SAHAKARA: A Scalable and Secure Cooperative-Caching File System
Siddhartha Annapureddy, Michael J. Freedman, David Mazieres — NYU

Goal: A file server that can handle thousands of clients Potential Applications
Serverless File Systems Traditional File Servers m Easily install files on all PlanetLab nodes
. . L . ) m Transparent mirroring of data, e.g. openbsd-current
v’ Massive scalability via replication X Cannot scale to large client populations -
. . _ _ m Building load-balanced server farms
v’ Cross-FS cache sharing possible % Cross-FS cache sharing not possible
% No accountability for files v' Accountability for files With Sahakara, these tasks are as simple and as

— . . . - . user-friendly as mounting a remote file system
X Significant administrative complexity v’ Ease of administration

X Elaborate authorization mechanisms v Simple authorization schemes
% Consistency issues v/ Simple consistency mechanism Authenticate client

Insight: Obtain the “best of both worlds” of traditional servers and serverless systems Request file attributes

and token File
4 &j

Server

v

' 3

Key Features How Sahakara Works

m A server-based file system To read a file, a client:

1. Fetches the file attribute information and
file token from an SFS-like file server

Servers have self-certifying names

Proxy

m Replication via client caches 2. Queries the Coral indexing infrastructure :
. ) A i g . Lookup token gy
using the file token to obtain a list of J_L_’
= Whole-file caching by clients nearby proxies
] ] 3. Selects a proxy and establishes a Coral
= Writes synchronize at server secure channel using the token as a ora

symmetric key Overlay

Simple lease mechanism . i L .
4. Obtains the file and verifies its integrity 3,

using the token Establish secure channel

Clients discover nearby proxies

5. Caches the file locally and announces

Clients use secure channels itself in Coral as a proxy for the file Transfer file &3

File

v

' 3




