
Service-Centric Networking

Erik Nordstrom

David Shue, Prem Gopalan, Rob Kiefer,

Mat Arye, Steven Ko, Jen Rexford, Mike Freedman

Princeton University

The Internet of the 1970s

Killer Apps: >Q
tel net’ ﬁ:p "““".-----“u-..

L
o
L d
Py
L
Ps
L 4
PS
& _Q
L d
4
&
s
N
&

e
N

IMP 1 _Q
UCLA

Network designed for accessing hosts

The Internet of the 2000s

Yﬂu Datacenter
!’
a ¥ ou

&

Users agnostic of actual service location and host

What does Service Access Involve?

1. Locate a nearby service datacenter
— Map service name to location

2. Connect to service
— Establish data flow to instance

— Load balance between pool of replicas

3. Maintain connectivity to service

— Migrate between interfaces and networks

Today’s (Overloaded) Abstractions

* Serviceis IP + port
— Exposes location

TCP/IP

— Specifies app. protocol _
: nr P + port) AYe]ollle1ale]g
— One service per IP connect (1P + port) ity

demux (IP + port) | Transport

7

0 o
* Flowis Network

— Binds flow to interface
and location

— Cannot migrate between
interfaces or networks

Service Access Today

Datacenter

Enterprise
Network

\
da

Cellular Datacenter
Dﬁﬂ Provider

0!

Finding a Service Location

Load-Balanced
Web Service

 DNS binds service to location at client (early binding)

— Caching and ignoring TTL exacerbates the problem
— Slow failover when instance or load balancer fail

Connecting to Service

Load-Balanced
Web Service

 Datacenter LB maps single IP to multiple servers

— Must do this for every packet on path -> fate sharing
— Increases complexity and cost

Maintaining Connectivity to Service

VM
Migration

-
-

Datacenter &

 Migrate VMs to balance load in the cloud

— Requires flat addressing or tunneling within datacenter

Maintaining Connectivity to Service

Enterprise
Network

|V|u|l'l N\
\

Cellular

Dﬁﬂ Provider
| Dﬁﬂ Physical
Mobility

J

* Flows break when switching networks or interfaces

Contributions

* Naming abstractions
— Services, flows
— Clean role separation in the network stack

» Software architecture for services (Serval)
— Service-level control/data plane split
— Service-level events

Naming Abstractions

Today’s (Overloaded) Abstractions

TCP/IP

connect (IP + port) ERAYeJeli{e=]sle]g

demux (IP + port) | Transport

forward (IP) Network

Serval Abstractions

e Serval cleans the slate
— (But not completely)

Serval

* Network layer unmodified! _ Application

* Service Access Layer (SAL)

— Connects to services
— Maintains connectivity

forward (IP)

Transport

Service
Access

Network

Serval Abstractions

e Service = ServicelD

— Group of processes with Serval

identical functionality
connect (servicelD)mAYels]ile:1alely

* Flow = FlowlID

: Transport
— Invariant demux key >

icelD Service
— Host-local, ephemeral demux (>§V'CEIP
7 €P flowID Access

* Location = IP address forward (IP)
— Location, interface

Network

— Can change dynamically

A Clean Role Separation in the Stack

 What you access (servicelD), over which flows (flowlDs),
and at which service instance (IP address)

TCP/IP Serval

LYeJoife:YalelsMll connect (IP + port) lllconnect (servicelD)

Transport | demux (IP + port)

Service servicelD
Access demux (“HowiD)

Network forward (IP) forward (IP)

Service Names (ServicelDs)

L\ [Tl ib @ Provider-specific Self-certifying

* ServicelDs allocated in blocks
— Prefix ensures global uniqueness

— Prefix-based aggregation and LPM

* A ServicelD late binds to service instance
— ServicelD in first packet of connection
— Service-level routing and forwarding

A Service-Aware Network Stack

connect(sock, servicelD)
A

Network stack must
resolve service to
instance for client

bind(sock, servicelD)
listen(sock)

A

Network stack must
advertise service for
server

Software Architecture

Serval End-host Architecture

. Service
Appllcatlon Controller

Service
- - - Control API

FlowlID Socket ServicelD Sock/Addr

Flow Table Service Table
Dest Address Next Hop
IP Forwarding Table

Data Plane: The Service Table

ServicelD
Prefix A
Prefix B
Prefix C

Prefix D

Prefix E

default

FORWARD

FORWARD

DEMUX

DELAY

DROP

FORWARD

Rule State

Send to addr Al
Send to [A2, A3, A4]

Send to listening sock s

Queue and notify service
controller

Send to A5

Data Plane: The Service Table

ServiceID| Action | Rule State

Prefix B FORWARD Send to [A2, A3, A4]

Data Plane: The Service Table

ServiceID| Action | Rule State

Prefix C DEMUX Send to listening sock s

Data Plane: The Service Table

ServiceID| Action | Rule State

Queue and notify service

Prefix D DELAY
controller

Data Plane: The Service Table

ServiceID| Action | Rule State

Prefix E DROP

Service Access with Serval

Internet

AN

Datacenter I e
\

Adding a Service Instance

o Service Register
Application Controller Service X

‘I! bind(X)
listen()

ServicelD Action Sock/Addr

Add DEMUX rule

Removing a Service Instance

- Service Unregister
Appllcatlon Controller Service X

gy close()

ServicelD Sock/Addr

Remove DEMUX rule

Control Plane: The Service Controller

Service
Service X Controller

@ address a

Service
Controller

Control Plane: The Service Controller

Service Service X
Controller @ address d

ServicelD Action Sock/Addr

Add FORWARD rule

Service Access with Serval

\

Connecting to Service X

. Service
Appllctlon Controller

socket ()

FlowlID Socket ServicelD Action Sock/Addr

e —

Connecting to Service X

Application

connect(X)

FlowlID Socket ServicelD Action Sock/Addr

Load Balancing in Service Router

ServicelD Sock/Addr

Service Instance Providing Service X

Application

FlowlID Socket ServicelD Sock/Addr

Service Instance Providing Service X

[]
accept()

FlowlID Socket ServicelD Action Sock/Addr
N\

3 S

C

S

SYN-ACK

Service Access with Serval

-
— :
: e —
SYN-ACK * 8 T

— ~ y
~Dgs

3 data Datacenter I e
—— \

Ad hoc Service Discovery

Accessing service X

connect(X)

default FORWARD “broadcast”

What does Service Access Involve?

§/1. Locating a nearby service datacenter

§/2. Connecting to service

3. Maintaining connectivity to service

— Migrate between interfaces and networks

Migration of Flows

Migrate flow
al ->a2

Multipath with Multiple Subflows

|
1
ey —

Prototype

* End-host network stack (28,000 LOC)

— Linux kernel module
— BSD sockets with AF_SERVAL protocol family

— AF_INET sockets can be accessed simultaneously
* Legacy middleboxes / NATs handled via encap.

* Translator for incremental deployment
— Unmodified apps and end-hosts
— Serval apps with unmodified services

Incremental Deployment

f \
i)

R

Translator /.

TCP/IP /
S s

Incremental Deployment

\
Translat &

"/ 1 Translator
y_l

Serval O
Tcp/Ip L >4 I ' '

Useof I\/Ilgratlon on Cllents

‘ W|F|
o Cejlular

Saves > 900 MIB ceIIuIar Q. /:’h
data per month : *

Single Serval TCP connection
~# that never breaks.

Uses of Migration on Servers

Load balancing across NICs
| \\.I.I.I".'.'.'".l.l.l;l.l*

1000 .
?
800 5: Flow 1
600 k 55 moved to ethl

(10 0 0 80 B B0 T YU A 21 O I)

400
Both flows use ethO
Flow 1

II:IC)W 2. |||||.||I
10 12

p)
O
@)
=
fd
>
O
L
(@)
>
O
-
L
|_

7p)
O
O
=3
-
-
O
-
(@)
=
O
L
|_

Uses of Migration on Servers

200

150

100

Migrating VMs across subnets

Flow 1

VM changes
subnet, acquiring
new address

VM migrates

flow to new |

address

1 2

3 4
Time (s)

Competitive Performance

TCP Throughput

TCP/IP 934.5
Serval 933.8
Translator 932.1

Service Table Throughput

IP forwarding 087
Serval 872

Applications are Easy to Port

Firefox browser 4,615,324

SDN to the Edges!

* SDN about network-wide visibility and control

o

— Today’s “SDN” (OpenFlow) primarily focuses on
layer-2 / layer-3 abstractions

e Serval extends SDN model to the network edge

— New programming abstractions for services, flows,
hosts, and interfaces

— Service-level control/data plane split

 Joint service and network control

Summary of Contributions

* New naming abstractions
— Clean role separation in the stack

— Makes it easier to build and manage services

e Software architecture for services
— Flexible service resolution and discovery
— Maintains robust connectivity

— Joint service and network management

’ serval-arch.org

’ @servalnetwork

Papers, demos, source code (GPL) online

Related Work

Locator/identifier separation
— HIP, i3, HAIR, DOA, LISP, LNA

Data-oriented networking
— DONA, CCNx

Support for mobility and migration
— TCP Migrate, Mobile IP, ROAM

Multipath and multi-homing
— MPTCP, SCTP, Shim6

