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Problem:

Network Anomaly Detection




Collaborative anomaly detection

 Some attacks look like normal traffic
— e.g., SQL-injection, application-level DoS [Srivatsa TWEB ‘08]

* |sita DDoS attack or a flash crowd? pung www 02

I’m not sure ,
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Collaborative anomaly detection

* Targets (victims) could correlate attacks/attackers
[Katti IMC ’05], [Allman Hotnets ‘06], [Kannan SRUTI ‘06], [Moore INFOC ‘03]
“Fool us once, shame

on you. Fool us N
times, shame on us.”




Problem:

Network Anomaly Detection

Solution:

* Aggregate suspect IPs from many ISPs
* Flag those IPs that appear > threshold t




Problem:
Distributed Ranking

Google toolbar

Solution:

* Collect domain statistics from many users
 Aggregate data by domain




Problem:

Solution:

* Aggregate (id, data) from many sources
* Analyze data grouped by id




But what about privacy?

What inputs are submitted?

Who submitted what?




Data Aggregation Problem

 Many participants, each with (key, value) observation
* Goal: Aggregate observations by key
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Goals

Keyword privacy: No party learns anything about keys
Participant privacy: No party learns who submitted what
Efficiency: Scale to many participants, each with many inputs
Flexibility: Support variety of computations over values

Lack of coordination:
— No synchrony required, individuals cannot prevent progress
— All participants need not be online at same time




Potential solutions

Garbled

Circuit Yes Very Poor Yes
Evaluation

Multiparty
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—

Security Efficiency

* Weaken security assumptions?

— Assume honest but curious participants?

— Assume no collusion among malicious participants?

* |In large/open setting, easy to operate multiple nodes
(so-called “Sybil attack”)




Towards Centralization?

Participants




Potential solutions

Garbled

Circuit Yes  Very Poor
Evaluation

Multiparty

Set Intersection Yes Poor

Hashing
Inputs

No Very Good

Network
Anonymization
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Towards semi-centralization

-8

DB

Participants




Potential solutions

Garbled

Circuit Very Poor
Evaluation

Multiparty

Set Intersection Poor

Hashing
Inputs

Very Good

Network
Anonymization

Very Good
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Privacy Guarantees

* Privacy of PDA against malicious entities and participants

— Malicious participant may collude with either malicious
proxy or DB, but not both

— May violate correctness in almost arbitrary ways

* Privacy of CR-PDA against honest-but-curious entities
and malicious participants




PDA Strawman #0

Participant

1. Client sends input k




PDA Strawman

‘ Epg(k) Eps(k)
S ——

Participant Proxy

1. Client sends encrypted input k
2. Proxy batches and retransmits
3. DB decrypts input




PDA Strawman

‘ DB( H (k) ) EDB( H (k) )
e ——

Participant Proxy DB

1. Client sends hashes of k |_|
9

2. Proxy batches and retransmits n12.222)

e _




PDA Strawman

‘ Epgl Fs (k) ) . Epg( Fs () )

Participant Proxy DB

1. Client sends keyed hashes of k ¢
— Keyed hash function (PRF) F(222.2) | 9

— Key s known only by proxy




Our Basic PDA Protocol

DB( F. (k) ) Fs (k)

k
‘ OPRF . Eps( Fs (k)

Participant Proxy DB

1. Client sends keyed hashes of k Fs(,,,,,,,) ,
— F.(x) learned by client through F.(2222) | 9

Oblivious PRF protocol

2. Proxy batches and retransmits keyed hash
3. DB decrypts input




Basic CR-PDA Protocol

Epsl Fy (K) ) Fs (k)

‘ DB(Epr(k)) . retransmits

Participant Proxy Eppy (k) DB

. Client sends keyed hashes of k,

and encrypted k for recovery | F(222.2) | 9 | Eppyla229) |
. Proxy retransmits keyed hash
. DB decrypts input
. Identify rows to release and transmit E, (k) to proxy
. Proxy decrypts k and releases




Privacy Properties

Epsl Fs (k) ) Fs (k)

‘ DB(Epr(k)) . retransmits

Participant Proxy Eppy (k) DB

* Keyword privacy: Nothing learned about unreleased keys
 Participant privacy: Key €< —> Participant not learned

Any coalition of HBC participants
HBC coalition of proxy and participants
HBC database




Privacy Properties

Epsl Fs (k) ) Fs (k)

‘ DB(Epr(k)) . retransmits

Participant Proxy Eppy (k) DB

* Keyword privacy: Nothing learned about unreleased keys
 Participant privacy: Key €< —> Participant not learned

Any coalition of HBEparticipants malicious participants
HBC coalition of proxy and participants




More Robust PDA Protocol

Epgl( Fs (K)) Fs (k)

‘ DB(Epr(k)) . retransmits

Participant Proxy Eprx (k)

* ORPF - Encrypted OPRF Protocol
Ciphertext re-randomization by proxy
Proof by participant that submitted k’s match

Any coalition of HBEparticipants malicious participants
HBC coalition of proxy and participants




Encrypted-OPRF protocol

* Problem: in basic OPRF protocol, participant learns F (k)

* Encrypted-OPRF protocol:
— Client learns blinded F(k)
— Client encrypts to DB

— Proxy can unblind F (k) “under the encryption”

(ErTwc (( Fs%k))f”%*)<
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Encrypted-OPRF protocol

* Problem: in basic OPRF protocol, participant learns F (k)

* Encrypted-OPRF protocol
— Client learns blinded F(k)
— Client encrypts to DB

— Proxy can unblind F (k) “under the encryption”

(Enc ((F.(k)) PP

 OPRF runs OT protocol for each bit of input k

* OT protocols expensive, so use batch OT protocol [ishai et al]




Scalable Protocol Architecture

Participants
Client-Facing
Proxies

Share
secret s

Front-End
DB Tier

Share
DB key

DB Storage

Partition
F. keyspace

»h

Proxy
Decryption
Oracles

Share
PRX key




Evaluation

* Scalable architecture implemented

— Basic CR-PDA / PDA protocol
+ and encrypted-OPRF protocol w/ Batch OT

— ~5000 lines of threaded C++, GnuPG for crypto

e Testbed of 2 GHz Linux machines

RSA / EIGamal key size 1024 bits
Oblivious Transfer k 80
AES key size 256 bits




Throughput vs. participant batch size
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Single CPU core for DB and proxy each




Maximum throughput per server
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Four CPU cores for DB and proxy (each)




Throughput scalability
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Summary

Privacy-Preserving Data Aggregation protects:

— Participants: Do not reveal who submitted what
— Keywords: Only reveal values / released keys

Novel composition of crypto primitives
— Based on assumption that 2+ known parties don’t collude

Efficient implementation of architecture
— Scales linearly with computing resources
— Ex: Millions of suspected IPs in hours

Of independent interest...
— Introduced encrypted OPRF protocol
— First implementation/validation of Batch OT protocol




