
OASIS: Anycast for Any Service

Michael J. Freedman∗‡, Karthik Lakshminarayanan†, David Mazières‡
∗New York University,†U.C. Berkeley,‡Stanford University

http://www.coralcdn.org/oasis/

Abstract

Global anycast, an important building block for many dis-
tributed services, faces several challenging requirements.
First, anycast response must be fast and accurate. Sec-
ond, the anycast system must minimize probing to re-
duce the risk of abuse complaints. Third, the system must
scale to many services and provide high availability. Fi-
nally, and most importantly, such a system must integrate
seamlessly with unmodified client applications. In short,
when a new client makes an anycast query for a service,
the anycast system must ideally return an accurate reply
without performing any probing at all.

This paper presents OASIS, a distributed anycast sys-
tem that addresses these challenges. Since OASIS is
shared across many application services, it amortizes de-
ployment and network measurement costs; yet to facil-
itate sharing, OASIS has to maintain network locality
information in an application-independent way. OASIS
achieves these goals by mapping different portions of the
Internet in advance (based on IP prefixes) to the geo-
graphic coordinates of the nearest known landmark. Mea-
surements from a preliminary deployment show that OA-
SIS, surprisingly, provides a significant improvement in
the performance that clients experience over state-of-the-
art on-demand probing and coordinate systems, while in-
curring much less network overhead.

1 Introduction

Many Internet services are distributed across a collec-
tion of servers that handle client requests. For example,
high-volume web sites are typically replicated at mul-
tiple locations for performance and availability. Con-
tent distribution networks amplify a website’s capacity by
serving clients through a large network of web proxies.
File-sharing and VoIP systems use rendezvous servers to
bridge hosts behind NATs.

The performance and cost of such systems depend
highly on the servers that clients select. For example,
file download times can vary greatly based on the local-
ity and load of the chosen replica. Furthermore, a service
provider’s costs may depend on the load spikes that the

server-selection mechanism produces, as many data cen-
ters charge customers based on the 95th-percentile usage
over all five-minute periods in a month.

Unfortunately, common techniques for replica selec-
tion produce sub-optimal results. Asking human users to
select the best replica is both inconvenient and inaccurate.
Round-robin and other primitive DNS techniques spread
load, but do little for network locality.

More recently, sophisticated techniques for server-
selection have been developed. When a legacy client ini-
tiates an anycast request, these techniques typically probe
the client from a number of vantage points, and then use
this information to find the closest server. While efforts,
such as virtual coordinate systems [6, 28] and on-demand
probing overlays [40, 46], seek to reduce the probing
overhead, the savings in overhead comes at the cost of
accuracy of the system.

Nevertheless, significant on-demand probing is still
necessary for all these techniques, and this overhead is
reincurred by every new deployed service. While on-
demand probing potentially offers greater accuracy, it has
several drawbacks that we have experienced first-hand in
a previously deployed system [10]. First, probing adds
latency, which can be significant for small web requests.
Second, performing several probes to a client often trig-
gers intrusion-detection alerts, resulting in abuse com-
plaints. This mundane problem can pose real operational
challenges for a deployed system.

This paper presents OASIS (Overlay-basedAnycast
ServiceInfraStructure), a shared locality-aware server se-
lection infrastructure. OASIS is organized as an infras-
tructure overlay, providing high availability and scalabil-
ity. OASIS allows a service to register a list of servers,
then answers the query, “Which server should the client
contact?” Selection is primarily optimized for network
locality, but also incorporates liveness and load. OA-
SIS can, for instance, be used by CGI scripts to redi-
rect clients to an appropriate web mirror. It can locate
servers for IP anycast proxies [2], or it can select dis-
tributed SMTP servers in large email services [26].

To eliminate on-demand probing when clients make
anycast requests, OASIS probes clients in the back-
ground. One of OASIS’s main contributions is a set of

Keyword Threads Msgs Keyword Threads Msgs

abuse 198 888 ICMP 64 308
attack 98 462 IDS 60 222
blacklist 32 158 intrusion 14 104
block 168 898 scan 118 474
complaint 216 984 trojan 10 56
flood 4 30 virus 24 82

Figure 1: Frequency count of keywords in PlanetLab support-

community archives from 14-Dec-04 through 30-Sep-05, com-

prising 4682 messages and 1820 threads. Values report num-

ber of messages and unique threads containing keyword.

techniques that makes it practical to measure the entire
Internet in advance. By leveraging the locality of the IP
prefixes [12], OASIS probes only each prefix, not each
client; in practice, IP prefixes from BGP dumps are used
as a starting point. OASIS delegates measurements to the
service replicas themselves, thus amortizing costs (ap-
proximately 2–10 GB/week) across multiple services, re-
sulting in an acceptable per-node cost.

To share OASIS across services and to make back-
ground probing feasible, OASIS requiresstable network
coordinatesfor maintaining locality information. Unfor-
tunately, virtual coordinates tend to drift over time. Thus,
since OASIS seeks to probe an IP prefix as infrequently as
once a week, virtual coordinates would not provide suf-
ficient accuracy. Instead, OASIS stores the geographic
coordinates of the replica closest to each prefix it maps.

OASIS is publicly deployed on PlanetLab [34] and
has already been adopted by a number of services, in-
cluding ChunkCast [5], CoralCDN [10], Na Kika [14],
OCALA [19], and OpenDHT [37]. Currently, we have
implemented a DNS redirector that performs server se-
lection upon hostname lookups, thus supporting a wide
range of unmodified client applications. We also provide
an HTTP and RPC interface to expose its anycast and
locality-estimation functions to OASIS-aware hosts.

Experiments from our deployment have shown rather
surprisingly that the accuracy of OASIS is competitive
with Meridian [46], currently the best on-demand probing
system. In fact, OASIS performs better than all replica-
selection schemes we evaluated across a variety of met-
rics, including resolution and end-to-end download times
for simulated web sessions, while incurring much less
network overhead.

2 Design

An anycast infrastructure like OASIS faces three main
challenges. First, network peculiarities are fundamen-
tal to Internet-scale distributed systems. Large latency
fluctuations, non-transitive routing [11], and middleboxes
such as transparent web proxies, NATs, and firewalls can

produce wildly inaccurate network measurements and
hence suboptimal anycast results.

Second, the system must balance the goals of accu-
racy, response time, scalability, and availability. In gen-
eral, using more measurements from a wider range of
vantage points should result in greater accuracy. How-
ever, probing clients on-demand increases latency and
may overemphasize transient network conditions. A bet-
ter approach is to probe networks in advance. However,
services do not know which clients to probe apriori, so
this approach effectively requires measuring the whole
Internet, a seemingly daunting task.

A shared infrastructure, however, can spread measure-
ment costs over many hosts and gain more network van-
tage points. Of course, these hosts may not be reliable.
While structured peer-to-peer systems [39, 42] can, the-
oretically, deal well with unreliable hosts, such protocols
add significant complexity and latency to a system and
break compatibility with existing clients. For example,
DNS resolvers and web browsers deal poorly with un-
available hosts since hosts cache stale addresses longer
than appropriate.

Third, even with a large pool of hosts over which to
amortize measurement costs, it is important to minimize
the rate at which any network is probed. Past experi-
ence [10] has shown us that repeatedly sending unusual
packets to a given destination often triggers intrusion de-
tection systems and results in abuse complaints. For ex-
ample, PlanetLab’ssupport-communitymailing list re-
ceives thousands of complaints yearly due to systems that
perform active probing; Figure1 lists the number and
types of complaints received over one ten-month period.
They range from benign inquiries to blustery threats to
drastic measures such as blacklisting IP addresses and en-
tire netblocks. Such measures are not just an annoyance;
they impair the system’s ability to function.

This section describes how OASIS’s design tackles the
above challenges. A two-tier architecture (§2.1) com-
bines a reliable core of hosts that implement anycast with
a larger number of replicas belonging to different services
that also assist in network measurement. OASIS mini-
mizes probing and reduces susceptibility to network pe-
culiarities by exploitinggeographic coordinatesas a ba-
sis for locality (§2.2.2). Every replica knows its latitude
and longitude, which already provides some information
about locality before any network measurement. Then,
in the background, OASIS estimates the geographic co-
ordinates of every netblock on the Internet. Because the
physical location of IP prefixes rarely changes [36], an
accurately pinpointed network can be safely re-probed
very infrequently (say, once a week). Such infrequent,
background probing both reduces the risk of abuse com-
plaints and allows fast replies to anycast requests with no
need for on-demand probing.

Service 2Service 1

 OASIS

Clients

Figure 2: OASIS system overview

2.1 System overview

Figure2 shows OASIS’s high-level architecture. The sys-
tem consists of a network ofcorenodes that helpclients
select appropriatereplicasof various services. All ser-
vices employ the same core nodes; we intend this set of
infrastructure nodes to be small enough and sufficiently
reliable so that every core node can know most of the oth-
ers. Replicas also run OASIS-specific code, both to report
their own load and liveness information to the core, and
to assist the core with network measurements. Clients
need not run any special code to use OASIS, because the
core nodes provide DNS- and HTTP-based redirection
services. An RPC interface is also available to OASIS-
aware clients.

Though the three roles of core node, client, and replica
are distinct, the same physical host often plays multiple
roles. In particular, core nodes are all replicas of the OA-
SIS RPC service, and often of the DNS and HTTP redi-
rection services as well. Thus, replicas and clients typi-
cally use OASIS itself to find a nearby core node.

Figure 3 shows various ways in which clients and
services can use OASIS. The top diagram shows an
OASIS-aware client, which uses DNS-redirection to se-
lect a nearby replica of the OASIS RPC service (i.e., a
core node), then queries that node to determine the best
replica of Service 1.

The middle diagram shows how to make legacy clients
select replicas using DNS redirection. The service
provider advertises a domain name served by OASIS.
When a client looks up that domain name, OASIS first
redirects the client’s resolver to a nearby replica of the
DNS service (which the resolver will cache for future ac-
cesses). The nearby DNS server then returns the address
of a Service 2 replica suitable for the client. This result
can be accurate if clients are near their resolvers, which
is often the case [24].

The bottom diagram shows a third technique, based on
service-level (e.g., HTTP) redirection. Here the replicas
of Service 3 are also clients of the OASIS RPC service.
Each replica connects to a nearby OASIS core node se-
lected by DNS redirection. When a client connects to a
replica, that replica queries OASIS to find a better replica,

Client

Service 1

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: RPC
3: APP J I

Client

Service 2

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: DNS
3: APP J I

Client

Service 3

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

2: RPC

3: APP J1: APP I

0: DNS
K

Figure 3: Various methods of using OASIS via its DNS or RPC

interfaces, and the steps involved in each anycast request.

then redirects the client. Such an approach does not re-
quire that clients be located near their resolvers in order
to achieve high accuracy.

This paper largely focuses on DNS redirection, since it
is the easiest to integrate with existing applications.

2.2 Design decisions

Given a client IP address and service name, the primary
function of the OASIS core is to return a suitable service
replica. For example, an OASIS nameserver calls its core
node with the client resolver’s IP address and a service
name extracted from the requested domain name (e.g.,
coralcdn.nyuld.netindicates servicecoralcdn).

Figure 4 shows how OASIS resolves an anycast re-
quest. First, a core node maps the client IP address to
anetwork bucket, which aggregates adjacent IP addresses
into netblocks of co-located hosts. It then attempts to map
the bucket to alocation (i.e., coordinates). If successful,
OASIS returns the closest service replica to that location
(unless load-balancing requires otherwise, as described
in §3.4). Otherwise, if it cannot determine the client’s
location, it returns a random replica.

The anycast process relies on four databases main-
tained in a distributed manner by the core: (1) aservice
table lists all services using OASIS (and records policy
information for each service), (2) abucketing tablemaps
IP addresses to buckets, (3) aproximity tablemaps buck-
ets to locations, and (4) oneliveness table per servicein-

response

anycast request

bucketing service

IP prefix

IP addr name

proximity liveness coords

policy

Figure 4: Logical steps to answer an anycast request

cludes all live replicas belonging to the service and their
corresponding information (e.g., coordinates, load, and
capacity).

2.2.1 Buckets: The granularity of mapping hosts

OASIS must balance the precision of identifying a
client’s network location with its state requirements. One
strawman solution is simply to probe every IP address
ever seen and cache results for future requests. Many
services have too large a client population for such an
approach to be attractive. For DNS redirection, probing
each DNS resolver would be practical if the total num-
ber of resolvers were small and constant. Unfortunately,
measurements at DNS root servers [23] have shown many
resolvers use dynamically-assigned addresses, thus pre-
cluding a small working set.

Fortunately, our previous research has shown that IP
aggregation by prefix often preserves locality [12]. For
example, more than 99% of/24 IP prefixes announced
by stub autonomous systems (and 97% of/24 prefixes
announced by all autonomous systems) are at the same lo-
cation. Thus, we aggregate IP addresses using IP prefixes
as advertised by BGP, using BGP dumps from Route-
Views [38] as a starting point.1

However, some IP prefixes (especially larger prefixes)
do not preserve locality [12]. OASIS discovers and
adapts to these cases by splitting prefixes that exhibit
poor locality precision,2 an idea originally proposed by
IP2Geo [30]. Using IP prefixes as network buckets not
only improves scalability by reducing probing and state
requirements, but also provides a concrete set of targets
to precompute, and hence avoid on-demand probing.

2.2.2 Geographic coordinates for location

OASIS takes a two-pronged approach to locate IP pre-
fixes: We first use a direct probing mechanism [46] to

1For completeness, we also note that OASIS currently supports ag-
gregating by the less-locality-preserving autonomous system number,
although we do not present the corresponding results in this paper.

2We deem that a prefix exhibits poor locality if probing different IP
addresses within the prefix yields coordinates with high variance.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180

R
ou

nd
-tr

ip
-ti

m
e

(m
s)

Geographic coodinate distance (degrees)

Figure 5: Correlation between round-trip-times and geo-

graphic distance across all PlanetLab hosts [43].

find the replica closest to the prefix, regardless of ser-
vice. Then, we represent the prefix by the geographic co-
ordinates of this closest replica and its measured round-
trip-time to the prefix. We assume that all replicas know
their latitude and longitude, which can easily be obtained
from a variety of online services [13]. Note that OASIS’s
shared infrastructure design helps increase the number of
vantage points and thus improves its likelihood of having
a replica near the prefix.

While geographic coordinates are certainly not optimal
predictors of round-trip-times, they work well in practice:
The heavy band in Figure5 shows a strong linear cor-
relation between geographic distance and RTT. In fact,
anycast only has the weaker requirement of predicting a
relative ordering of nodes for a prefix, not an accurate
RTT estimation. For comparison, we also implemented
Vivaldi [6] and GNP [28] coordinates within OASIS; §5
includes some comparison results.

Time- and service-invariant coordinates. Since geo-
graphic coordinates are stable over time, they allow OA-
SIS to probe each prefix infrequently. Since geographic
coordinates are independent of the services, they can be
shared across services—an important requirement since
OASIS is designed as a shared infrastructure. Geographic
coordinates remain valid even if the closest replica fails.
In contrast, virtual coordinate systems [6, 28] fall short of
providing either accuracy or stability [40, 46]. Similarly,
simply recording a prefix’s nearest replica—without its
corresponding geographic coordinates—is useless if that
nearest replica fails. Such an approach also requires a
separate mapping per service.

Absolute error predictor. Another advantage of our
two-pronged approach is that the RTT between a prefix
and its closest replica is anabsolutebound on the accu-
racy of the prefix’s estimated location. This bound sug-
gests a useful heuristic for deciding when to re-probe a
prefix to find a better replica. If the RTT is small (a
few milliseconds), reprobing is likely to have little ef-
fect. Conversely, reprobing prefixes having high RTTs
to their closest replica can help improve accuracy when

previous attempts missed the best replica or newly-joined
replicas are closer to the prefix. Furthermore, a prefix’s
geographic coordinates will not change unless it is probed
by a closer replica. Of course, IP prefixes can physically
move, but this happens rarely enough [36] that OASIS
only expires coordinates after one week. Moving a net-
work can therefore result in sub-optimal predictions for
at most one week.

Sanity checking. A number of network peculiarities
can cause incorrect network measurements. For exam-
ple, a replica behind a transparent web proxy may erro-
neously measure a short RTT to some IP prefix, when in
fact it has only connected to the proxy. Replicas behind
firewalls may believe they are pinging a remote network’s
firewall, when really they are probing their own. OASIS
employs a number of tests to detect such situations (see
§6). As a final safeguard, however, the core only accepts
a prefix-to-coordinate mapping after seeing two consis-
tent measurements from replicas on different networks.

In hindsight, another benefit of geographic coordinates
is the ability to couple them with real-time visualization
of the network [29], which has helped us identify, debug,
and subsequently handle various network peculiarities.

2.2.3 System management and data replication

To achieve scalability and robustness, the location infor-
mation of prefixes must be made available to all core
nodes. We now describe OASIS’s main system manage-
ment and data organization techniques.

Global membership view. Every OASIS core node
maintains a weakly-consistent view of all other nodes in
the core, where each node is identified by its IP address, a
globally-unique node identifier, and an incarnation num-
ber. To avoidO(n2) probing (wheren is the network
size), core nodes detect and share failure information co-
operatively: every core node probes a random neighbor
each time period (3 seconds) and, if it fails to receive a
response, gossips its suspicion of failure.

Two techniques suggested by SWIM [7] reduce false
failure announcements. First, several intermediates are
chosen to probe this target before the initiator announces
its suspicion of failure. Intermediaries alleviate the prob-
lems caused by non-transitive Internet routing [11]. Sec-
ond, incarnation numbers help disambiguate failure mes-
sages:alive messages for incarnationi override anything
for j < i; suspectfor i overrides anything forj ≤ i. If a
node learns that it is suspected of failure, it increments its
incarnation number and gossips its new number as alive.
A node will only conclude that another node with incar-
nationi is dead if it has not received a corresponding alive
message forj > i after some time (3 minutes). This ap-

Replica
App server

DB

OASIS
core
node

DNS

RPC

Replica

OASIS server

HTTPD

Figure 6: OASIS system components

proach provides live nodes with sufficient time to respond
to and correct false suspicions of failure.

Implicit in this design is the assumption that nodes
are relatively stable; otherwise, the system would incur
a high bandwidth cost for failure announcements. Given
that OASIS is designed as aninfrastructure service—to
be deployed either by one service provider or a small
number of cooperating providers—we believe that this
assumption is reasonable.

Consistent hashing. OASIS tasks must be assigned to
nodes in some globally-known yet fully-decentralized
manner. For example, to decide the responsibility of
mapping specific IP prefixes, we partition the set of pre-
fixes over all nodes. Similarly, we assign specific nodes
to play the role of aservice rendezvousto aggregate in-
formation about a particular service (described in §3.3).

OASIS provides this assignment through consistent
hashing [20]. Each node has a random identifier; several
nodes with identifiers closest to a key—e.g., the SHA-1
hash of the IP prefix or service name—in the identifier
space are assigned the corresponding task. Finding these
nodes is easy since all nodes have a global view. While
nodes’ views of the set of closest nodes are not guaran-
teed to be consistent, views can be easily reconciled using
nodes’ incarnation numbers.

Gossiping. OASIS uses gossiping to efficiently dissem-
inate messages—about node failures, service policies,
prefix coordinates—throughout the network [7]. Each
node maintains a buffer of messages to be piggybacked
on other system messages torandomnodes. Each node
gossips each messageO(logn) times for n-node net-
works; such an epidemic algorithm propagates a message
to all nodes in logarithmic time with high probability.3

Soft-state replica registration. OASIS must know all
replicas belonging to a service in order to answer corre-
sponding anycast requests. To tolerate replica failures ro-
bustly, replica information is maintained using soft-state:

3While structured gossiping based on consistent hashing could re-
duce the bandwidth overhead needed to disseminate a message [3], we
use a randomized epidemic scheme for simplicity.

replicas periodically send registration messages to core
nodes (currently, every 60 seconds).

Hosts running services that use OASIS for anycast—
such as the web server shown in Figure6—run a sepa-
rate replica process that connects to their local application
(i.e., the web server) every keepalive period (currently set
to 15 seconds). The application responds with its current
load and capacity. While the local application remains
alive, the replica continues to refresh its locality, load,
and capacity with its OASIS core node.

Closest-node discovery. OASIS offloads all measure-
ment costs to service replicas. All replicas, belonging
to different services, form a lightweight overlay, in or-
der to answer closest-replica queries from core nodes.
Each replica organizes its neighbors into concentric rings
of exponentially-increasing radii, as proposed by Merid-
ian [46]: A replica accepts a neighbor for ringi only if
its RTT is between 2i and 2i+1 milliseconds. To find the
closest replica to a destinationd, a query operates in suc-
cessive steps that “zero in” on the closest node in an ex-
pectedO(logn) steps. At each step, a replica with RTT
r from d chooses neighbors to probed, restricting its se-
lection to those with RTTs (to itself) between1

2r and 3
2r.

The replica continues the search on its neighbor returning
the minimum RTT tod. The search stops when the latest
replica knows of no other potentially-closer nodes.

Our implementation differs from [46] in that we per-
form closest routing iteratively, as opposed to recursively:
The first replica in a query initiates each progressive
search step. This design trades overlay routing speed for
greater robustness to packet loss.

3 Architecture

In this section, we describe the distributed architecture of
OASIS in more detail: its distributed management and
collection of data, locality and load optimizations, scala-
bility, and security properties.

3.1 Managing information

We now describe how OASIS manages the four tables
described in §2.2. OASIS optimizes response time by
heavily replicating most information. Service, bucketing,
and proximity information need only be weakly consis-
tent; stale information only affects system performance,
not its correctness. On the other hand, replica liveness
information must be more fresh.

Service table. When a service initially registers with
OASIS, it includes a service policy that specifies its
service name and any domain name aliases, its desired
server-selection algorithm, a public signature key, the

maximum and minimum number of addresses to be in-
cluded in responses, and the TTLs of these responses.
Each core node maintains a local copy of the service table
to be able to efficiently handle requests. When a new ser-
vice joins OASIS or updates its existing policy, its policy
is disseminated throughout the system by gossiping.

The server-selection algorithm specifies how to order
replicas as a function of their distance, load, and total
capacity when answering anycast requests. By default,
OASIS ranks nodes by their coordinate distance to the
target, favoring nodes with excess capacity to break ties.
The optional signature key is used to authorize replicas
registering with an OASIS core node as belonging to the
service (see §3.5).

Bucketing table. An OASIS core node uses its buck-
eting table to map IP addresses to IP prefixes. We boot-
strap the table using BGP feeds from RouteViews [38],
which has approximately 200,000 prefixes. A PATRICIA
trie [27] efficiently maps IP addresses to prefixes using
longest-prefix matching.

When core nodes modify their bucketing table by split-
ting or merging prefixes [30], these changes are gossiped
in order to keep nodes’ tables weakly consistent. Again,
stale information does not affect system correctness: pre-
fix withdrawals are only used to reduce system state,
while announcements are used only to identify more pre-
cise coordinates for a prefix.

Proximity table. When populating the proximity table,
OASIS seeks to find accurate coordinates for every IP
prefix, while preventing unnecessary reprobing.

OASIS maps an IP prefix to the coordinates of its clos-
est replica. To discover the closest replica, an core node
first selects an IP address from within the prefix and is-
sues a probing request to a known replica (or first queries
a neighbor to discover one). The selected replica tracer-
outes the requested IP to find the last routable IP address,
performs closest-node discovery using the replica overlay
(see §2.2.3), and, finally, returns the coordinates of the
nearest replica and its RTT distance from the target IP.
If the prefix’s previously recorded coordinate has either
expired or has a larger RTT from the prefix, the OASIS
core node reassigns the prefix to these new coordinates
and starts gossiping this information.

To prevent many nodes from probing the same IP pre-
fix, the system assigns prefixes to nodes using consistent
hashing. That is, several nodes closest tohash(prefix)are
responsible for probing the prefix (three by default). All
nodes go through their subset of assigned prefixes in ran-
dom order, probing the prefix if its coordinates have not
been updated within the lastTp seconds.Tp is a function
of the coordinate’s error, such that highly-accurate coor-
dinates are probed at a slower rate (see §2.2.2).

Resolv
1

3

OASIS
rendezv

coralcdn

dns

24

OASIS
Consistent

Hashing
J

I

SJ

SI
OASIS

rendezv

OASIS
core

OASIS
core

Figure 7: Steps involved in a DNS anycast request to OASIS

using rendezvous nodes.

Liveness table. For each registered service, OASIS
maintains a liveness table of known replicas. Gossip-
ing is not appropriate to maintain these liveness tables
at each node: stale information could cause nodes to re-
turn addresses of failed replicas, while high replica churn
would require excessive gossiping and hence bandwidth
consumption.

Instead, OASIS aggregates liveness information about
a particular service at a fewservice rendezvousnodes,
which are selected by consistent hashing. When a replica
joins or leaves the system, or undergoes a significant load
change, the OASIS core node with which it has regis-
tered sends an update to one of thek nodes closest to
hash(service). For scalability, these rendezvous nodes
only receive occasional state updates, not each soft-state
refresh continually sent by replicas to their core nodes.
Rendezvous nodes can dynamically adapt the parameter
k based on load, which is then gossiped as part of the ser-
vice’s policy. By default,k=4, which is also fixed as a
lower bound.

Rendezvous nodes regularly exchange liveness infor-
mation with one another, to ensure that their liveness ta-
bles remain weakly consistent. If a rendezvous node de-
tects that an core node fails (via OASIS’s failure detec-
tion mechanism), it invalidates all replicas registered by
that node. These replicas will subsequently re-register
with a different core node and their information will be
re-populated at the rendezvous nodes.

Compared to logically-decentralized systems such as
DHTs [39, 42], this aggregation at rendezvous nodes al-
lows OASIS to provide faster response (similar to one-
hop lookups) and to support complex anycast queries
(e.g., as a function of both locality and load).

3.2 Putting it together: Resolving anycast

Given the architecture that we have presented, we now
describe the steps involved when resolving an anycast re-
quest (see Figure7). For simplicity, we limit our discus-
sion to DNS redirection. When a client queries OASIS
for the hostnamecoralcdn.nyuld.netfor the first time:

1. The client queries the DNS root servers, finding an
OASIS nameserverI for nyuld.netto which it sends
the request.

2. Core lookup: OASIS core nodeI finds other core
nodes near the client that support the DNS interface
by executing the following steps:

(a) I locally maps the client’s IP address to IP pre-
fix, and then prefix to location coordinates.

(b) I queries one of thek rendezvous nodes for ser-
vice dns, call this nodeSI , sending the client’s
coordinates.

(c) SI responds with the best-suited OASIS name-
servers for the specified coordinates.

(d) I returns this set of DNS replicas to the client.
Let this set include nodeJ.

3. The client resends the anycast request toJ.

4. Replica lookup: Core nodeJ finds replicas near the
client using the following steps:

(a) J extracts the request’s service name and maps
the client’s IP address to coordinates.

(b) J queries one of thek rendezvous nodes for
servicecoralcdn, call thisSJ.

(c) SJ responds with the bestcoralcdn replicas,
whichJ returns to the client.

Although DNS is a stateless protocol, we can force
legacy clients to perform such two-stage lookups, as well
as signal to their nameservers which stage they are cur-
rently executing. §4 gives implementation details.

3.3 Improving scalability and latency

While OASIS can support a large number of replicas
by simply adding more nodes, the anycast protocol de-
scribed in §3.2 has a bottleneck in scaling to large num-
bers of clients for a particular service: one of thek ren-
dezvous nodes is involved in each request. We now de-
scribe how OASIS reduces these remote queries to im-
prove both scalability and client latency.

Improving core lookups. OASIS first reduces load
on rendezvous nodes by lowering the frequency of
core lookups. For DNS-based requests, OASIS uses
relatively-long TTLs for OASIS nameservers (currently
15 minutes) compared to those for third-party replicas
(configurable per service, 60 seconds by default). These
longer TTLs seem acceptable given that OASIS is an in-
frastructure service, and that resolvers can failover be-
tween nameservers since OASIS returns multiple, geo-
diverse nameservers.

Second, we observe that core lookups are rarely issued
to randomnodes: Core lookups in DNS will initially go

to one of the twelve primary nameservers registered for
.nyuld.netin the main DNS hierarchy. So, we can arrange
the OASIS core so that these 12 primary nameservers
play the role of rendezvous nodes fordns, by simply hav-
ing them choosek= 12 consecutive node identifiers for
consistent hashing (in addition to their normal random
identifiers). This configuration reduces latency by avoid-
ing remote lookups.

Improving replica lookups. OASIS further reduces
load by leveraging request locality. Since both clients
and replicas are redirected to their nearest OASIS core
nodes—when performing anycast requests and initiating
registration, respectively—hosts redirected to the same
core node are likely to be close to one another. Hence,
on receiving a replica lookup, an core node first checks
its local liveness table for any replica that satisfies the
service request.

To improve the effectiveness of using local informa-
tion, OASIS also useslocal flooding: Each core node
receiving registrations sends these local replica registra-
tions to some of its closest neighbors. (“Closeness” is
again calculated using coordinate distance, to mirror the
same selection criterion used for anycast.) Intuitively,
this approach helps prevent situations in which replicas
and clients select different co-located nodes and there-
fore lose the benefit of local information. We analyze the
performance benefit of local flooding in §5.1.

OASIS implements other obvious strategies to reduce
load, including having core nodes cache replica informa-
tion returned by rendezvous nodes and batch replica up-
dates to rendezvous nodes. We do not discuss these fur-
ther due to space limitations.

3.4 Selecting replicas based on load

While our discussion has mostly focused on locality-
based replica selection, OASIS supports multiple selec-
tion algorithms incorporating factors such as load and ca-
pacity. However, in most practical cases, load-balancing
need not be perfect; a reasonably good node is often ac-
ceptable. For example, to reduce costs associated with
“95th-percentile billing,” only the elimination of traffic
spikes is critical. To eliminate such spikes, a service’s
replicas can track their 95% bandwidth usage over five-
minute windows, then report their load to OASIS as the
logarithm of this bandwidth usage. By specifying load-
based selection in its policy, a service can ensure that its
95% bandwidth usage at its most-loaded replica is within
a factor of two of its least-loaded replica; we have evalu-
ated this policy in §5.2.

However, purely load-based metrics cannot be used in
conjunction with many of the optimizations that reduce
replica lookups to rendezvous nodes (§3.3), as locality
does not play a role in such replica selection. On the

other hand, the computation performed by rendezvous
nodes when responding to such replica lookups is much
lower: while answering locality-based lookups requires
the rendezvous node to compute the closest replica(s)
with respect to the client’s location, answering load-based
lookups requires the node simply to return the first ele-
ment(s) of a single list of service replicas, sorted by in-
creasing load. The ordering of this list needs to be recom-
puted only when replicas’ loads change.

3.5 Security properties

OASIS has the following security requirements. First, it
should prohibit unauthorized replicas from joining a reg-
istered service. Second, it should limit the extent to which
a particular service’s replicas can inject bad coordinates.
Finally, it should prevent adversaries from using the in-
frastructure as a platform for DDoS attacks.

We assume that all OASIS core nodes are trusted; they
do not gossip false bucketing, coordinates, or liveness in-
formation. We also assume that core nodes have loosely
synchronized clocks to verify expiry times for replicas’
authorization certificates. (Loosely-synchronized clocks
are also required to compare registration expiry times in
liveness tables, as well as measurement times when de-
termining whether to reprobe prefixes.) Additionally, we
assume that services joining OASIS have some secure
method to initially register a public key. An infrastruc-
ture deployment of OASIS may have a single or small
number of entities performing such admission control;
the service provider(s) deploying OASIS’s primary DNS
nameservers are an obvious choice. Less secure schemes
such as using DNS TXT records may also be appropriate
in certain contexts.

To prevent unauthorized replicas from joining a ser-
vice, a replica must present a valid, fresh certificate
signed by the service’s public key when initially register-
ing with the system. This certificate includes the replica’s
IP address and its coordinates. By providing such admis-
sion control, OASIS only returns IP addresses that are
authorized as valid replicas for a particular service.

OASIS limits the extent to which replicas can inject
bad coordinates by evicting faulty replicas or their cor-
responding services. We believe that sanity-checking
coordinates returned by the replicas—coupled with the
penalty of eviction—is sufficient to deter services from
assigning inaccurate coordinates for their replicas and
replicas from responding falsely to closest-replica queries
from OASIS.

Finally, OASIS prevents adversaries from using it as
a platform for distributed denial-of-service attacks by re-
quiring that replicas accept closest-replica requests only
from core nodes. It also requires that a replica’s over-
lay neighbors are authorized by OASIS (hence, replicas

;; ANSWER SECTION:
example.net.nyud.net 600 IN CNAME

coralcdn.ab4040d9a9e53205.oasis.nyuld.net.

coralcdn.ab4040d9a9e53205.oasis.nyuld.net. 60 IN A
171.64.64.217

;; AUTHORITY SECTION:
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS

171.64.64.217.ip4.oasis.nyuld.net.
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS

169.229.50.5.ip4.oasis.nyuld.net.

Figure 8: Output of dig for a hostname using OASIS.

only accept probing requests from other approved repli-
cas). OASIS itself has good resistance to DoS attacks,
as most client requests can be resolved using information
stored locally,i.e., not requiring wide-area lookups be-
tween core nodes.

4 Implementation

OASIS’s implementation consists of three main compo-
nents: the OASIS core node, the service replica, and
stand-alone interfaces (including DNS, HTTP, and RPC).
All components are implemented in C++ and use the
asynchronous I/O library from the SFS toolkit [25], struc-
tured using asynchronous events and callbacks. The core
node comprises about 12,000 lines of code, the replica
about 4,000 lines, and the various interfaces about 5,000
lines. The bucketing table is maintained using an in-
memory PATRICIA trie [27], while the proximity table
uses BerkeleyDB [41] for persistent storage.

OASIS’s design uses static latitude/longitude coordi-
nates with Meridian overlay probing [46]. For compari-
son purposes, OASIS also can be configured to use syn-
thetic coordinates using Vivaldi [6] or GNP [28].

RPC and HTTP interfaces. These interfaces take an
optional target IP address as input, as opposed to sim-
ply using the client’s address, in order to support inte-
gration of third-party services such as HTTP redirectors
(Figure3). Beyond satisfying normal anycast requests,
these interfaces also enable a localization service by sim-
ply exposing OASIS’s proximity table, so that any client
can ask “What are the coordinates of IPx?”4 In addition
to HTML, the HTTP interface supports XML-formatted
output for easy visualization using online mapping ser-
vices [13].

DNS interface. OASIS takes advantage of low-level
DNS details to implement anycast. First, a nameserver
must differentiate between core and replica lookups.
Core lookups only returnnameserver(NS) records for

4We plan to support such functionality with DNS TXT records as
well, although this has not been implemented yet.

nearby OASIS nameservers. Replica lookups, on the
other hand, returnaddress(A) records for nearby repli-
cas. Since DNS is a stateless protocol, we signal the type
of a client’s request in its DNS query: replica lookups
all have oasis prepended tonyuld.net. We force such
signalling by returning CNAME records during core
lookups, which map aliases to theircanonical names.

This technique alone is insufficient to force many
client resolvers, including BIND, to immediately issue
replica lookups to these nearby nameservers. We illus-
trate this with an example query for CoralCDN [10],
which uses the service alias∗.nyud.net. A resolverR
discovers nameserversu,v for nyud.net by querying the
root servers forexample.net.nyud.net.5 Next, R queries
u for this hostname, and is returned a CNAME for
example.net.nyud.net → coralcdn.oasis.nyuld.net and
NS x,y for coralcdn.oasis.nyuld.net. In practice, R
will reissue a new query forcoralcdn.oasis.nyuld.net to
nameserverv, which is not guaranteed to be close toR
(andv’s local cache may include replicas far fromR).

We again use the DNS query string to signal whether
a client is contacting the correct nameservers. When
responding to core lookups, we encode the set of NS
records in hex format (ab4040d9a9e53205) in the re-
turned CNAME record (Figure8). Thus, whenv receives
a replica lookup, it checks whether the query encodes its
own IP address, and if it does not, immediately re-returns
NS records forx,y. Now, having received NS records
authoritative for the name queried, a resolver contacts the
desired nameserversx or y, which returns an appropriate
replica forcoralcdn.

5 Evaluation

We evaluate OASIS’s performance benefits for DNS-
based anycast, as well as its scalability and bandwidth
trade-offs.

5.1 Wide-area evaluation of OASIS

Experimental setup. We present wide-area measure-
ments on PlanetLab [34] that evaluate the accuracy of
replica selection based on round-trip-time and through-
put, DNS response time, and the end-to-end time for a
simulated web session. In all experiments, we ran repli-
cas for one service on approximately 250 PlanetLab hosts
spread around the world (including 22 in Asia), and we
ran core nodes and DNS servers on 37 hosts.6

5To adopt OASIS yet preserve its own top-level domain name,
CoralCDN points the NS records fornyud.net to OASIS’s nameservers;
nyud.net is registered as an alias forcoralcdnin its service policy.

6This number was due to the unavailability of UDP port 53 on most
PlanetLab hosts, especially given CoralCDN’s current use of same.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

P
er

ce
nt

 o
f p

in
gs

 h
av

in
g

R
TT

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 9: Round trip times (ms)

We compare the performance of replica selection us-
ing six different anycast strategies: (1)OASIS (LF)refers
to the OASIS system, using both local caching and local
flooding (to the nearest three neighbors; see §3.3). (2)
OASISuses only local caching for replicas. (3)Merid-
ian (our implementation of [46]) performs on-demand
probing by executing closest-replica discovery whenever
it receives a request. (4)Vivaldi uses 2-dimensional dy-
namic virtual coordinates [6], instead of static geographic
coordinates, by probing the client from 8-12 replicas
on-demand. The core node subsequently computes the
client’s virtual coordinates and selects its closest replica
based on virtual coordinate distance. (5)Vivaldi (cached)
probes IP prefixes in the background, instead of on-
demand. Thus, it is similar to OASIS with local caching,
except for using virtual coordinates to populate OASIS’s
proximity table. (6) Finally,RRobinperforms round-
robin DNS redirection amongst all replicas in the system,
using a single DNS server located at Stanford University.

We performed client measurements on the same hosts
running replicas. However, we configured OASIS so that
when a replica registers with an OASIS core node, the
node doesnot directly save a mapping from the replica’s
prefix to its coordinates, as OASIS would do normally.
Instead, we rely purely on OASIS’s background probing
to assign coordinates to the replica’s prefix.

Three consecutive experiments were run at each site
when evaluating ping, DNS, and end-to-end latencies.
Short DNS TTLs were chosen to ensure that clients con-
tacted OASIS for each request. Data from all three exper-
iments are included in the following cumulative distribu-
tion function (CDF) graphs.

Minimizing RTTs. Figures 9 shows the CDFs of
round-trip-times in log-scale between clients and their re-
turned replicas. We measured RTTs via ICMP echo mes-
sages, using the ICMP response’s kernel timestamp when
calculating RTTs. RTTs as reported are the minimum of
ten consecutive probes. We see that OASIS and Meridian
significantly outperform anycast using Vivaldi and round
robin by one to two orders of magnitude.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

P
er

ce
nt

 o
f r

eq
ue

st
s

w
ith

 th
ro

ug
hp

ut

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 10: Client-server TCP throughput (KB/s)

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)

Figure 11: DNS resolution time (ms) for new clients

Two other interesting results merit mention. First,
Vivaldi (cached)performs significantly worse than on-
demandVivaldi and even often worse thanRRobin.
This arises from the fact thatVivaldi is not stable over
time with respect to coordinate translation and rotation.
Hence, cached results quickly become inaccurate, al-
though recent work has sought to minimize this instabil-
ity [8, 33]. Second, OASIS outperformsMeridian for
60% of measurements, a rather surprising result given
that OASIS usesMeridian as its background probing
mechanism. It is here where we see OASIS’s benefit
from using RTT as an absolute error predictor for coordi-
nates (§2.2.2): reprobing by OASIS yields strictly better
results, while the accuracy of Meridian queries can vary.

Maximizing throughput. Figure 10 shows the CDFs
of the steady-state throughput from replicas to their
clients, to examine the benefit of using nearby servers to
improve data-transfer rates. TCP throughput is measured
usingiperf-1.7.0 [18] in its default configuration (a
TCP window size of 32 KB). The graph shows TCP per-
formance in steady-state. OASIS is competitive with or
superior to all other tested systems, demonstrating its per-
formance for large data transfers.

DNS resolution time. Figures11 and12 evaluate the
DNS performance for new clients and for clients al-
ready caching their nearby OASIS nameservers, respec-
tively. A request by a new client includes the time to

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 12: DNS resolution time (ms) for replica lookups

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 13: End-to-end download performance (ms)

perform three steps: (1) contact an initial OASIS core
node to learn a nearby nameserver, (2) re-contact a dis-
tant node and again receive NS records for the same
nearby nameservers (see §4), and (3) contact a nearby
core node as part of a replica lookup. Note that we did not
specially configure the 12 primary nameservers as ren-
dezvous nodes fordns (see §3.3), and thus use a wide-
area lookup during Step 1. This two-step approach is
taken by all systems:Meridian andVivaldi both perform
on-demand probing twice. We omitRRobinfrom this
experiment, however, as it always uses a single name-
server. Clients already caching nameserver information
need only perform Step 3, as given in Figure12.

OASIS’s strategy of first finding nearby nameservers
and then using locally-cached information can achieve
significantly faster DNS response times compared to on-
demand probing systems. The median DNS resolution
time for OASIS replica lookups is almost 30x faster than
that for Meridian.7 We also see that local flooding can
improve median performance by 40% by reducing the
number of wide-area requests to rendezvous nodes.

End-to-end latency. Figure 13 shows the end-to-end
time for a client to perform a synthetic web session,
which includes first issuing a replica lookup via DNS
and then downloading eight 10KB files sequentially. This

7A recursive Meridian implementation [46] may be faster than our
iterative implementation: our design emphasizes greater robustness to
packet loss, given our preference for minimizing probing.

metric california texas new york germany
latency 23.3 0.0 0.0 0.0

load 9.0 11.3 9.6 9.2

Table 1: 95th-percentile bandwidth usage (MB)

file size is chosen to mimic that of common image files,
which are often embedded multiple times on a given web
page. We do not simulate persistent connections for our
transfers, so each request establishes a new TCP con-
nection before downloading the file. Also, our faux-
webserver never touches the disk, so does not take (Plan-
etLab’s high) disk-scheduling latency into account.

End-to-end measurements underscore OASIS’s true
performance benefit, coupling very fast DNS response
time with very accurate server selection. Median
response-time for OASIS is 290% faster thanMeridian
and 500% faster than simple round-robin systems.

5.2 Load-based replica selection

This section considers replica selection based on load.
We do not seek to quantify an optimal load- and latency-
aware selection metric; rather, we verify OASIS’s ability
to perform load-aware anycast. Specifically, we evaluate
a load-balancing strategy meant to reduce costs associ-
ated with 95th-percentile billing (§3.4).

In this experiment, we use four distributed servers that
run our faux-webserver. Each webserver tracks its band-
width usage per minute, and registers its load with its lo-
cal replica as the logarithm of its 95th-percentile usage.
Eight clients, all located in California, each make 50 any-
cast requests for a 1MB file, with a 20-second delay be-
tween requests. (DNS records have a TTL of 15 seconds.)

Table1 shows that the webserver with highest band-
width costs is easily within a factor of two of the least-
loaded server. On the other hand, locality-based replica
selection creates a traffic spike at a single webserver.

5.3 Scalability

Since OASIS is designed as an infrastructure system, we
now verify that a reasonable-sized OASIS core can han-
dle Internet-scale usage.

Measurements at DNS root servers have shown steady
traffic rates of around 6.5M A queries per 10 minute in-
terval across all{e, i,k,m}.root-servers.net [23]. With
a deployment of 1000 OASIS DNS servers—and, for
simplicity, assuming an even distribution of requests to
nodes—even if OASIS received requests at an equivalent
rate, each node would see only 10 requests per second.

On the other hand, OASIS often uses shorter TTLs to
handle replica failover and load balancing. The same
datasets showed approximately 100K unique resolvers

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

P
ro

bi
ng

 b
an

dw
id

th
 u

se
d

(M
B

 p
er

 w
ee

k)

DNS requests (thousands per day)

1 probe / prefix

2 probes / prefix

5 probes / prefix

1 probe / IP

2 probes / IP

5 probes / IP

on-demand probing

Figure 14: Bandwidth trade-off between on-demand probing,

caching IP prefixes (OASIS), and caching IP addresses

per 10 minute interval. Using the default TTL of 60 sec-
onds, even if every client re-issued a request every 60
seconds for alls services using OASIS, each core node
would receive at most 1.6·s requests per second.

To consider one real-world service, as opposed to some
upper bound for all Internet traffic, CoralCDN [10] han-
dles about 20 million HTTP requests from more than one
million unique client IPs per day (as of December 2005).
To serve this web population, CoralCDN answers slightly
fewer than 5 million DNS queries (for all query types)
per day, using TTLs of 30-60 seconds. This translates to
a systemtotal of 57 DNS queries per second.

5.4 Bandwidth trade-offs

This section examines the bandwidth trade-off between
precomputing prefix locality and performing on-demand
probing. If a system receives only a few hundred requests
per week, OASIS’s approach of probing every IP prefix is
not worthwhile. Figure14plots the amount of bandwidth
used in caching and on-demand anycast systems for a sys-
tem with 2000 replicas. Following the results of [46],
we estimate each closest-replica query to generate about
10.4 KB of network traffic (load grows sub-linearly with
the number of replicas).

Figure 14 simulates the amount of bandwidth used
per week for up to 5 million DNS requests per day (the
request rate from CoralCDN), where each results in a
new closest-replica query. OASIS’s probing of 200K
prefixes—even when each prefix may be probed multiple
times—generates orders of magnitude less network traf-
fic. We also plot an upper-bound on the amount of traffic
generated if the system were to cache IP addresses, as
opposed to IP prefixes.

While one might expect the number of DNS resolvers
to be constant and relatively small, many resolvers
use dynamically-assigned addresses and thus preclude a
small working set: the root-servers saw more than 4 mil-

Project Service Description
ChunkCast [5] chunkcast Anycast gateways
CoralCDN [10] coralcdn Web proxies
Na Kika [14] nakika Web proxies

OASIS dns DNS interface
http HTTP interface
rpc RPC interface

OCALA [19] ocala Client IP gateways
ocalarsp Server IP gateways

OpenDHT [37] opendht Client DHT gateways

Figure 15: Services using OASIS as of March 2006. Services

can be accessed using 〈service〉.nyuld.net.

lion unique clients in a week, with the number of clients
increasing linearly after the first day’s window [23]. Fig-
ure14uses this upper-bound to plot the amount of traffic
needed when caching IP addresses. Of course, new IP
addresses always need to be probed on-demand, with the
corresponding performance hit (per Figure12).

6 Deployment lessons

OASIS has been deployed on about 250 PlanetLab hosts
since November 2005. Figure15 lists the systems cur-
rently using OASIS and a brief description of their ser-
vice replicas. We present some lessons that we learned in
the process.

Make it easy to integrate. Though each application
server requires a local replica, for a shared testbed such as
PlanetLab, a single replica process on a host can serve on
behalf of multiple local processes running different appli-
cations. To facilitate this, we now run OASIS replicas as
a public service on PlanetLab; to adopt OASIS, Planet-
Lab applications need only listen on a registered port and
respond to keepalive messages.

Applications can integrate OASIS even without any
source-code changes or recompilation. Operators can run
or modify simple stand-alone scripts we provide that an-
swer replica keepalive requests after simple liveness and
load checks (viaps and the/proc filesystem).

Check for proximity discrepancies. Firewalls and
middleboxes can lead one to draw false conclusions from
measurement results. Consider the following two prob-
lems we encountered, mentioned earlier in §2.2.2.

To determine a routable IP address in a prefix, a replica
performs a traceroute and uses the last reachable node
that responded to the traceroute. However, since fire-
walls can perform egress filtering on ICMP packets, an
unsuspecting node would then ask others to probe its
own egress point, which may be far away from the de-
sired prefix. Hence, replicas initially find their immedi-

ate upstream routers—i.e., the set common to multiple
traceroutes—which they subsequently ignored.

When replicas probe destinations on TCP port 80
for closest-replica discovery, any local transparent web
proxy will perform full TCP termination, leading an un-
suspecting node to conclude that it is very close to the
destination. Hence, a replica first checks for a transpar-
ent proxy, then tries alternative probing techniques.

Both problems would lead replicas to report them-
selves as incorrectly close to some IP prefix. So, by em-
ploying measurement redundancy, OASIS can compare
answers for precision and sanity.

Be careful what you probe. No single probing tech-
nique is both sufficiently powerful and innocuous (from
the point-of-view of intrusion-detection systems). As
such, OASIS has adapted its probing strategies based on
ISP feedback. ICMP probes and TCP probes to random
high ports were often dropped by egress firewalls and,
for the latter, flagged as unwanted port scans. Probing
to TCP port 80 faced the problem of transparent web
proxies, and probes to TCP port 22 were often flagged
as SSH login attacks. Unfortunately, as OASIS performs
probing from multiple networks, automated abuse com-
plaints from IDSs are sent to many separate network op-
erators. Currently, OASIS uses a mix of TCP port 80
probes, ICMP probes, and reverse DNS name queries.

Be careful whom you probe. IDSs deployed on some
networks are incompatible with active probing, irrespec-
tive of the frequency of probes. Thus, OASIS maintains
and checks a blacklist whenever a target IP prefix or ad-
dress is selected for probing. We apply this blacklist at all
stages of probing: Initially, only the OASIS core checked
target IP prefixes. However, this strategy led to abuse
complaints from ASes that provide transit for the target,
yet filter ICMPs; in such cases, replicas tracerouting the
prefix would end up probing the upstream AS.

7 Related work

We classify related work into two areas most relevant to
OASIS: network distance estimation and server selection.
Network distance estimation techniques are used to iden-
tify the location and/or distance between hosts in the net-
work. The server-selection literature deals with finding
an appropriately-located server (possibly using network
distance estimation) for a client request.

Network distance estimation. Several techniques have
been proposed to reduce the amount of probing per re-
quest. Some initial proposals (such as [16]) are based
on the triangle-inequality assumption. IDMaps [9] pro-
posed deployingtracers that all probe one another; the
distance between two hosts is calculated as the sum of

the distances between the hosts and their selected trac-
ers, and between the two selected tracers. Theilmann and
Rothermel described a hierarchical tree-like system [44],
and Iso-bar proposed a two-tier system using landmark-
based clustering algorithms [4]. King [15] used recursive
queries to remote DNS nameservers to measure the RTT
distance between any twonon-participatinghosts.

Recently, virtual coordinate systems (such as GNP [28]
and Vivaldi [6]) offer new methods for latency estimation.
Here, nodes generate synthetic coordinates after probing
one another. The distance between peers in the coordinate
space is used to predict their RTT, the accuracy of which
depends on how effectively the Internet can be embedded
into ad-dimensional (usually Euclidean) space.

Another direction for network estimation has been the
use of geographic mapping techniques; the main idea is
that if geographic distance is a good indicator of net-
work distance, then estimating geographic location accu-
rately would obtain a first approximation for the network
distance between hosts. Most approaches in geographic
mapping are heuristic. The most common approaches
include performing queries against awhois database
to extract city information [17, 32], or tracerouting the
address space and then mapping router names to loca-
tions based on ISP-specific naming conventions [12, 30].
Commercial entities have sought to create exhaustive IP-
range mappings [1, 35].

Server selection. IP anycast was proposed as a
network-level solution to server selection [22, 31]. How-
ever, with various deployment and scalability problems,
IP anycast is not widely used or available. Recently, PIAS
has argued for supporting IP anycast as a proxy-based ser-
vice to overcome deployment challenges [2]; OASIS can
serve as a powerful and flexible server-selection backend
for such a system.

One of the largest deployed content distribution net-
works, Akamai [1] reportedly traceroutes the IP address
space from multiple vantage points to detect route con-
vergence, then pings the common router from every data
center hosting an Akamai cluster [4]. OASIS’s task is
more difficult than that of commercial CDNs, given its
goal of providing anycast for multiple services.

Recent literature has proposed techniques to minimize
such exhaustive probing. Meridian [46] (used for DNS
redirection by [45]) creates an overlay network with
neighbors chosen from a particular distribution; routing
to closer nodes is guaranteed to find a minimum given a
growth-restricted metric space [21]. In contrast, OASIS
completely eliminates on-demand probing.

OASIS allows more flexible server selection than pure
locality-based solutions, as it stores load and capacity es-
timates from replicas in addition to locality information.

8 Conclusion

OASIS is a global distributed anycast system that allows
legacy clients to find nearby or unloaded replicas for dis-
tributed services. Two main features distinguish OASIS
from prior systems. First, OASIS allows multiple ap-
plication services to share the anycast service. Second,
OASIS avoids on-demand probing when clients initiate
requests. Measurements from a preliminary deployment
show that OASIS, provides a significant improvement in
the performance that clients experience over state-of-the-
art on-demand probing and coordinate systems, while in-
curring much less network overhead.

OASIS’s contributions are not merely its individual
components, but also the deployed system that is im-
mediately usable by both legacy clients and new ser-
vices. Publicly deployed on PlanetLab, OASIS has
already been adopted by a number of distributed ser-
vices [5, 10, 14, 19, 37].

Acknowledgments. We thank A. Nicolosi for the key-
word analysis of Figure1. M. Huang, R. Huebsch, and L.
Peterson have aided our efforts to run PlanetLab services.
We also thank D. Andersen, S. Annapureddy, N. Feam-
ster, J. Li, S. Rhea, I. Stoica, our anonymous reviewers,
and our shepherd, S. Gribble, for comments on drafts of
this paper. This work was conducted as part of Project
IRIS under NSF grant ANI-0225660.

References
[1] Akamai Technologies. http://www.akamai.com/, 2006.
[2] H. Ballani and P. Francis. Towards a global IP anycast service. In

SIGCOMM, 2005.
[3] M. Castro, M. Costa, and A. Rowstron. Debunking some myths

about structured and unstructured overlays. InNSDI, May 2005.
[4] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the stabil-

ity of network distance estimation.SIGMETRICS Perform. Eval.
Rev., 30(2):21–30, 2002.

[5] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz.
ChunkCast: An anycast service for large content distribution. In
IPTPS, Feb. 2006.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decen-
tralized network coordinate system. InSIGCOMM, Aug. 2004.

[7] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable weakly-
consistent infection-style process group membership protocol. In
Dependable Systems and Networks, June 2002.

[8] C. de Launois, S. Uhlig, and O. Bonaventure. A stable and dis-
tributed network coordinate system. Technical report, Universite
Catholique de Louvain, Dec. 2004.

[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance estimation
service.IEEE/ACM Trans. on Networking, Oct. 2001.

[10] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing
content publication with Coral. InNSDI, Mar. 2004.

[11] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica.
Non-transitive connectivity and DHTs. InWORLDS, Dec. 2005.

[12] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan.
Geographic locality of IP prefixes. InIMC, Oct. 2005.

[13] Google Maps. http://maps.google.com/, 2006.
[14] R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A.Kravetz,

J. Miller, and S. Raza. Na Kika: Secure service execution and
composition in an open edge-side computing network. InNSDI,
May 2006.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
latency between arbitrary Internet end hosts. InIMW, 2001.

[16] J. Guyton and M. Schwartz. Locating nearby copies of replicated
Internet servers. InSIGCOMM, Aug. 1995.

[17] IP to Lat/Long server, 2005. http://cello.cs.uiuc.edu/cgi-
bin/slamm/ip2ll/.

[18] Iperf. Version 1.7.0 – the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/, 2005.

[19] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica,
and K. Wehrle. OCALA: An architecture for supporting legacy
applications over overlays. InNSDI, May 2006.

[20] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In STOC, May 1997.

[21] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. InSTOC, 2002.

[22] D. Katabi and J. Wroclawski. A framework for scalable global
IP-anycast (GIA). InSIGCOMM, Aug. 2000.

[23] K. Keys. Clients of DNS root servers, 2002-08-14.
http://www.caida.org/projects/dns-analysis/, 2002.

[24] Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck,
and J. Wang. A precise and efficient evaluation of the proximity
between web clients and their local DNS servers. InUSENIX
Conference, June 2002.

[25] D. Mazières. A toolkit for user-level file systems. InUSENIX
Conference, June 2001.

[26] A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences
in building and operating a reliable peer-to-peer application. In
EuroSys, Apr. 2006.

[27] D. Morrison. Practical algorithm to retrieve information coded in
alphanumeric.J. ACM, 15(4), Oct. 1968.

[28] E. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. InINFOCOM, June 2002.

[29] OASIS. http://www.coralcdn.org/oasis/, 2006.
[30] V. N. Padmanabhan and L. Subramanian. An investigation of ge-

ographic mapping techniques for Internet hosts. InSIGCOMM,
Aug. 2001.

[31] C. Patridge, T. Mendez, and W. Milliken. Host anycasting service.
RFC 1546, Network Working Group, Nov. 1993.

[32] D. M. R. Periakaruppan and J. Donohoe. Where in the world is
netgeo.caida.org? InINET, June 2000.

[33] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordi-
nates on planetlab. InWORLDS, Dec. 2005.

[34] PlanetLab. http://www.planet-lab.org/, 2005.
[35] Quova. http://www.quova.com/, 2006.
[36] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability

of popular destinations. InIMW, Nov. 2002.
[37] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,

S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. InSIGCOMM, Aug. 2005.

[38] RouteViews. http://www.routeviews.org/, 2006.
[39] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware, Nov 2001.

[40] K. Shanahan and M. J. Freedman. Locality prediction for oblivi-
ous clients. InIPTPS, Feb. 2005.

[41] Sleepycat. BerkeleyDB v4.2, 2005.
[42] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. InIEEE/ACM Trans.
on Networking, 2002.

[43] J. Stribling. PlanetLab AllPairsPing data, 08-03-2005:11:14:19.
http://www.pdos.lcs.mit.edu/ strib/pl_app/, 2005.

[44] W. Theilmann and K. Rothermel. Dynamic distance maps of the
Internet. InIEEE INFOCOM, Mar 2001.

[45] B. Wong and E. G. Sirer. ClosestNode.com: an open access,
scalable, shared geocast service for distributed systems.SIGOPS
OSR, 40(1), 2006.

[46] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight
network location service without virtual coordinates. InSIG-
COMM, Aug. 2005.

	Introduction
	Design
	System overview
	Design decisions
	Buckets: The granularity of mapping hosts
	Geographic coordinates for location
	System management and data replication

	Architecture
	Managing information
	Putting it together: Resolving anycast
	Improving scalability and latency
	Selecting replicas based on load
	Security properties

	Implementation
	Evaluation
	Wide-area evaluation of OASIS
	Load-based replica selection
	Scalability
	Bandwidth trade-offs

	Deployment lessons
	Related work
	Conclusion

