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Today's Analytics Architectures
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Tomorrow’s Architecture: JetStream
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JetStream

=== Backhaul is inefficient and inflexible

e Goal: optimize use of WAN links by
exposing them to streaming system.
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Backhaul is Intrinsically Inefficient
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Stream Processing Basics
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Some Operators in JetStream:

Filtering (count > 100) Quantiles (95™ percentile)
Sampling (drop 90% of data)  Query stored data
Image Compression



The JetStream System

What: Streaming with aggregation and
degradation as first-class primitives

Where: Storage and processing at edge

Why: Maximize goodput using aggregation
and degradation

How: Data cubes and feedback control



An Example Query
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Mechanism 1: Storage with Aggregation
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Mechanism 2: Adaptive Degradation
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Requirements for Storage Abstraction

* Update-able (locally and incrementally)

Stored Data += pata

e Data size is reducible (with predictable accuracy cost)

Data ‘ Data

* Merge-able (without accuracy penalty)

Merged

+
Dats D Representation




The Data Cube Model

Cube: A multidimensional array, indexed by a set of
dimensions, whose cells hold aggregates.

Counts by URL 12:00 [ 12:01 [ 12:02
www.mysite.com/a | 3 5 0
www.mysite.com/b | 0 2 0
www.yoursite.com |5 4
www.her-site.com |8 12

Cubes have aggregation function: Agg(f ! .00)~>

Aggregation used for:
» Updates

e Roll-ups

e Merging cubes

e Summarizing cubes
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Cubes can be “Rolled Up”

Cube: A multidimensional array, indexed by a set of
dimensions, whose cells hold aggregates.

Counts by URL

www.mysite.com/a

www.mysite.com/b

www.yoursite.com

www.her-site.com
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Counts by URL 12:00 [ 12:01 [ 12:02
www.mysite.com/a | 3 5 0
www.mysite.com/b | 0 2 0
www.yoursite.com |5 4
www.her-site.com |8 12

Counts by URL 12:00 | 12:01 | 12:02

*
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Cubes Unify Storage and Aggregation
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Degradation: The Big Picture

Dataflow \ |Summarized or Dataflow
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» Level of degradation auto-tuned to match bandwidth.
e Challenge: Supporting mergeability and flexible policies
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Mergeability Imposes Constraints

Every 5

Every 6

Every 5

Every 3077

Every 10

01-05

06 - 10

11-15

16 - 20

21-25

26 - 30

T~
/

P797?°7°7°7

01-06

07 -12

25 -30

02 - 06

07 - 11

22 - 26

27 - 31

01-10

21-30

* |nsight: Degradation may be discontinuous
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There Are Many Ways to Degrade Data

e Can coarsen a dimension

il = allh..

e Can drop low-rank values
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Coarsening Does Not Always Help

Savings from Aggregation
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Degradations Have Trade-offs

Fixed BW Fixed Accuracy Parameter
Savings cost
Dim. Coarsening | Usually no Yes Dimension
Scale
Drop values Yes No Cut-off
(locally)
Drop values No, multi-round | Yes Cut-off
(globally) protocol
Audiovisual Yes Yes Sample rate
downsampling
Histogram Yes Yes Number of
Coarsening Buckets




A Simple |dea that Does Not Work
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 We have sensors that report congestion....
* Have operators read sensor and adjust themselves?

19



A Simple |dea that Does Not Work

\ Network O

Incoming aF:lrs
data

£ Increase aggregation
period up to 10 sec. If
insufficient, use sampling

~O

» We have sensors that report congestion....
» Have operators read sensor and adjust themselves?

senamg 4x too much
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Challenge: Composite Policies

Incoming Coarsening Sampling O
data Operator Operator Network
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[Sending 4x tﬁ

e Chaos if two operators are simultaneously
responding to the same sensor
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Interfacing with Operators

Incoming Coarsening Sampling O
data Operator Operator Network
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Shrinking data by 50% [Sendlng 4x tﬁ
Possible levels: /
% [0%, 50%, 75%, 95%, /]A

[ Go to level 75%
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Experimental Setup

80 nodes on VICCI testbed at three sites
(Seattle, Atlanta, and Germany)

Princeton

Policy: Drop data if insufficient BW

23



Without Degradation
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Degradation Keeps Latency Bounded
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Showing maximum latencies
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Programming Ease

Scenario Lines of code

Slow requests 3
Requests by URL 3
Bandwidth by node 15
Bad referrers 16
Latency and size quantiles 25
Success by domain 30
Top 10 domains by period 40

Big Requests 97
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Conclusions and Future Work

» Useful to embed aggregation and degradation
abstractions in streaming systems.

e Aggregation can be unified with storage.

e System must accommodate degradation semantics.

e Open questions:
e How to guide users to the right degradation policy?
 How to embed abstractions in higher-level language?
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