
ReLAQS: Reducing Latency for Multi-Tenant
Approximate Queries via Scheduling

Logan Stafman
Princeton University

loganstafman@gmail.com

Andrew Or
Princeton University

andrewor@cs.princeton.edu

Michael J. Freedman
Princeton University

mfreed@cs.princeton.edu

Abstract
Approximate Query Processing has become increasingly popular as
larger data sizes have increased query latency in distributed query
processing systems. To provide such approximate results, systems
return intermediate results and iteratively update these approxima-
tions as they process more data. In shared clusters, however, these
systems waste resources by directing resources to queries that are
no longer improving the results given to users.

We describe ReLAQS, a cluster scheduling system for online
aggregation queries that aims to reduce latency by assigning re-
sources to queries with the most potential for improvement. Re-
LAQS utilizes the approximate results each query returns to peri-
odically estimate how much progress each concurrent query is cur-
rently making. It then uses this information to predict how much
progress each query is expected to make in the near future and re-
distributes resources in real-time to maximize the overall quality
of the answers returned across the cluster. Experiments show that
ReLAQS achieves a reduction in latency of up to 47% compared to
traditional fair schedulers.

CCS Concepts •Computer systems organization→Distributed
architectures; Cloud computing; • Information systems →
Database query processing; •Theory of computation → Ap-
proximation algorithms analysis

Keywords scheduling, approximate computing, utility-aware schedul-
ing

1. Introduction
Modern web dashboards allow users to interact with data visu-
ally. Data scientists and engineers across many sectors—finance,
manufacturing, communications, marketing, IoT, and DevOps—
use these dashboards to quickly answer questions about their data,
often either by directly writing SQL queries or using visual editors
that automatically construct the appropriate SQL query. As data
sizes have grown dramatically in recent years, both researchers and
industry have sought ways to maintain interactive responsiveness,
which necessitates keeping query response times sufficiently low
while maintaining high quality, meaningful results.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Middleware’19 December 8–13, 2019, Davis, CA, USA

c© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-7009-7/19/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3361525.3361553

Several approaches have been proposed to improve interactive
latency when accessing very large datasets. One of the most popular
has been Approximate Query Processing (AQP), which can provide
quick, approximate results to users by running queries on a subset
of the overall dataset.

Online aggregation In particular, online aggregation is a type
of online sampling in which results are iteratively improved by
progressively sampling a larger and larger percentage of the overall
dataset until either the user is satisfied with the result, or the entire
dataset is processed. Typically, online aggregation systems also
calculate error bounds with a given confidence, allowing the user
to make a decision about whether to continue processing data.

Online aggregation has been adopted in distributed settings to
further reduce latency. In these systems, each mini-batch is run
sequentially, but is partitioned across many worker nodes. These
multi-tenant clusters are often shared between data scientists, an-
alysts, or applications submitting several queries simultaneously,
typically on shared datasets. Though parallelizing computation this
way helps reduce latency, the benefits are reduced as the clusters
become bogged down with many simultaneous queries competing
for the same resources. In fact, some data-science-heavy companies
have reported resource requests to their query processing systems
that are 5x their system capacity during peak hours [19]. When
these systems become overloaded, solutions involve putting queries
into long scheduling queues, causing spikes in latency. These sys-
tems become overloaded because as each new query is submitted
to the cluster, all active queries’ shares of resources are reduced
from 1

n
to 1

n+1
, according to the standard policy of fair-resource

scheduling.

Online aggregation produces diminishing returns Each pro-
gressive sampling of the data (called a mini-batch) processes
roughly the same amount of data, as they are each of approxi-
mately the same size. However, not all mini-batches within a query
are equally valuable to the user. For example, upon the completion
of the first mini-batch, the user goes from no knowledge of the final
result to a very rough estimation. By contrast, the final mini-batch
takes the user from what is already a very precise estimation to the
true final result. In between, the value of each mini-batch to a user
is not linear. In Figure 1, a query’s absolute error (the difference
between the estimated and true result, normalized) is shown over
time as more and more mini-batches are completed. The amount of
progress towards zero absolute error is not linear; due to statistical
closed-form estimations of error, we can expect this curve to be
sub-linear with high probability.

Figure 1: Normalized absolute error of an approximate query pro-
cessing system running TPC-H query 6. The baseline here shows
how long the same query takes in a traditional SQL-on-hadoop sys-
tem.

Figure 2: Giving more resources to queries with more error helps
them get higher quality (i.e., less erroneous) results faster.

This introduces a big opportunity: mini-batches that provide
more valuable results to users generate more progress per unit
of resource than mini-batches providing only small improvements
in results. In particular, queries that have been submitted more
recently will typically be improving their results more quickly than
older queries. An example of this can be seen in Figure 2, where we
show that the average progress of all queries in a cluster increases
more quickly when more resources are given to queries with more
potential for improvement. In fact, this approach can be taken with
any applications that produce diminishing returns, such as machine
learning applications [36].

Though there has been a lot of work on sampling that has
focused on the trade-offs between online and offline sampling and
how to best reduce error in intermediate results [4, 12, 15, 34],
none of this work has addressed how to schedule approximate
queries to avoid wasting resources. More work still has focused
on approximate applications in multi-tenant environments, but this
work does so with application-specific knowledge [24, 30]. Due to
the unique structure of these approximate queries and the multi-
tenant environments in which they are being run, we argue that
resources are not being apportioned correctly to help give the best
results to users with minimum latency.

In this paper, we take advantage of this misalignment of re-
sources to reduce the expected latency for a query to reach a rea-
sonably accurate result. Our scheduler uses the intermediate results

provided by an online aggregation system, makes decisions about
which queries have the most potential for result improvement in the
near future, and reapportions resources appropriately.

Figure 3: This screenshot shows an example of an interactive web
dashboard that allows users to submit online SQL queries on their
data.

Progressive Visualization One motivating application area for
AQP systems is progressive visualization, or incremental view
maintenance [5, 27]. Progressive visualization applications are typ-
ically dashboards containing one or more queries. When a page is
loaded, or an action is taken by a user, those queries are submitted
to an AQP system. An example of this can be seen in the sample
dashboard in Figure 3. Because the system provides intermediate
results, the progressive visualization application can begin to graph
those results much earlier than dashboards backed by traditional
SQL-on-Hadoop systems. Because these intermediate results are
only approximate, the graphs typically display error bars to indi-
cate how accurate the results are, and as the query continues to run
on the AQP system, the graph(s) that the user sees are updated in
real time.

As a motivating application for AQP systems, understanding
how the latency of the underlying AQP system affects users is
crucial for creating a scheduler whose goal is to reduce a user’s
effective latency. Prior work [25, 27] has discussed the idea that
extremely small reductions in error are not useful to users who
cannot see them. That is, if a query’s incremental progress is not
large enough to create a noticeable change to the UI provided to
the user, that progress was useless, and the resources taken by that
progress would have been better spent on other queries. Motivated
by the same philosophy, ReLAQS gives resources to queries that are
more likely to create a noticeable change to the user sooner.

Our solution This paper introduces ReLAQS, a progress-aware
scheduler. ReLAQS takes resources from older jobs whose potential
for progress has slowed and gives them to newer jobs. In doing
so, ReLAQS is able to improve approximate result quality and
reduce latency. In designing ReLAQS, we made several important
contributions.

First, we had to decide how to best quantify how much progress
a particular approximate query was making compared to another.
While many approximate systems provide confidence intervals to
help users understand how much progress a query has made, we
explore why it is impractical to use them to estimate progress in
a way that allows queries over different columns and datasets to
compare to one another (§2.2). We propose an alternative solution

using only the approximate results to compare queries’ progress to
one another with almost no overhead (§4.3).

Second, in order to predict the amount of progress an extra unit
of resources provides, we must be able to predict the rate at which
each query progresses with relative precision. We not only must
predict the amount of error reduction each mini-batch provides, but
also the amount of total compute time required for each mini-batch.
This can be challenging for queries whose results are particularly
noisy. We present an approach which allows us to fit a curve to the
progress of a query in a responsive online manner (§4.4).

Third, we discovered trade-offs between traditional fair re-
source scheduling and ReLAQS. ReLAQS greatly reduces latency
for queries in their earlier stages, and increases latency for those in
very late stages. We discuss some factors affecting this trade-off,
such as job arrival time and minimum resource allotment which
would allow the cluster manager to favor queries at different error
levels based on the needs of the users and cluster utilization (§6.2).

ReLAQS was implemented as a scheduler on top of Apache
Spark [32] for iOLAP [34], an online aggregation system. ReLAQS

supports all of the queries supported by iOLAP with no modifica-
tions. When an iOLAP query completes a mini-batch, it reports its
most up-to-date estimation of the true answer to ReLAQS, which
uses that information to provide resources to the various queries in
the system. We evaluated ReLAQS on a subset of TPC-H bench-
mark queries using data sets of varying sizes provided by TPC-H.
ReLAQS reduces the latency the required for the average query to
reach 90% accuracy by up to 47%.

2. Background
In this section, we compare the various forms of AQP (§2.1)
to illustrate why we chose to build a scheduler for incremental,
sampling-based AQP systems (also known as online aggregation).
We then describe the limitations of well-known error estimation
methods (§2.2) and how they pose a challenge for our scheduler.
Finally, we have a look at the state-of-the-art cluster scheduling
systems and discuss why there is a need to replace existing sched-
ulers, which are wasteful when scheduling for AQP applications
(§2.3).

2.1 Various forms of AQP

Existing AQP systems are designed along many axes, of which two
are particularly important: (1) sampling vs sketches, and (2) one-
time vs incremental processing. In this section, we will compare
the pros and cons in both dimensions and discuss why we choose
to build a scheduler for incremental, sampling-based AQP systems
in our work.

Sampling and sketching are both techniques to achieve close
approximation of the true answers with significant cost savings.
Sampling primarily saves computation by skipping over a large
fraction of the dataset, while sketching primarily saves space by
maintaining lossy summaries of the data processed so far. There
are two main limitations of sketching solutions: first, they are often
highly-tailored to specific problems and thus not general enough to
support many workloads, and second, they can never reach the true
answer, since sketches are lossy by definition. For these reasons,
sampling is by far the more common approach adopted in AQP
systems.

Another design choice for AQP systems is whether to return a
single answer at the end of computation (one-time) or to return mul-

tiple answers that are progressively refined over time (incremen-
tal). One-time processing solutions often require the user to spec-
ify a time or error bound, which may be cumbersome to provide.
Futhermore, incorrect time and error bounds waste computation.
In contrast, incremental processing provides a smooth trade-off be-
tween computation time and query accuracy. The system can pro-
cess more and more data until the user is satisfied with the answer.
For example, if the user later decides they want an exact answer,
then they can run the existing computation to completion (until
100% accuracy) instead of having to re-run the query from scratch.

One important advantage of online aggregation (one form of
incremental processing) is that it is more suitable in interactive set-
tings since it gives the user quicker feedback. This is important
because one can deduce the progress of a query processing job
quickly based on the error returned with the answers. In a multi-
tenant environment, the cluster scheduler can then use this informa-
tion to dynamically decide how to best distribute resources among
jobs running on the cluster. ReLAQS’s techniques apply to all incre-
mental processing systems, but we chose to focus on online aggre-
gation in this paper.

2.2 Error estimation

A crucial feature of any AQP system is the ability to return a
measure of how accurate an approximate answer is. Without this
knowledge, the user cannot decide whether a given answer is good
enough and whether or not to attempt to reach a more accurate
answer. In this section, we discuss the shortcomings of existing
error estimation techniques and why our scheduler cannot simply
rely on them to measure progress in query.

Three main approaches have been proposed to estimate error:
closed-form estimation [21], large deviation bounds [13], and boot-
strap [10]. Closed-form estimation and large deviation bounds are
both analytic methods for bounding the answer. However, because
both approaches rely on manual analysis of the query operation
in question, they are not applicable to general workloads, which
may be arbitrarily complex. For example, one cannot use these ap-
proaches for queries containing subqueries or user-defined func-
tions.

In contrast, bootstrap is widely applicable to general computa-
tion. This method computes confidence intervals as follows. First,
given a batch of data of size n, the system repeatedly resamples
this batch of data with replacement to produce many bootstrapped
samples of the same size n. Then, the system runs a trial (compu-
tation) on each of these bootstrapped samples to produce a distri-
bution of approximate answers. Finally, from this distribution, one
can expand from the median value in both directions to find the
bounds that capture 95% of the data points in this distribution (for
95% confidence intervals). For instance, this is the approach used
in iOLAP[34].

The bootstrap method has two weaknesses. First, its generality
comes with a cost. Running more bootstrap trials increases the
quality of the bounds but also increases the amount of computation
needed, hence inflating response times. Second, it may produce
confidence intervals that are not accurate enough for use in practice.
For instance, a study of Facebook’s queries over a 7-day period
reveals that close to 40% of the bounds produced with bootstrap
either overestimate or underestimate the approximation error [3].
An important corollary of this is that the width of the confidence

intervals returned by these AQP systems may not be an accurate
representation of the progress a query is making.

As such, we find that the main approaches for error estimation
proposed by previous AQP systems are not sufficient for our needs.
To build a robust scheduler for AQP systems, we must find our own
way to represent progress that is both general and accurate.

2.3 State-of-the-art Cluster Scheduling

Modern day clusters are often shared among multiple tenants. The
cluster scheduler is responsible for distributing the limited set of
resources to the applications run by these tenants. In this setting,
an application runs one or more jobs. Common objectives of the
cluster scheduler include maintaining high resource utilization and
ensuring resource fairness among the jobs running on the cluster.
For instance, dominant resource fairness [11], a generalization of
max-min fairness to multiple resources (most commonly memory,
CPUs and GPUs), is the most widely-adopted scheduling algorithm
adopted by existing cluster schedulers [16, 31]. These scheduling
systems treat jobs running on the cluster as black boxes and make
decisions only based on the demands submitted by the users and
the current load.

When applied to approximate applications like incremental
AQP, however, this strategy forgoes opportunities to make more ef-
ficient use of the cluster resources. Because of diminishing returns,
query processing jobs in their early stages benefit much more from
an extra unit of resource than those in their late stages. For example,
the difference between a 90%-accurate answer and a 91%-accurate
answer in a late stage job may not be important or even perceivable
to the user. In contrast, the difference between a wildly inaccurate
answer and a 70%-accurate answer in an early stage job actually
matters. In this case, taking resources away from the late stage job
and giving them to the early stage job will lead to quicker insights
gained by the user. This is especially true for exploratory and visu-
alization use cases (e.g., dashboards), where a ballpark answer is
often sufficient for the user to make decisions.

In other words, we argue that fairness should be defined in
terms of the utility gained by the user instead of resource usage.
Jobs that provide to users a lot of utility should be prioritized and
given more resources. This is the scheduling philosophy adopted
by our system, ReLAQS. Note that utility is a concept defined by
the application. Unifying all these different notions of utility across
applications sharing the cluster is a key challenge we must address.

3. System Overview
3.1 Traditional Hadoop Schedulers

ReLAQS is a cluster scheduling framework for approximate queries
running in a shared multi-tenant environment. As ReLAQS was built
for SQL-on-Hadoop AQP systems, the scheduler was designed to
replace a Hadoop scheduler.

In a traditional Hadoop cluster, one server acts as the centralized
scheduler while other servers are workers that process data in an
embarassingly parallel manner. The driver process serves as the
gateway between the user and the cluster: when a job (in this case,
a query) is submitted to the system, the driver asks the centralized
scheduler for resources and partitions the job into a direct acyclic
graph (DAG) of stages. The stages are further broken down into
tasks, each of which runs the same computation on a different
partition of the input data. This architecture is often referred to as
two levels of scheduling, where the job-level scheduling happens

on the centralized scheduler and the task-level scheduling happens
on the driver.

Increasingly, users are starting to run the driver as a long-
running process that also acts as the centralized scheduler [1, 2],
thus blending the two levels of scheduling. This slightly different
architecture has two important advantages. First, worker processes
are now also long-running and shared across jobs, bypassing the
overheads of launching and tearing down containers every time
a job starts or finishes. Second, the scheduler now has control
over which specific task each worker should run, allowing for
fine-grained rebalancing of resources among jobs running on the
cluster (as opposed to having to expensively preempt entire jobs
in the traditional architecture). For the rest of the paper, this is the
architecture we assume, where the driver is also responsible for
scheduling across jobs.

3.2 Online Aggregation on Hadoop

In distributed online aggregation systems, when a query is submit-
ted to the driver, the driver randomly partitions the data into nmini-
batches. These mini-batches are made up of shuffled data to ensure
that each mini-batch is representative of the whole dataset. Then, as
with traditional SQL-on-Hadoop systems, each mini-batch query is
itself converted to a series of map and reduce stages which are fur-
ther broken into tasks, each one representing the same computation
over a small subset of the mini-batch. Figure 4a shows how the
driver transforms the initial query to tasks for the workers to exe-
cute.

When a query’s first approximate result is returned to the driver,
the user is given the approximate result as well as the confidence
interval surrounding that result. The user’s program can then decide
whether to launch the next mini-batch or accept the result and stop
running the query.

3.3 Using AQP results to Schedule in ReLAQS

Like the fair scheduler, ReLAQS also maintains a task queue. The
difference here is the task queue in ReLAQS ranks tasks based on
how much potential their parent queries have on improving their
results. This is shown in Figure 4b.

When a mini-batch is completed, the underlying AQP system
returns an approximate result to the driver. This result is forwarded
to ReLAQS, which keeps a record of all approximate results of each
active query. The scheduler then periodically readjusts resource
allocations based on the approximate results of all of the queries in
the cluster; the methods used to decide the allocations are expanded
upon in section 4. Because each task typically is limited to between
a few hundred milliseconds and a few seconds, the scheduler is able
to quickly reclaim resources from one query and reapportion them
to other queries in only a few seconds.

Unlike traditional Hadoop schedulers that allocate resources at
the start of a job and then do not change allocations, we needed
to be able to quickly reallocate as new queries enter the system or
old queries become less productive. While each mini-batch (which
can take a minute or two, or longer) is a separate job, adjusting
resources only at the mini-batch boundary would incur a delay to
resource allocation that would severely impact our ability to dis-
tribute resources in a timely manner. Tasks, on the other hand, tend
to have a latency on the order of∼100s of milliseconds. This allows
ReLAQS to quickly change resource allocations with extremely low
overhead. Thus, ReLAQS instead reallocates resources at the task-
level rather than the job-level.

(a) When an approximate SQL query is submitted to the driver, its data is
shuffled and partitioned into mini-batches on the driver. Each mini-batch is
further partitioned into tasks, which are sent to the workers.

(b) ReLAQS’s task queue sorts tasks by potential progress and assigns them to
the workers.

Figure 4: High-level ReLAQS system overview

4. Design
In this section, we discuss the key design challenges of ReLAQS

and the mechanisms by which we address them. Our goal is to
create a scheduler that can minimize error (alternatively, maximize
progress) across all queries submitted to a multi-tenant incremental
AQP system. In order to do this, we must meet a few goals. First,
we must be able to accurately compare progress between queries.
We propose a global metric that all queries can use to compare their
progress (§4.1), and discuss the limitations of other approaches we
explored (§4.2). We must also be able to accurately predict how
much a query will improve its approximate result in a given amount
of time (§4.3). We next discuss how predicting a query’s progress
online is necessary to schedule resources accurately (§4.4) and an
accurate way to do so (§4.5). We then discuss some queries and
datasets that make prediction particularly tricky and how they could
be addressed (§4.6). Lastly, we discuss the process by which we
maximize total query progress using this error prediction (§4.7).
This algorithm is how ReLAQS decides how many resources each
query will be given over the next epoch.

4.1 Choosing a progress metric

Measuring each approximate query’s progress is a crucial part
of partitioning the cluster’s resource between queries. Defining a
query’s progress both allows ReLAQS to compare how one query’s
results have improved over time and how two queries’ results com-
pare to one another. In this paper, we use the terms progress and
error—the two are inversely related. A query that has made a large
amount of progress has a result with a small amount of error and
vice versa.

A strawman approach may be to simply take a query’s age as
a measure of progress; the longer an approximate query has been
running, the more accurate the result is. While this would work if all
queries converged at the same rate and process the same amount of
data, the age of a query is not normalizable across different queries.
For example, one query that processes 1 MB of data may have
reached a very accurate result after only one second, while another
that processes 1 TB will have made very little progress in that same
amount of time.

In online aggregation, after each mini-batch, an approximate
result is returned to the user, along with error bounds. If ReLAQS

had an oracle and knew the final answer of each query, we would
know the error of each answer: simply the difference between the
true answer and the estimated result so far (row 1 in Figure 5).
However, since we do not know the final answer of a query at
runtime, it is important that we estimate a query’s progress online.

The metric ReLAQS uses for progress must have several im-
portant properties, enumerated in Figure 5. First, it must be pre-
dictable, i.e., it must be relatively smooth. This is necessary so that
our scheduler can accurately predict how assigning resources to
each query will affect their progress. Second, this metric must be
normalizable; to compare progress between queries, we must be
able to scale the progress metrics to the range [0,1]. Third, this
metric must incur very low overhead to calculate in order to keep
have a responsive scheduler with small epochs. Fourth, this metric
must be known at runtime (online) as it will be used at runtime.
Finally, it must be an accurate predictor of the true error.

4.2 Limitations of Confidence Intervals

A natural way to estimate progress is to look at the width of the
confidence interval(s) returned by the AQP system. After all, if a
user sees a smaller confidence interval, it is natural to expect the
results to be more accurate. However, using these as a metric for
progress has several drawbacks.

Confidence intervals are inaccurate As discussed in §2, sampling-
based AQP systems have taken several approaches to try to estimate
error bounds. Quite a few solutions have been proposed that esti-
mate confidence interval bounds using closed-form solutions based
on the central limit theorem [4], while others have used statisti-
cal bootstrapping [34]. The former approach is only applicable to
40%-60% of queries, making it impossible to assign a progress
metric to the remaining queries whose errors cannot be estimated
with closed forms. Bootstrap sampling, on the other hand, only
provides accurate (less than 20% error) estimations for 60%-70%
of queries [3]! If we were to use the widths these confidence in-
tervals as estimations of progress, an inaccurate estimation could
lead to starvation for queries whose progress was overestimated, or
wasting resources on queries whose progress was underestimated.

Confidence intervals are unpredictable In order to properly di-
vide resources between queries, we must be able to accurately pre-
dict a query’s progress. In practice, we have found through exper-
imentation that the width of a confidence interval does not neces-
sarily follow a predictable pattern when using statistical bootstrap-
ping. In Figure 6, we see that for some queries (Queries 1,6 of the
TPC-H benchmark), the normalized width of the confidence inter-
val does not change much as more data is processed, while in oth-
ers, it does (Queries 16,19). While in both cases, the width of the
confidence interval is generally predictable, in the cases of Q1 and
Q6, the confidence interval does not accurately estimate the abso-

Predictable Normalizable Low Overhead Online Reliably Accurate

Absolute Normalized Error X X N/A × X
Conf. Interval Width × X × X ×

∆ Conf. Interval Width × X × X ×
Absolute Result X × X X X

∆ Absolute Result (Our Metric) X X X X X

Figure 5: Defining progress is complicated; any metric must be smooth, predictable, normalizable, online, and an accurate representation of
the progress an approximate query has made.

lute error of the result, nor is it comparable between queries with
different data ranges.

To rectify this, we investigated using the change in confidence
interval width, which certainly will approach 0 as more data is pro-
cessed. However, we found that the change in confidence interval
has the potential to be quite noisy. Moreover, online normalization
doesn’t work if the largest value is not in one of the first mini-
batches. If a later mini-batch’s confidence interval change is greater
than that of the first mini-batch, our scheduler would have overes-
timated progress up until that point, starving that query.

Due of the inaccuracy of predicted confidence intervals, the
unpredictability of them in an online manner, and the overhead
sometimes associated with them described in §2, it is clear that we
need to use a different metric to understand how much progress a
query has made.

4.3 Change in Estimated Result as Progress

Instead, ReLAQS uses the normalized change in the estimated result
to estimate progress, as it satisfies all of these requirements. More
formally, if the ith mini-batch gives an approximate result Xi, the
way ReLAQS quantifies progress is the the metric:

Pi =
Xi −Xi−1

max(Xi −Xi−1)∀i (1)

This metric is predictable because its curve converges at a given
rate and is relatively smooth. It is normalizable because it takes the
full range [0,1]. It requires low computational overhead because
it requires no additional computation once given the result by the
underlying AQP system. It can be calculated online because its only
input are approximate results which are known at runtime. Lastly,
it is an accurate estimator of error.

As the total error in the result is reduced, the rate of change
of the result slows accordingly. This is shown in Figure 6, which
compares our normalized progress metric to the normalized abso-
lute error of a approximate result to our progress metric. For TPC-H
queries, our progress metric estimates true error with only a 5.15%
error on average. This figure also compares how the change in the
width of the confidence interval returned by the AQP system com-
pares to the absolute error. Though the change in confidence in-
terval width also approximates the estimate of true error with only
7.9% error, it is noisier and thus harder to predict. In addition, for
metrics in which the confidence interval changes only slightly, the
confidence interval width metric can lead to overestimation of error
in later mini-batches.

In addition to being a good estimator for the absolute error of
a query, this metric also acts as a proxy for the visual change a
dashboard user would see. Because our metric measures the change
in answer, we would expect the change in answer to be proportional
to the change in the visual dashboard. We discuss this further in §7.

Figure 6: Several TPC-H queries’ normalized absolute errors com-
pared to ReLAQS’s progress metric. A metric is a better estimate of
progress if it more closely follows the red line labeled error.

4.4 Predicting Query Progress

Now that we have an accurate and comparable progress metric Pi,
we must predict how much progress each query will make over the
next scheduling epoch.

At each scheduling epoch, ReLAQS predicts how much more
progress each query would make if given a set of resources. This
knowledge is used to help decide how many resources to appor-
tion to each query during the next epoch. In order to make these
predictions, ReLAQS must have an analytical model to understand
the rate at which the underlying AQP system reduces error in its
intermediate answers.

To understand the rate at which our progress metric changes,
recall that our progress metric is the normalized difference between
approximate results from each mini-batch. Suppose the query is an
average over a column. We call the result of the ith mini-batch Xi,
and our progress metric Pi (1).

Because our goal is to predict the rate of change of Pi, we can
ignore our normalization term and approximate Pi = Xi −Xi−1.
Our goal is to understand the curve that Pi follows as more and
more tuples are processed by each subsequent mini-batch. Note that
Ni, the Gaussian formed by each individual mini-batch is simply
N(µ, σ√

n
).

E[Pi] = E[Xi −Xi−1|Xi−1, ..., X1]

= E[Xi|Xi−1]−Xi−1

=
E[Ni]

i
+
i− 1

i
·Xi−1 −Xi−1

=
E[Ni]

i
− 1

i
·Xi−1

=
µ

i
− 1

i
·Xi−1

=
µ−Xi−1

i
(2)

We call the absolute error Zi = |µ−Xi|which is the difference
between the true result and the estimated result after imini-batches.
The expected value of the absolute error,E[Zi], also the numerator
in (1) can itself be described by the following.

E[µ+ Zi] = E[Xi]

=
E[Ni]

i
+
i− 1

i
·Xi−1

= µ+
i− 1

i
· Zi−1

−→ E[Zi] =
i− 1

i
· Zi−1

−→ E[Zi] =
Z1

i
(3)

Bringing (2) and (3) together, we get that E[Pi] = Z1
i2

. Since
Z1 is a constant, and we normalize our Pi values anyways, we can
predict Pi with the curve 1

A·i2+B .
We have Pi, Pi−1, ..., P1 and want to use this information to

predict future progress. We find that simply fitting the progress
values we received from the active queries to this curve provided
us with highly accurate predictions for the progress these queries
will make during the next epoch. The accuracy of these predictions
depends on how many mini-batches are expected to be completed
during a single epoch.

Because ReLAQS has a very low overhead, we can keep our
epochs small, as small as a few seconds. This means that our
progress predictor must only predict a few seconds in the future.
In our experiments, we found that even with small datasets, each
mini-batch takes at minimum around one second, as the setup and
synchronization overheads of each mini-batch are limited by a
single driver. So even for the most extremely small datasets, it is
sufficient to predict no more than 5 mini-batches in advance, and 1
mini-batch is generally sufficient.

4.5 Predicting Mini-batch Runtime for Nested Subqueries

While we’ve already decided how best to predict progress as a func-
tion of how many mini-batches have been processed, we haven’t
covered how we predict how much wall-time each mini-batch can
be expected to use. Initially, it may seem that this is straightfor-
ward: if each mini-batch processes the same amount of data, then
we would expect each mini-batch to take the same amount of wall-
time, given the same number of resources.

However, in practice, not every mini-batch will process the
same amount of data. As noted in previous online aggregation
work [5, 33, 34], some queries, called nested queries, are unable
to process all data in a single pass. In these queries, an outer query
typically depends on the result of an inner one. In traditional SQL

query processors, the inner query is resolved first, but in AQP
systems, an approximate result for the inner query is given, and
the outer query must guess whether to process some data. If it is
wrong, the AQP system must return and reprocess those tuples in
later mini-batches. Therefore, later mini-batches for these queries
may take longer to complete as they recompute tuples.

Given that the data is shuffled when a query is submitted, we
expect the number of tuples to be recomputed to rise linearly
as more and more data is computed. Other work has observed
this trend [34]. This is borne out by results from previous AQP
systems that show the runtime on these queries to rise linearly. If a
query does not have a nested query, however, we expect each mini-
batch to take the same amount of time given an equal number of
resources.

ReLAQS uses past mini-batch runtimes to predict this line. By
simply keeping track of how long each mini-batch takes to com-
plete per core, we simply estimate the rate at which the mini-
batches are slowing down. We use this estimated line Ax + B,
along with the size of the mini-batch S to estimate that the ith mini-
batch will take A(i·S

N
) +B wall time given N workers.

4.6 Queries with restrictive predicates and narrow groupings

Some queries present unique challenges to understanding progress.
While simpler queries may have only one approximate column,
more complex queries may have multiple approximate columns,
use grouping, and use filters.

Multiple Approximate Columns When a query computes mul-
tiple approximate columns, some columns may be more important
than others. If a user’s query has two or more approximate columns,
ReLAQS must decide which column to use to compute progress. For
example, consider the following query on a set of YouTube videos:

SELECT

AVG(play_time), COUNT(*)

FROM

videos

WHERE

type=’educational’

In this instance, it is likely that what the user is really interested in is
the average play time of educational videos, and are not particularly
interested in estimating the count precisely. ReLAQS provides an
API allowing users to specify which approximate column(s) should
be considered for the purposes of measuring progress. By default,
ReLAQS assumes all approximate columns are of equal value and
computes the progress as an average of each approximate column’s
progress. In our experiments, we used this default option in order
to fairly compare queries.

Narrow Groupings Another potential set of problematic queries
includes queries whose filters or groupings are over very small
subsets. While stratified sampling [4] ensures that underrepresented
groups are represented, online sampling cannot do this. While
typical queries typically have enough data at the end of each mini-
batch to give meaningful approximate results, these queries may
complete many mini-batches without any having encountered a
single tuple that either passes the filter or is a member of a narrow
group. In an extreme case, consider a query like the following:

SELECT COUNT(*) FROM videos GROUP BY user

In this example, many users may have uploaded only one or two
videos. The groups corresponding to those users will each have
a very small amount of progress until many of the mini-batches
have completed. In these cases, our progress metric would unfairly
weight this particular query. It’s difficult to define progress when
the user has gotten no results yet, despite the fact that from a com-
putational standpoint, many SQL rows may have been processed.
One potential way to deal with these queries is to simply treat them
normally. In the worst case, their progress can be difficult to pre-
dict, leading to getting a larger-than-fair share of their resources.
We found that treating these queries normally in practice worked
well; however, in cases with extremely long tails, it may be use-
ful to keep track of how many rows have been computed for each
group and ignore groups corresponding to too few rows.

4.7 Scheduling based on error reduction

Now that we have established a progress metric that can be applied
to online aggregation and can accurately predict how each query’s
error will be reduced in a given time, we can use this metric to
maximize the progress of all of the queries in the cluster. As in
resource-fair scheduling, there are several ways to optimize the
utilization of the cluster depending on the optimization metric
desired. While the ReLAQS system enables an operator to easily
define their own custom optimization metric, we have chosen to
minimize the total sum of error across all queries in the cluster as
the default. Recall that our progress metric Pi allows us to compare
the errors between queries due to normalization. Since our progress
metric estimates the inverse of total error, this is equivalent to
maximizing the sum of the total progress (max-sum) of all queries
in the cluster. This is in contrast to some traditional fair-resource
schedulers [16] that focus on maximizing the minimum amount
of progress made by any query (max-min fairness). We chose to
maximize the sum of the system’s progress because ReLAQS’s
goal is to enforce not resource-fairness, but to maximize cluster
utilization.

Maximizing total progress We schedule a set of Q queries run-
ning concurrently on our multi-tenant cluster over the next schedul-
ing epoch T . This means every T seconds, ReLAQS will recompute
and redistribute resources according to new progress/error informa-
tion it has received from active queries. The optimization problem
for maximizing the total progress of all queries is as follows. The
sum of resource allocated to query q, aq must not exceed the total
resource capacity of the cluster C.

max
q∈Q

∑
q

Progress(aq, t+ T)− Progress(aq, t)

s.t.
∑
q

aq ≤ C

We borrow the algorithm for this optimization from previous
work [36], which uses the same approach to maximizing progress.
This is shown in Algorithm 1.

Prioritization of performance-sensitive queries Due to the mixed
settings in which queries may be submitted to the cluster, it is pos-
sible that a cluster manager may want some queries to be run with
higher priority than others. For example, some queries may belong
to applications providing results to users via a UI facing customers,
while some data-science-like queries may be less sensitive to high
latency during periods of high cluster utilization. In these cases,

Algorithm 1 Minimizing Cluster-Wide Error
– epoch: scheduling time epoch
– num cores: total number of cores available
– alloc: number of cores allocated to queries
– prior q: priority queue containing queries and their error values if

allocated with one extra core
1: function PREDICTERRORREDUCTION(query)
2: pred error = PREDICTERROR(query, alloc[query], epoch)
3: pred error p1= PREDICTERROR(query, alloc[query] +

1, epoch)
4: return pred error − pred error p1

5: function ALLOCATERESOURCES(queries)
6: for all query in active queries do
7: alloc[query] = 1
8: num cores = num cores− 1
9: pred error red =PREDICTERRORREDUCTION(job)

10: prior q.enqueue(job, pred error red)

11: while num cores > 0 do
12: query = prior q.dequeue()
13: alloc[query] = alloc[query] + 1
14: num cores = num cores− 1
15: pred loss red =PREDICTLOSSREDUCTION(query)
16: prior q.enqueue(query, pred error red)

17: return alloc

ReLAQS allows queries to be submitted with a prioritization level
similar to what is provided by many traditional schedulers by de-
fault. The prioritization level acts as a weight, so if a query has a
prioritization level of 2, it will receive twice as many resources as
it would have according to the optimization algorithm described
above with a prioritization level of 1. This is analogous to how
resource-based max-min fairness uses priorities to weight certain
applications.

Mixing approximate queries with traditional queries It may be
quite common that a data scientist using such a shared cluster may
occasionally desire an exact solution instead of an approximate one,
particularly in a case where a SQL query has no good approximable
functions in it (e.g., a MEDIAN query). In this case, users are still
able to submit to the same system. Due to ReLAQS’s ability to
quickly reallocate resources, all queries (and indeed, any jobs that
may share the cluster) can be run with a fallback policy of resource-
fair scheduling. After the resource-fair queries have been assigned
resources, the remaining resources will be apportioned according
to the progress optimization process described above.

Moreover, other applications that also can express their progress
in a normalized, predictable way can share the cluster. ReLAQS will
provide benefits to applications, such as machine learning tasks,
whose progress also produces diminishing returns.

5. Implementation
ReLAQS was implemented on top of Apache Spark [32]. It is de-
signed to be used with any iterative AQP system. In our experi-
ments, we used iOLAP [34], an existing incremental query process-
ing engine built on Spark SQL [7]. iOLAP automatically rewrites
a subset of Spark SQL queries as delta updates, giving the user the
ability to obtain partial results after only a subset of partitions have
been processed. Each of these subsets is called a mini-batch, and
once all mini-batches have been processed, iOLAP provides an ex-
act result. iOLAP also provides error bounds for the approximate
results via the bootstrapping method discussed in Section 2.

ReLAQS includes a set of modifications to the Spark job sched-
uler. As with traditional Spark SQL queries, when each query is
submitted, a set of stages made of task pools is added to a queue,
where the ReLAQS scheduler dispatches them to worker nodes. Re-
LAQS uses the approximate results from each query’s mini-batches
and uses them to make predictions and decisions about which
queries should receive more resources.

ReLAQS modifies the standard resource-fair task scheduler
present in Spark. When a new query is submitted to the system,
ReLAQS provides it with a fair-share number of cores based on the
number of queries currently in the system. Until the first mini-batch
has completed, we have no information about its progress, so we
simply apportion that query one nth of the resources given n active
queries in the system. It does so by assigning a priority to the tasks
associated with that query. When a node in the cluster completes
a task, the driver chooses a new task from its queue based on each
task’s priority. This priority is updated at each epoch.

Unmodified SQL Queries Because iOLAP provides approximate
answers to aggregate SQL queries, ReLAQS is able to take the error
bounds provided by iOLAP and schedule resources with them. In
the case that the submitted query returns multiple rows (e.g., the
query is an aggregate over a GROUP BY), ReLAQS simply uses
the average of the error bounds across all groups as a proxy for
progress. However, if a user decides that a more specific function is
a better metric for progress (e.g., the error bounds of the aggregate
of one group impact progress more than another), ReLAQS provides
an API by which to provide this function. iOLAP’s API extends the
SparkSQL API so users can submit queries as follows:

query = sql(YOUR QUERY HERE).online

while query.hasNext

// get next mini-batch

approximate_result = query.collectNext()

display_to_user(approximate_result)

ReLAQS allows users to take the approximate result and notify
ReLAQS of the update, as follows:

ReLAQS_update(approx_result, approx_columns)

The result here is simply the result returned by iOLAP, while
approximate columns is the list of columns that should be used
to calculate Pi. ReLAQS uses these approximate results to modify
the resource allocations.

6. Evaluation
In this section, we present evaluation results on ReLAQS. We
demonstrate that ReLAQS (i) significantly reduces the average time
for an approximate query to reach an acceptable error rate and
(ii) is able to accurately predict future query error well enough to
schedule queries against one another. Lastly (iii), we discuss how
some tunable parameters and cluster contention affect ReLAQS’s
performance.

6.1 Methodology

Testbed Our experimental testbed consists of a cluster of 17
servers (on which we run 1 driver and 16 workers) hosted in our
university datacenter. These servers each have 16 CPU cores (In-
tel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz) and 60GB RAM, and
they are connected with 40Gb Ethernet links.

Workload We tested our system with a subset of queries known
to be supported by iOLAP[34]. This is a subset of the TPC-H
benchmark (queries 1, 3, 5, 6, 11, 16, and 19). In order to diversify
the set of queries, we created datasets of varying sizes up to 1
terabyte.

Baseline The baseline we compare against is a resource-fair
scheduler. This is a popular scheduling policy cluster comput-
ing frameworks use. In fact, iOLAP was implemented on Apache
Spark, which uses a resource-fair scheduler. This scheduler evenly
divides resources among all active queries. When a new query joins
the system or an old one leaves, it dynamically adjusts the resource
allocations for all active queries.

6.2 Simultaneous Query Submission

(a) Average Query Progress

(b) Average Query Normalized Error

Figure 7: Many TPC-H queries running simultaneously. The aver-
age normalized absolute error of the estimated results of the queries
currently active in the cluster is improved by ReLAQS’s scheduler.
For both metrics, progress and error, lower values means more ac-
curate results. Vertical spikes indicate a new query has been sub-
mitted.

To evaluate the improvement in approximate results, we first ran
a set of 12 iOLAP approximate queries, representing about an hour
of query execution and submission, with different TPC-H queries
and varying data sizes. In this experiment, approximate queries
are submitted to the cluster according to a Poisson distribution
with mean arrival time of 120 seconds. This experiment simulates
data scientists submitting approximate queries to a shared cluster,

or alternatively, users accessing web dashboards which in turn
submit approximate queries to a shared cluster. A job is considered
complete when all of its mini-batches have completed, providing
an exact query result to the user. We are interested in the aggregate
quality of the results of these queries over time.

We evaluate progress via two metrics: our progress metric (the
normalized change in result) and the normalized absolute error.
Our progress metric tells us how quickly the estimated result is
changing. As we showed in §4.3, the smaller the change in result,
the closer the query is to zero error, so smaller values mean more
progress has been made. If the average change in result across all
active queries is smaller, the average query in system has made
more progress. As each new query is added to the cluster, the
average progress metric across all queries shoots up immediately
(lower indicates more progress). This is because the new query
has just arrived and made no progress made so far. Then, as the
cluster progresses and refines the approximate errors of all queries,
the progress metric drops back down. However, for the ReLAQS

scheduler, the cluster is able to focus on younger queries with the
most potential for improvement. Thus, ReLAQS’s average progress
value drops more quickly after each query joins the cluster, as can
be seen in Figure 7a.

The second metric, which is similar, compares the average abso-
lute error of the estimated results in the cluster between our sched-
uler and the resource-fair scheduler. In Figure 7b, the same ex-
periment has been run, but the metric being plotted on the y axis
is the average normalized absolute error of each query. Because
our progress metric is only an approximation for the total error
of a result, it is also important to compare the absolute errors of
the queries’ results themselves. Importantly, this metric requires
knowledge of a query’s true result, so ReLAQS cannot optimize for
this metric as it does with the first metric.

Figure 8, by contrast, shows the amount of time it takes for
the average query in the cluster to reach a given error reduction
level. Because ReLAQS allocated more resources to queries in their
early stages, we see that queries scheduled with ReLAQS’s sched-
uler reach lower absolute error more quickly. As more and more
accurate results are reported, the time it takes to reach these lev-
els approaches the amount of time it takes under the resource-fair
scheduler. For example, for a query to reach 70% error reduction
in Figure 8c, the average query scheduled by ReLAQS takes 55 sec-
onds compared to 104 by the resource-fair scheduler, a reduction of
47%. For a query to reduce error by 90% in Figure 8c, ReLAQS re-
duces the average query’s time from 245 down to 193, a reduction
of 21%. Only if a user is waiting for an error reduction of 99.7%
or more does the resource-fair scheduler outperform ReLAQS. Re-
LAQS can substantially reduce latency for the vast majority of ap-
proximate queries.

Note that this crossing point (i.e., the error level at which the
average query’s latency is equal for our scheduler and the fair-
resource scheduler) varies with two variables.. The first is a tunable
parameter, the minimum amount of resources to provide to a query.
Though ReLAQS provides faster results for all queries up to 99.7%
of error reduction in this example, the remainder of the processing
may take much longer. For example, a user who truly wants a 100%
accurate result may have to wait as long as 100% longer for the
final 0.3%. Essentially, ReLAQS takes some resources from these
queries after they are no longer making any noticeable progress to
the user. By adjusting the minimum resource allocation provided

by ReLAQS, we can achieve a lower overhead for the final 0.3%
while reducing the benefits provided to younger queries, lowering
the crossing point.

We argue that incurring higher overheads for late stage queries
for the benefit of the rest of the system is a worthy sacrifice; if the
user wanted 100% accuracy, they should not be using the online
aggregation system in the first place, or should submit their query
as a resource-fair query. However, if the cluster manager desires,
the minimum resource allocation can be increased which would
lower this crossing point and reduce starvation in older queries.

In addition to minimum resource allocation, the crossing point
is also affected by a second parameter, the utilization of the cluster.
For example, if the cluster’s utilization is far beyond its resources,
e.g. the mean arrival interval between queries is higher than the rate
at which the queries can be processed by the system, the crossing
point of these two curves will be lower, as there are more queries
active with high error. As the mean arrival interval approaches zero
(that is, all queries are being submitted simultaneously), ReLAQS

will begin to have similar latency to the fair-resource scheduler as
more queries will have similar progress levels. This can be seen
in Figures 8a and 8b which shows how varying the mean interval
between queries affects this crossing point. With only a 10 second
interval (e.g. many queries are being submitted in a quick burst),
ReLAQS queries would expect to have lower latency than a fair-
resource scheduler for queries up to 95.2% of total error reduction,
whereas queries with an 120 second average interval would have a
lower latency for queries up to 99.7%.

Mean time to arrival’s effect on performance Though we have
chosen 120 seconds as the mean time to arrival in these experi-
ments, it is also important to understand how the frequency with
which queries are submitted affects ReLAQS. In Figure 9, we ex-
plore how long it takes the average query to reach 90% of error
reduction with different average query submission rates.

With very high rates of submission, queries scheduled by Re-

LAQS are only marginally faster to reach 90% error reduction be-
cause so many queries arrive are in their early stages that those
around 90% receive fewer resources. As the mean time to ar-
rival grows, ReLAQS’s latency improvements over the fair resource
scheduler grow, at 120 and 160 average query interval. However, as
the query interval grows even further, the resource contention re-
duces, and ReLAQS starts to approach the same latency as the fair
resource scheduler. This makes sense; a scheduler with only one
active query will give all of its resources to that one query, causing
equal latency between the two schedulers.

6.3 Prediction Accuracy

ReLAQS relies on an estimate of expected absolute error of a given
query, given a certain resource allocation. To minimize total system
error over the next scheduling epoch, ReLAQS reallocates resources
based on these predictions, so the scheduler needs the predictor to
estimate the error of future mini-batches accurately.

In Figure 10, we take a set of TPC-H queries and use our curve-
fitting techniques discussed in section 4. We compare the predicted
values for our progress metric to the actual values tested. We were
able to predict with less than 7% error for all queries tested five
iterations in advance, and with less than 5% average error 1 itera-
tion in advance. In this figure, TPC-H query 19, was a query with
very narrow filters. When queries have few data points in the over-
all dataset that match the filters, both the results themselves and our

(a) Mean arrival interval=10 seconds (b) Mean arrival interval=40 seconds (c) Mean arrival interval=120 seconds

Figure 8: The average amount of time it takes to reach a particular error reduction with ReLAQS. Because scheduling is a zero-sum game,
applications do take longer to reach error reduction above the crossing points of 95.2%, 96%, and 99.7% respectively, but significantly less
time for other approximate results.

Figure 9: The average time a query takes to reach 90% error reduc-
tion with varying arrival frequencies.

Figure 10: Several TPC-H queries’ prediction errors. Average pre-
diction for even noisy queries caps at 5% for 1 mini-batch in ad-
vance and 7% for 5 mini-batches in advance.

progress metric become noisy, causing a slight rise in our predic-
tor’s error. TPC-H query 17, on the other hand, was a query with a
nested query; in this example, iOLAP was forced to recompute tu-
ples in later mini-batches because the outer query relied on the in-
ner query, causing some tuples to have been miscomputed. In these
cases, later queries sometimes have larger error in later iterations,
causing noisier and harder-to-predict progress curves.

7. Discussion
Here we discuss some of the limitations of ReLAQS and some
future work.

Non-CPU resources Due to our choice of iOLAP as our under-
lying AQP system, which is implemented as a set of additions to
Spark SQL, we faced several implementation challenges. One of
these is that Spark’s scheduler (at the time of iOLAP) schedules
CPU cores, while disk usage, memory, and network utilization are
unaddressed. While the number of CPU cores each query gets is a
good proxy for other resources, approximate query processing can
be memory, disk, and network intensive.

Investigating more types of queries ReLAQS was built on
top of iOLAP [34], another research project that converts standard
SparkSQL queries into online aggregation queries. While it allowed
us to build ReLAQS on Spark, and largely ignore the implementa-
tion of online aggregation, it also presented a set of limitations. In
particular, some types of queries were not supported in either Spark
SQL 1.4 or iOLAP. Coupled with some non-compact memory rep-
resentations in Spark SQL, we were limited to a relatively small
set of queries in the TPC-H benchmark. In future work, we would
like to expand to test a bigger set of queries, but we made sure our
subset included queries with uncertain subqueries.

When to stop iterative queries When queries have made signif-
icant progress, users may find it unnecessary to continue iterating
as they are happy with the small error. If all users let all queries run
to completion, ReLAQS can become polluted with old queries. If a
user knows ahead of time the error they are willing to tolerate, they
can specify that the computation should stop once the accuracy has
been increased to some preset ε; this can be calculated with confi-
dence intervals or our progress metric. While we’ve currently left
it up to the user to stop their AQP queries, one of these approaches
may be necessary to prevent the system from becoming too over-
loaded in a real-world scenario.

Note that ReLAQS requires no information from the user except
the approximate result after each iteration. If a user simply wants to
stop a query after an accuracy cutoff point, this is trivial. However,
we’ve found users’ accuracy goals are ofthen not this simple, and
providing them to ReLAQS would decrease usability.

Implementation limitations Another interesting tradeoff we faced
was our decision about what level we should schedule queries be-
tween each other. By deciding that we needed the ability to quickly
change allocations on the order of a few seconds, Spark required
that the different queries share a driver. When all queries share
a driver, all active queries must share the same driver memory, a
scarce resource in approximate query processing. As many queries
in our benchmarks attempted to read entire tables into memory, this
became a limitation. However, using multiple drivers would result
in needing to kill and restart executors every few seconds, the over-
head of which would outweigh the benefits provided by ReLAQS.
This tradeoff is implementation specific, and could be mitigated
with a different AQP system.

Progressive Visualization as a progress metric When data sci-
entists submit queries to the system, query results are displayed
to the user as progressively updating graphs. Other work has sug-
gested that processing an additional segment of data is only useful
as it affects the view displayed to the user [29]. Our progress met-
ric, which computes the normalized difference in result, is a good
approximation for this same metric. However, depending on how
a user may have scaled their results, it may become necessary to
use dashboard-specific information to help minimize overall clus-
ter error. For example, in a graph where a user has plotted the ap-
proximate data on a logarithmic scale, changes in a numerically
smaller range are more likely to change the output than changes
in a numerically higher range. As many related works have solved
the question of how to sample to best minimize visualization-based
loss, applying those loss functions to ReLAQS is a promising area
for future work.

Other iterative applications While this paper focuses on itera-
tive AQP queries, we are excited about the possibility of having
ReLAQS work on a cluster sharing different types of iterative ap-
plications, such as machine learning training tasks. If ReLAQS can
support different applications together on the same cluster, the po-
tential for increasing cluster utilization grows enormously.

8. Related Work
Approximate Query Processing systems Many systems [4, 6,
8, 15, 18, 28, 33] allow users to get approximate results with
significantly reduced job completion time. Online aggregation
databases [5, 15, 34] generate approximate results and iteratively
refine the quality. The structure of these AQP systems shaped de-
cisions about how ReLAQS chooses to compare and predict com-
peting queries. A few systems focus on multi-tenant AQP queries,
but they focus largely on application-specific deduplication which
is orthogonal to this work [30]. In fact, some focus on the par-
titioning of online aggregation applications on MapReduce, and
the implications of this partitioning on scheduling, but still make
the assumption that these applications should each receive an even
partitioning of resources [24].

Cluster scheduling systems Existing cluster schedulers [9, 11,
14, 16, 17, 31] primarily focus on resource fairness, job priorities,
cluster utilization, or resource reservations, but do not take job
progress rates into consideration. They ignore the error-time trade-
off, and the progress trade-off between jobs (in this case, queries).
This trade-off space is crucial for AQP queries to get approximate
results with lower latency.

Estimation of Accuracy Existing work to create confidence inter-
vals around intermediary results use either bootstrap [10] or closed-
form solutions [21]. Further work to estimate these methods’ accu-
racies [3] has quantified their behavior. This work helped define
ReLAQS’s progress metric and thus helped predict future error for
scheduling.

Approximate Query Processing Visualization As web dash-
boards are a major motivation for ReLAQS, exploring AQP in their
context is important. Existing work has explored the utility users
derive from confidence intervals of varying widths [27], as well as
the comparative utilities of different visualizations [25]. They have
also created loss functions meant to maximize graph accuracy with
minimal sampling [26]. These loss functions can be used to map a
graph’s visualization to progress.

Utility scheduling Utility functions have been widely studied in
network traffic scheduling to encode the benefit of performance to
users [20, 22, 23]. Recent work on live video analytics [35] lever-
ages utility-based scheduling to provide a universal performance
measurement to account for both quality and lag. In addition, re-
cent work on scheduling machine learning applications leverages
utility-based scheduling to reduce lag [36].

9. Conclusion
We present ReLAQS, a scheduling system designed for distributed
approximate query processing jobs in the environment of a shared
cluster. ReLAQS leverages the diminishing returns of online aggre-
gation to minimize the total amount of error for all active queries
in a cluster. Our scheduler requires no modification to the under-
lying incremental AQP system. By using only the approximate re-
sults returned by the AQP system, it can conform to a wide range
of online aggregation systems. ReLAQS automatically predicts fu-
ture queries’ progress and apportions resources accordingly. This
allows it to greatly reduce latency for the vast majority of approxi-
mate queries in resource-constrained clusters.

Acknowledgments
We are grateful to Wyatt Lloyd, David Liu, Robert Macdavid,
and Theano Stavrinos for reading early versions of this work and
providing feedback. We also thank our shepherd Ioana Giurgiu and
all of the anonymous Middleware reviewers for their constructive
comments. This work is supported by NSF awards IIS-1250990 and
CNS-0953197.

References
[1] Databricks. URL: http://databricks.com/.
[2] Ooyala Job Server. URL: https://github.com/ooyala/

spark-jobserver.
[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Mad-

den, B. Mozafari, and I. Stoica. Knowing when you’re wrong: Build-
ing fast and reliable approximate query processing systems. In Pro-
ceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, pages 481–492, New York, NY,
USA, 2014. ACM.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Sto-
ica. BlinkDB: Queries with Bounded Errors and Bounded Response
Times on Very Large Data. In ACM EuroSys, 2013.

[5] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-
order delta processing for dynamic, frequently fresh views. Proceed-
ings of the VLDB Endowment, 5(10):968–979, 2012.

http://databricks.com/
https://github.com/ooyala/spark-jobserver
https://github.com/ooyala/spark-jobserver

[6] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu. GRASS: Trimming Stragglers in Approximation Analyt-
ics. In USENIX NSDI, 2014.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql:
Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages
1383–1394. ACM, 2015.

[8] B. Babcock, S. Chaudhuri, and G. Das. Dynamic Sample Selection
for Approximate Query Processing. In ACM SIGMOD, 2003.

[9] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker,
and I. Stoica. Hierarchical Scheduling for Diverse Datacenter Work-
loads. In ACM SoCC, 2013.

[10] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC
press, 1994.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In USENIX NSDI, 2011.

[12] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approx-
hadoop: Bringing approximations to mapreduce frameworks. In ACM
SIGARCH Computer Architecture News, volume 43, pages 383–397.
ACM, 2015.

[13] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed. Prob-
abilistic methods for algorithmic discrete mathematics, volume 16.
Springer Science & Business Media, 2013.

[14] Capacity Scheduler. Retrieved 04/20/2017, URL: https:
//hadoop.apache.org/docs/r2.4.1/hadoop-yarn/
hadoop-yarn-site/CapacityScheduler.html.

[15] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. In
ACM SIGMOD, 1997.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center. In USENIX NSDI, 2011.

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair Scheduling for Distributed Computing
Clusters. In ACM SOSP, 2009.

[18] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable Approxi-
mate Query Processing with the DBO Engine. ACM Transactions on
Database Systems, 33(4):23, 2008.

[19] Jin, Li. Preemptive scheduling in mesos framework.

[20] R. Johari and J. N. Tsitsiklis. Efficiency Loss in a Network Resource
Allocation Game. Math. Oper. Res., 29:407–435, 2004.

[21] A. John. Mathematical statistics and data analysis. Wadsworth &
Brooks/Cole, 1988.

[22] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control for
Communication Networks: Shadow Prices, Proportional Fairness and
Stability. The Journal of the Operational Research Society, 49:237–
252, 1998.

[23] S. H. Low and D. E. Lapsley. Optimization Flow Control—I: Basic
Algorithm and Convergence. IEEE/ACM Transactions on Networking,
7(6):861–874, 1999.

[24] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggre-
gation for Large MapReduce Jobs. Proceedings of the VLDB Endow-
ment, 4(11), 2011.

[25] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb: Visual-
izing database queries efficiently. Proc. VLDB Endow., 7(4):325–328,
Dec. 2013.

[26] Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware sampling
for very large databases. In Data Engineering (ICDE), 2016 IEEE
32nd International Conference on, pages 755–766. IEEE, 2016.

[27] S. Rahman, M. Aliakbarpour, H. K. Kong, E. Blais, K. Karahalios,
A. Parameswaran, and R. Rubinfield. I’ve seen ”enough”: Incremen-
tally improving visualizations to support rapid decision making. Proc.
VLDB Endow., 10(11):1262–1273, Aug. 2017.

[28] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica. The Power of Choice in Data-aware Cluster Scheduling. In
USENIX OSDI, 2014.

[29] E. Wu, L. Jiang, L. Xu, and A. Nandi. Graphical perception in
animated bar charts. arXiv preprint arXiv:1604.00080, 2016.

[30] S. Wu, B. C. Ooi, and K.-L. Tan. Continuous sampling for online ag-
gregation over multiple queries. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’10, pages 651–662, New York, NY, USA, 2010. ACM.

[31] Apache Hadoop YARN. Retrieved 02/08/2017, URL:
http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-
puting. In USENIX NSDI, 2012.

[33] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-ola:
Generalized on-line aggregation for interactive analysis on big data.
In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 913–918. ACM, 2015.

[34] K. Zeng, S. Agarwal, and I. Stoica. iOLAP: Managing Uncertainty for
Efficient Incremental OLAP. In ACM SIGMOD, 2016.

[35] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In USENIX NSDI, 2017.

[36] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq: Quality-
driven scheduling for distributed machine learning. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17, pages 390–404,
New York, NY, USA, 2017. ACM.

https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

	Introduction
	Background
	Various forms of AQP
	Error estimation
	State-of-the-art Cluster Scheduling

	System Overview
	Traditional Hadoop Schedulers
	Online Aggregation on Hadoop
	Using AQP results to Schedule in ReLAQS

	Design
	Choosing a progress metric
	Limitations of Confidence Intervals
	Change in Estimated Result as Progress
	Predicting Query Progress
	Predicting Mini-batch Runtime for Nested Subqueries
	Queries with restrictive predicates and narrow groupings
	Scheduling based on error reduction

	Implementation
	Evaluation
	Methodology
	Simultaneous Query Submission
	Prediction Accuracy

	Discussion
	Related Work
	Conclusion

