Ariel Rabkin
Princeton University
asrabkin@cs.princeton.edu

Work done with Matvey Arye, Siddhartha Sen,
Vivek S. Pai, and Michael J. Freedman

Today's Analytics Architectures

_ee===7 | MillWheel
- 2y | (Google) Storm
=

. Backhaul is inefficient and inflexible

Tomorrow’s Architecture: JetStream

est

JetStream

=== Backhaul is inefficient and inflexible

e Goal: optimize use of WAN links by
exposing them to streaming system.

3

Backhaul is Intrinsically Inefficient

Needed for backhaul

=
O
= e R
2 Available "
(T
m , >
/‘Fﬁle [two days]\
Buyer’s remorse: Analyst’'s remorse:
wasted bandwidth system overload or

missing data

Stream Processing Basics

Stream Stream) Site A
Operators Operators Site C

Stream
—
Operator)

Input Data

Input Data

Stream s Stream
Operators Operators

Site B

Some Operators in JetStream:

Filtering (count > 100) Quantiles (95™ percentile)
Sampling (drop 90% of data) Query stored data
Image Compression

The JetStream System

What: Streaming with aggregation and
degradation as first-class primitives

Where: Storage and processing at edge

Why: Maximize goodput using aggregation
and degradation

How: Data cubes and feedback control

An Example Query

|
|
CDN
Requests \

/

N

How popular is
every URL? -

| \ /
|
CDN
Requests \

N [7

Mechanism 1: Storage with Aggregation

Local
CDN * Aggregation
Requests ~ and Storage

Every minute,
compute request |
counts by URL

Local
CDN Aggregation
Requests \| and Storage

/

Mechanism 2: Adaptive Degradation

| N~
Local Adjustable
ggregation itari
CDN) A ti F:Iterlng
Requests ~ and Storage

Every minute,
compute request |
counts by URL

| T~

Local Adjustable

CDN Aggregation F{Itering
\—/iqu/esis}w

/

Requirements for Storage Abstraction

* Update-able (locally and incrementally)

Stored Data += pata

e Data size is reducible (with predictable accuracy cost)

Data ‘ Data

* Merge-able (without accuracy penalty)

Merged

+
Dats D Representation

The Data Cube Model

Cube: A multidimensional array, indexed by a set of
dimensions, whose cells hold aggregates.

Counts by URL 12:00 [12:01 [12:02
www.mysite.com/a | 3 5 0
www.mysite.com/b | 0 2 0
www.yoursite.com |5 4
www.her-site.com |8 12

Cubes have aggregation function: Agg(f ! .00)~>

Aggregation used for:
» Updates

e Roll-ups

e Merging cubes

e Summarizing cubes

11

Cubes can be “Rolled Up”

Cube: A multidimensional array, indexed by a set of
dimensions, whose cells hold aggregates.

Counts by URL

www.mysite.com/a

www.mysite.com/b

www.yoursite.com

www.her-site.com

20

Counts by URL 12:00 [12:01 [12:02
www.mysite.com/a | 3 5 0
www.mysite.com/b | 0 2 0
www.yoursite.com |5 4
www.her-site.com |8 12

Counts by URL 12:00 | 12:01 | 12:02

*

16

23

12

Cubes Unify Storage and Aggregation

|

Standing Update sent
Query downstream
[Update /
[Update Stored Data
[Update J One-off
query

13

Degradation: The Big Picture

Dataflow \ |Summarized or Dataflow

(Network OlOperators

Local Data Operators /| Approximated ,,
N Data \)
\ |
‘ \
\

\ Feedback control 4

» Level of degradation auto-tuned to match bandwidth.
e Challenge: Supporting mergeability and flexible policies

14

Mergeability Imposes Constraints

Every 5

Every 6

Every 5

Every 3077

Every 10

01-05

06 - 10

11-15

16 - 20

21-25

26 - 30

T~
/

P797?°7°7°7

01-06

07 -12

25 -30

02 - 06

07 - 11

22 - 26

27 - 31

01-10

21-30

* |nsight: Degradation may be discontinuous

15

There Are Many Ways to Degrade Data

e Can coarsen a dimension

il = allh..

e Can drop low-rank values

16

Coarsening Does Not Always Help

Savings from Aggregation

256

—
N
00}

(@))
g
|

W
N
T

—
(0))
T

[Domains
Bl URLs

-t \} H (00)
T T T

5s

minute 5m hour
Aggregation time period

day

<CORAL

17

Degradations Have Trade-offs

Fixed BW Fixed Accuracy Parameter
Savings cost
Dim. Coarsening | Usually no Yes Dimension
Scale
Drop values Yes No Cut-off
(locally)
Drop values No, multi-round | Yes Cut-off
(globally) protocol
Audiovisual Yes Yes Sample rate
downsampling
Histogram Yes Yes Number of
Coarsening Buckets

A Simple |dea that Does Not Work

N\

Incoming Coarsening Sampled O
data Operator /] Data Network

\\,~ ‘¢',,
[Sending 4x tﬁ

 We have sensors that report congestion....
* Have operators read sensor and adjust themselves?

19

A Simple |dea that Does Not Work

\ Network O

Incoming aF:lrs
data

£ Increase aggregation
period up to 10 sec. If
insufficient, use sampling

~O

» We have sensors that report congestion....
» Have operators read sensor and adjust themselves?

senamg 4x too much

20

Challenge: Composite Policies

Incoming Coarsening Sampling O
data Operator Operator Network

\\. ------ :"'\ \)

[Sending 4x tﬁ

e Chaos if two operators are simultaneously
responding to the same sensor

21

Interfacing with Operators

Incoming Coarsening Sampling O
data Operator Operator Network

e ’(Zontroller >
N
Shrinking data by 50% [Sendlng 4x tﬁ
Possible levels: /
% [0%, 50%, 75%, 95%, /]A

[Go to level 75%

22

Experimental Setup

80 nodes on VICCI testbed at three sites
(Seattle, Atlanta, and Germany)

Princeton

Policy: Drop data if insufficient BW

23

Without Degradation

140

Elapsed time (minutes)

Drop
BW
20 20 60 80 100 120
Experiment time (minutes)
Maximum latency
- ¥ SRR 05 percentile latency -
' : % .‘-..1
w \ X |
' ? Median
20 40 60 80 100 120

140

24

Degradation Keeps Latency Bounded

0 10 20 30 40 50 60 70 80 90
Elapsed time (minutes)

25

Showing maximum latencies

N
o

X
X
X |
X
x 3
XWX Xy x |
%X>><< &%x X ><
X KX ¥ X K %

X
% N I _ |
" &% & % = Maximum Latency
XX

X % |
X
5”‘%per§:entile latency

D% X

X
X

X
X

X |
Median Latency
>: %X XX X

X X§ > X]

90

Elapsed time (minutes)

26

Programming Ease

Scenario Lines of code

Slow requests 3
Requests by URL 3
Bandwidth by node 15
Bad referrers 16
Latency and size quantiles 25
Success by domain 30
Top 10 domains by period 40

Big Requests 97

27

Conclusions and Future Work

» Useful to embed aggregation and degradation
abstractions in streaming systems.

e Aggregation can be unified with storage.

e System must accommodate degradation semantics.

e Open questions:
e How to guide users to the right degradation policy?
 How to embed abstractions in higher-level language?

28

