
Traditional File Servers

� Cannot scale to large client populations

�Cross-FS cache sharing not possible

� Accountability for files

� Ease of administration

� Simple authorization schemes

� Simple consistency mechanism

SAHAKARA: A Scalable and Secure Cooperative-Caching File System
Siddhartha Annapureddy, Michael J. Freedman, David Mazières – NYU

Request file attributes
and token

Establish secure channel

Transfer file

Client Server

Client Proxy

Client

Proxy

Lookup token

File

Authenticate client

File

Goal: A file server that can handle thousands of clients

Serverless File Systems

� Massive scalability via replication

� Cross-FS cache sharing possible

� No accountability for files

� Significant administrative complexity

� Elaborate authorization mechanisms

� Consistency issues

Coral
Overlay

Insight: Obtain the “best of both worlds” of traditional servers and serverless systems

Potential Applications

� Easily install files on all PlanetLab nodes
� Transparent mirroring of data, e.g. openbsd-current
� Building load-balanced server farms

With Sahakara, these tasks are as simple and as
user-friendly as mounting a remote file system

1.

2.

3, 4.

Key Features

� A server-based file system

� Servers have self-certifying names

� Replication via client caches

� Whole-file caching by clients

� Writes synchronize at server

� Simple lease mechanism

� Clients discover nearby proxies

� Clients use secure channels

How Sahakara Works

To read a file, a client:

1. Fetches the file attribute information and
file token from an SFS-like file server

2. Queries the Coral indexing infrastructure
using the file token to obtain a list of
nearby proxies

3. Selects a proxy and establishes a
secure channel using the token as a
symmetric key

4. Obtains the file and verifies its integrity
using the token

5. Caches the file locally and announces
itself in Coral as a proxy for the file

