
Technical Report

Frenetic: A High-Level Language
for OpenFlow Networks

Nate Foster

Cornell University

Rob Harrison

Princeton University

Michael J. Freedman

Princeton University

Jennifer Rexford

Princeton University

David Walker

Princeton University

Cornell University
Computing and Information Science Technical Report

http://hdl.handle.net/1813/19310

December 6, 2010

Abstract

Network administrators must conàgure network devices to simultaneously provide sev-
eral interrelated services such as routing, load balancing, trafàc monitoring, and access
control. Unfortunately, most interfaces for programming networks are deàned at the low
level of abstraction supported by the underlying hardware, leading to complicated pro-
grams with subtle bugs. We present Frenetic, a high-level language for OpenFlow net-
works that enables writing programs in a declarative and compositional style, with a
simple “program like you see every packet” abstraction. Building on ideas from func-
tional programming, Frenetic offers a rich pattern algebra for classifying packets into
trafàc streams and a suite of operators for transforming streams. The run-time system
efàciently manages the low-level details of (un)installing packet-processing rules in the
switches. We describe the design of Frenetic, an implementation on top of OpenFlow,
and experiments and example programs that validate our design choices.

1. Introduction

Most modern networks consist of hardware and software components that are closed and proprietary. The
difàculty of changing the underlying network has had a chilling effect on innovation, and forces network ad-
ministrators to express complex policies through a frustratingly brittle interface. To address this problem, a
number of researchers have proposed a new platform called OpenFlow to open up the software that controls
the network [20]. OpenFlowdeànes a standard interface for installing áexible packet-handling rules in network
switches. These rules are installed by a programmable controller that runs separately, on a stock machine [11].
OpenFlow is supported by a number of commercial Ethernet switch vendors, and several campus and back-
bone networks have deployed OpenFlow switches. Building on this platform, researchers have created a vari-
ety of controller applications that introduce new network functionality, like áexible access control [6, 22], Web
server load balancing [12], energy-efàcient networking [13], and seamless virtual-machine migration [10].

Unfortunately, while OpenFlow now makes it possible to implement exciting new network services, it does
not make it easy. Programmers constantly grapple with several challenges:

Interactions between concurrent modules: Networks often perform multiple tasks, like routing, access
control, and trafàc monitoring. However, decoupling these tasks and implementing them independently in
separate modules is effectively impossible, since packet-handling rules (un)installed by one module may
interfere with overlapping rules installed by other modules.

Low-level interface to switch hardware: The OpenFlow rule algebra directly reáects the capabilities of
the switch hardware (e.g., bit patterns and integer priorities). Simple concepts such as set difference require
multiple rules andpriorities to implement correctly.Moreover, themore powerful “wildcard” rules are a limited
hardware resource the programmer must manage by hand.

Two-tiered programming model: The controller only sees packets the switches do not know how to han-
dle—in essence, application execution is split between the controller and the switches. As such, programmers
must carefully avoid installing rules that hide important information from the controller.

To address these challenges, we present Frenetic, a new programming model for OpenFlow networks.
Frenetic is organized around two levels of abstraction: (1) a set of source-level operators for manipulating
streams of network trafàc, and (2) a run-time system that handles all of the details of installing and uninstalling
low-level rules on switches. The source-level operators draw on previous work on declarative database query
languages and functional reactive programming (FRP). These operators are carefully constructed to support
the following key design principles:

Purely functional: The source-level abstractions are purely functional and shield programmers from the
imperative nature of the underlying switches. Consequently, programmodules may be written independently
of one another and composed without unpredicatable effects or race conditions.

High-level, programmer-centric: Wherever possible, we àrst consider what the programmer might want to
say, rather than how the hardware implements it. We provide intuitive, high-level primitives, even though they
are not directly supported by the hardware.

See-every-packet abstraction: Programmers do not have to worry that installing packet-handling rules may
prevent the controller from analyzing certain trafàc. Frenetic supports the abstraction that every packet is
available for analysis, side-stepping the many complexities of today’s two-tiered programming model.

These principles are designed to make Frenetic programs robust, compact, and easy-to-understand, and,
consequently, the Frenetic programmers writing them more productive. However, taking our “see every
packet” abstraction too literally would lead to programs that process far more trafàc on the controller than
necessary. Instead, we give programmers a set of declarative query operators that ensure packet processing re-
mains on the switches. The Frenetic run-time system keeps trafàc in the “fast path” whenever possible, while
ensuring the correct operation of all modules. In summary, this paper makes the following contributions:

Analysis of OpenFlow programming model (Section 3): Using our combined expertise in program-
ming languages and networking, we identify weaknesses of today’s OpenFlow environment that modern
programming-language principles can overcome.

2

Integers n

Rules r ::= ⟨pat , pri , t, [a1, . . . , an]⟩
Patterns pat ::= {h1 : n1, . . . , hk : nk}
Priorities pri ::= n

Timeouts t ::= n | None
Actions a ::= output(op) | modify(h, n)
Header Fields h ::= in port | vlan dl src | dl dst | dl type | nw src | nw dst | nw proto | tp src | tp dst

Output Port op ::= n | flood | controller

Packet Counts ps ::= n

Byte Counts bs ::= n

Figure 1. OpenFlow Syntax. Preàxes dl , nw, and tp denote data link (MAC), network (IP), and transport
(TCP/UDP) respectively.

Frenetic language (Section 4) and “subscribe” queries (Section 5):Applying ideas from the disparate àelds
of database query languages and functional reactive programming,we present a design for Frenetic, a language
for programming OpenFlow networks.

Frenetic implementation (Section 6): We design and implement a library of high-level packet-processing
operators and an efàcient run-time system in Python. The run-time system reactively installs rules to minimize
the trafàc handled by the controller.

Evaluation (Section 7) and case studies (Section 8): We compare several Frenetic programs with conven-
tional OpenFlow applications by measuring both the lines of code and the trafàc handled by the controller.
We also describe our experiences building two large applications—a security monitor that detects “scanning”
attacks and a distributed key-value storage system (Memcached).

2. Background on OpenFlow and NOX

This section presents the key features of the OpenFlow platform. To keep the presentation simple, we have
elided a few details that are not important for understanding Frenetic. Readers interested in a complete
description may consult the OpenFlow speciàcation [3].

Overview In anOpenFlow network, a centralized controllermanages a distributed collection of switches.While
packets áowing through the network may be processed by the centralized controller, doing so is orders of
magnitude slower than processing those packets on the switches. Hence, one of the primary functions of the
controller is to conàgure the switches so that they process the vast majority of packets and only a few packets
from new or unexpected áows need to be handled on the controller.

Conàguring a switch primarily involves installing entries in its áow table: a set of rules that specify how
packets should be processed. A rule consists of a pattern that identiàes a set of packets, an integer priority that
disambiguates ruleswith overlapping patterns, an optional integer timeout that indicates the number of seconds
until the rule expires, and a list of actions that speciàes how packets should be processed. For each rule in its
áow table, the switch maintains a set of counters that keep track of basic statistics concerning the number and
total size of packets processed.

Formally, rules are deàned by the grammar in Figure 1. A pattern is a list of pairs of header àelds and integer
values,which are interpreted as equality constraints. For instance, the pattern {nw src : 192.168.0.100, tp dst : 80}
matches packets from source IP address 192.168.1.100 going to destination port 80. We use standard nota-
tion for the values associated with header àelds—e.g., writing “192.168.1.100” instead of “3232235876.”
Any header àelds not appearing in a pattern are unconstrained. We call rules with unconstrained header àelds
wildcard rules.

3

OpenFlow switches When a packet arrives at a switch, the switch processes the packet in three steps. First, it
selects a rule from its áow table whose pattern matches the packet. If there are no matching rules, the switch
sends the packet to the controller for further processing. Otherwise, if there aremultiplematching rules, it picks
the exact-match rule (i.e., the rule whose pattern matches all of the header àelds in the packet) if one exists, or
a wildcard rule with highest priority if not. Second, it updates the byte and packet counters associated with
the rule. Third, it applies each of the actions listed in the rule to the packet (or drops the packet if the list is
empty). The action output(op) instructs the switch to forward the packet out on port op, which can either
be a physical switch port n or one of the virtual ports flood or controller, where flood forwards the packet
out on all physical ports (except the ingress port) and controller sends the packet to the controller. The action
modify(h, n) instructs the switch to rewrite the header àeld h to n. The list of actions in a rule can contain both
output and modify actions—e.g., [output(2), output(controller), modify(nw src, 10.0.0.1)] forwards packets
out on switch port 2 and to the controller, and also rewrites their source IP address to 10.0.0.1.

NOXController The controllermanages the set of rules installed on the switches in the network by reacting to
network events. Most controllers are currently based onNOX, which is a simple operating system for networks
that provides some primitives for managing events as well as functions for communicating with switches [11].
NOX deànes a number of events including,

• packet in(s, n, p), triggeredwhen switch s forwards a packet p received on physical portn to the controller,

• stats in(s, xid , pat , ps, bs), triggered when switch s responds to a request for statistics about rules con-
tained in pat , where xid is an identiàer for the request,

• flow removed(s, pat , ps, bs), triggered when a rule with pattern pat exceeds its timeout and is removed
from s’s áow table,

• switch join(s), triggered when switch s joins the network,

• switch leave(s), triggered when switch s leaves the network,

• port change(s, n, u), triggeredwhen the link attached to physical port n on switch s goes up or down, with
u a boolean value representing the new status of the link,

and provides functions for sending messages to switches:

• install(s, pat , pri , t, [a1, . . . , ak]), which installs a rule with pattern pat , priority pri , timeout t, and actions
[a1, . . . , an] in the áow table of switch s,

• uninstall(s, pat), which removes all rules contained in pattern pat from the áow table of the switch,

• send(s, p, a), which sends packet p to switch s and applies action a to it there, and

• query stats(s, pat), which issues a request for statistics from all rules contained in pattern pat on switch
s and returns a request identiàer xid , which can be used to match up the asynchronous response from the
switch.

The controller program deànes a handler for each event, but is otherwise an arbitrary program.

Example To illustrate a simple use of OpenFlow, consider a controller program written in Python that imple-
ments a repeater. Suppose that the network has a single switch connected to a pool of internal hosts on port
1 and a wide-area network on port 2, as shown in Figure 2(a). The repeater function below installs rules on
switch s that instruct the switch to forward packets from port 1 to port 2 and vice versa. The switch join
handler calls repeater when the switch joins the network.

def repeater(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
install(s,pat1,DEFAULT,None,[output(2)])
install(s,pat2,DEFAULT,None,[output(1)])

4

.

.

NOX

Run-Time System

 Frenetic Program

install
uninstall

packet_in
stats_in

subscribe
register

E Packet
E int

Controller

Switch

1 2

(a) (b)

Figure 2. (a) Simple network topology (b) Frenetic architecture

def switch_join(s):
repeater(s)

Note that both calls to install use the DEFAULT priority level and None as the timeout, indicating that the
rules are permanent.

3. Analysis of OpenFlow/NOX Difàculties

OpenFlow provides a standard interface for manipulating the rules installed on switches, which goes a long
way toward making networks programmable. However, the programming model currently provided by NOX
has several deàciencies that make it difàcult to use in practice. While our analysis focuses solely on the NOX
controller, other OpenFlow controllers such as Onix [15] and Beacon [1] suffer from similar issues. In this
section, we describe three of the most substantial difàculties that arise when writing programs in NOX.

3.1 Interactions Between Concurrent Modules

The àrst issue is that NOX program pieces do not compose. Suppose that we want to extend the repeater to
monitor the total number of bytes of incomingweb trafàc. Rather than counting theweb trafàc at the controller,
a monitoring application could install rules for web trafàc, and periodically poll the byte and packet counters
associated with those rules to collect the necessary statistics:

def monitor(s):
pat = {IN_PORT:2,TP_SRC:80}
install(s, pat, DEFAULT, None, [])
query_stats(s, pat)

def stats_in(s, xid, pat, ps, bs):
print bs
sleep(30)
query_stats(s, pat)

The monitor function installs a rule that matches all incoming packets with TCP source port 80 and issues a
query for the counters associated with that rule. The stats_in handler receives the response from the switch,
prints the byte count to the console, sleeps for 30 seconds, and then issues the next query.

Ideally, we would be able to compose this program with the repeater program to obtain a program that
forwards packets and monitors trafàc:

def repeater_monitor_wrong(s):
repeater(s)

5

monitor(s)

Unfortunately, naively composing the two programs does not work due to interactions between the rules
installed by each program. In particular, because the programs install overlapping rules on the switch, when
a packet arrives from port 80 on the source host, the switch is free to process the packet using either rule. But
using the repeater rule does not update the counters needed for monitoring, while using the monitor rule
breaks the repeater program because the list of actions is empty (so the packet will be dropped).

To obtain the desired behavior, we have to manually combine the forwarding logic from the àrst program
with the monitoring policy from the second:

def repeater_monitor(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
install(s, pat1, [output(2)], DEFAULT)
install(s, pat2, [output(1)], DEFAULT)
install(s, pat2web, [output(1)], HIGH)
query_stats(s, pat2web)

Performing this combination is non-trivial: the pat2web rule needs to include the output(1) action from
the repeater program, and must be installed with HIGH priority to resolve the overlap with the pat2 rule.
In general, composing OpenFlow programs requires careful, manual effort on the part of the programmer to
preserve the semantics of the original programs. This makes it nearly impossible to factor out common pieces
of functionality into reusable libraries and also prevents compositional reasoning about programs.

3.2 Low-Level Programming Interface

Another difàculty of writing NOX programs stems from the low-level nature of the programming interface,
which is derived from the features of the switch hardware rather than being designed for ease of use. This
makes programs unnecessarily complicated, as they must describe low-level details that do not affect the
overall behavior of the program. For example, suppose that we want to extend the repeater and monitoring
program to monitor all incoming web trafàc except trafàc destined for an internal server (connected to port 1)
at address 10.0.0.9. To do this, we need to “subtract” patterns, but the patterns in OpenFlow rules can only
directly express positive constraints. To simulate the difference between two patterns, we have to install two
overlapping rules on the switch, using priorities to disambiguate between them.

def repeater_monitor_noserver(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
pat2srv = {IN_PORT:2, NW_DST:10.0.0.9, TP_SRC:80}
install(s, pat1, DEFAULT, None, [output(2)])
install(s, pat2, DEFAULT, None, [output(1)])
install(s, pat2web, MEDIUM, None, [output(1)])
install(s, pat2srv, HIGH, None, [output(1)])
query_stats(s, pat2web)

This program uses a separate rule to process web trafàc going to the internal server—pat2srv matches
incoming web packets going to the internal server, while pat2web matches all other incoming web packets.
It also installs pat2srv at HIGH priority to ensure that the pat2web rule only processes (and counts!) packets
going to hosts other than the internal server.

More generally, describing packets using the low-level patterns that OpenFlow switches support is cumber-
some and error-prone. It forces programmers to use multiple rules and priorities to encode patterns that could

6

be easily expressed using natural logical operations such as negation, difference, and union. It adds unneces-
sary clutter to programs that is distracting and further complicates reasoning about their behavior.

3.3 Two-Tiered System Architecture

A third challenge stems from the two-tiered architecture where a controller program manages the network by
(un)installing switch-level rules. This indirection forces the programmer to specify the communication patterns
between the controller and switch and deal with tricky concurrency issues such as coordinating asynchronous
events. Consider extending the original repeater program to monitor the total amount of incoming trafàc by
destination host.

def repeater_monitor_hosts(s):
pat = {IN_PORT:1}
install(s, pat, DEFAULT, None, [output(2)])

def packet_in(s, inport, p):
if inport == 2:

m = dstmac(p)
pat = {IN_PORT:2, DL_DST:m}
install(s, pat, DEFAULT, None, [output(1)])
query_stats(s, pat)

Unlike the previous examples, we cannot install all of the rules we need in advance because, in general, we will
not know the address of each host a priori. Instead, the controller must dynamically install rules for the packets
seen at run time.

The repeater_monitor_hosts function installs a single rule that handles all outgoing trafàc. Initially, the
áow table on the switch does not contain any entries for incoming trafàc, so the switch sends all packets that
arrive at ingress port 2 up to the controller. This causes the packet_in handler to be invoked; it processes each
packet by installing a rule that handles all future packets to the same host (identiàed by its MAC address).
Note that the controller only sees one incoming packet per host—the rule processes all future trafàc to that
host directly on the switch.

As this example shows,NOXprograms are actually implemented using two programs—one on the controller
and another on the switch. While this design is essential for efàciency, the two-tiered architecture makes
applications difàcult to read and reason about, because the behavior of each program depends on the other—
e.g., installing/uninstalling rules on the switch changes which packets are sent up to the controller. In addition,
the controller program must specify the communication patterns between the two programs and deal with
subtle concurrency issues—e.g., if we were to extend the example to monitor both incoming and outgoing
trafàc, the controller would have to issue multiple queries for the statistics for each host and synchronize the
resulting callbacks.

Although OpenFlow makes it possible to manage networks using arbitrary general-purpose programs, its
two-tiered architecture forces programmers to specify the asynchronous and event-driven interaction between
the programs running on the controller and the switches in the network. In our experience, these details are a
signiàcant distraction and a frequent source of bugs.

4. Frenetic

Frenetic is a domain-speciàc language for programming OpenFlow networks, embedded in Python. The
language is designed to solve the major OpenFlow/NOX programming problems outlined in the previous
section. In particular, Frenetic introduces a set of purely functional abstractions that enable modular program
development; deànes high-level, programmer-centric packet-processing operators; and eliminates many of the
difàculties of the two-tier programming model by introducing a see-every-packet programming paradigm. In
this section, we explain the basics of the Frenetic language, and use a series of examples to illustrate how our
design principles simplify NOX programming. However, these examples take the see-every-packet abstraction
far too literally—they process every packet on the controller. In the next section, we will introduce additional

7

features of Frenetic that preserve the key high-level abstractions, while also making it possible to reduce the
trafàc handled by the controller to the levels seen by vanilla NOX programs.

4.1 Basic Concepts

Inspired by past work on functional reactive programming, Frenetic introduces three important datatypes for
representing, transforming, and consuming streams of values.

Events represent discrete, time-varying streams of values. The type of all events carrying values of type α
is written α E. To a àrst approximation, values of type α E can be thought of as possibly inànite lists of pairs
(t, v) where t is a timestamp and v is a value of type α. Examples of primitive events available in Frenetic
include Packets, which contains all of the packets áowing through the network; Seconds, which contains
the number of seconds since the epoch; and SwitchJoin and SwitchLeave, which contain the identiàers of
switches joining and leaving the network respectively.

Event functions transform events of one type into events of a possibly different type. The type of all event
functions fromα E toβ E iswrittenα β EF.Many of Frenetic’s event functions are based on standard operators
that have been proposed in previous work on FRP. For example, the simplest event function, Lift(f), which
is parameterized on an ordinary function f of type α → β, is an event function of type α β EF that
works by applying f to each value in its input event. Frenetic also includes some novel event functions
that are speciàcally designed for processing network trafàc. For example, if g has type packet → bool then
Group(g) splits the stream of packets into two streams, one for packets on which g returns true and one for
packets on which g returns false. More generally, and precisely, if g has type packet → α, the result has type
packet (α × packet E) EF. The elements of the resulting event are pairs of the form (v, e) where v is a value
of type α and e is a nested event containing all the packets that g maps to v. We use Group, and its variants, to
organize network trafàc into streams of related packets that are processed in the same way.

A listener consumes an events stream and produces a side effect on the controller. The type of all listeners of
events α E is written α L. Examples of listeners include Print, which has a polymorphic type α L and prints
each value in its input to the console, and Send, which has type (switch × packet × action) L and sends a
packet to a switch and applies an action to it there.

The rest of this section presents a series of examples that illustrate how these types àt together and demon-
strate the main advantages of Frenetic’s programming model over the OpenFlow/NOX model. As in the pre-
vious section, we will assume the network topology shown in Figure 2(a). For simplicity, we elide the details
related to the switch joining and leaving the network and assume that a global variable switch is bound to its
identiàer.

4.2 The See-Every-Packet Abstraction

To get a taste of Frenetic, consider the web-monitoring program from the last section. Note that this program
only does monitoring; we extend it with forwarding later in this section.

def web_monitor_ef():
return (Filter(inport_p(2) & srcport_p(80)) >>

Lift(size) >>
GroupByTime(30) >>
Lift(sum))

def web_monitor():
(Packets() >>

web_monitor_ef() >>
Print())

The top-level web_monitor function takes the event Packets, which contains all packets áowing through the
network (!) and processes it using the web_monitor_ef event function. This yields an event stats containing
the number of bytes of incoming web trafàc in each 30-second window, which it prints to the console by
attaching a Print listener.

8

The web_monitor_ef event function is structured as the composition of several smaller event func-
tions—the inàx operator >> composes event functions. Filterdiscards packets that do notmatch the predicate
supplied as a parameter. Lift applies size to each packet in the result, yielding an event carrying packet sizes.
GroupByTime, which has type α (α list) EF (and is derived from other Frenetic operators) divides the event
of packet sizes into an event of lists containing the packet sizes in each 30-second window. The ànal event
function, Lift, uses Python’s built-in sum function to add up the packet sizes in each list, yielding an event
of integers as the ànal result. Note that unlike the NOX program, which speciàed the layout of switch-level
rules as well as the communication between the switch and controller (to retrieve counters from the switch),
Frenetic’s uniàed architecture makes it possible to express this program as a simple, declarative query.

4.3 High-Level Patterns

Frenetic includes a rich pattern algebra for describing sets of packets. Suppose that we want to change the
monitoring program to exclude trafàc to the internal server. In Frenetic, we can simply take the difference
between the pattern describing incoming web trafàc and the one describing trafàc to the internal web server.

def monitor_noserver_ef():
return(Filter((inport_p(2) & srcport_p(80)) - dstip_p("10.0.0.9")) >>

Lift(size) >>
GroupByTime(30) >>
Lift(sum))

The only change in this program compared to the previous one is the pattern passed to Filter. The “-”
operator computes the difference between patterns and the run-time system takes care of the details related
to implementing this pattern. Recall that crafting rules to implement the same behavior in NOX required
simulating the difference using two rules at different priorities.

4.4 Compositional Semantics

Frenetic makes it easy to compose programs. Suppose that we want to extend the monitoring program from
above to also behave like a repeater. In Frenetic, we just specify the forwarding rules and register them with
the run-time system.

rules = [(switch, inport_p(1), [output(2)]),
(switch, inport_p(2), [output(1)])]

def repeater():
register_static_rules(rules)

def repeater_web_monitor():
repeater()
web_monitor()

The register_static_rules function takes a list of high-level rules (different than the low-level rules used
in NOX) each containing a switch, a high-level pattern, and a list of actions, and installs them as the current
forwarding policy in the Frenetic run-time. Note that the monitoring portion of the program does not need
to change at all—the run-time ensures that there are no harmful interactions between the forwarding and
monitoring components.

To illustrate the beneàts of composition, let us carry the example a step further and extend it to monitor
incoming trafàc by host. Implementing this program inNOXwould be difàcult—we cannot run the two smaller
programs side-by-side because the rules for monitoring web trafàc overlap with the rules for monitoring
trafàc by host. We would have to rewrite both programs to ensure that the rules installed on the switch by
the programs do not interfere with each other—e.g., installing two rules for each host, one for web trafàc
and another for all other trafàc. This could be made to work, but it would require a major effort from the
programmer, who would need to understand the low-level implementations of both programs in full detail.

9

In contrast, extending the Frenetic program is simple. The following event functionmonitors incoming trafàc
by host.

def host_monitor_ef():
return (Filter(inport_p(2)) >>

Group(dstmac_g()) >>
RegroupByTime(60) >>
Second(Lift(lambda l:sum(map(size,l)))))

It uses Filter to obtain an event carrying all packets incoming on port 2, Group to aggregate these àltered
packets into an event of pairs of destination MACs and nested events that contain all packets destined for that
host, RegroupByTime to divide the nested event streams into an event of pairs of MACs and lists that contain
all packets to that host in each 60-second window, and Second and Lift to add up the size of the packets in
each window. The RegroupByTime event function (which like GroupByTime is a derived operator in Frenetic)
has type (β×α E) (β×α list) EF. It works by splitting the nested event stream into lists containing the values
in eachwindow. The Second event function takes an event function as an argument and applies it to the second
component of each value in an event of pairs. Putting all of these together, we obtain an event function that
transforms an event of packets into an event of pairs containing MACs and byte counts.

The top-level program applies both stream functions to Packets and registers the forwarding policy with
the run-time. Despite the slightly different functionality and polling intervals of the two programs, Frenetic
allows these programs to be easily composed without any concerns about undesirable interactions or timing
issues between them.

def repeater_monitor_hosts():
repeater()
stats1 = Packets() >> web_monitor_ef()
stats2 = Packets() >> host_monitor_ef()
Merge(stats1,stats2) >> Print()

Raising the level of abstraction frees programmers from worrying about low-level details and enables writing
programs in a modular style. This represents a major advance over NOX, where programs must be written
monolithically to avoid harmful interactions between the switch-level rules installed by different program
pieces.

4.5 Learning Switch

So far, we have mostly focused on small examples that illustrate the main features of Frenetic. The last example
in this section describes a more realistic application—an Ethernet learning switch. Learning switches provide
easy plug-and-play functionality in local-area networks. When the switch receives a packet, it remembers the
source host and ingress port that the packet came in on. Then, if the switch has previously received a packet
from the destination host, it forwards the packet out on the port that it remembered for that host. Otherwise,
it áoods the packet out on all ports (other than the packet’s ingress). In this way, over time, the switch learns
the information needed to route packets to each active host in the network and avoids unnecessary áooding.

Figure 3 gives the deànition of a learning switch in Frenetic. Just like the other Frenetic programs we have
seen, it structured as the composition of several smaller event functions. It uses Group to aggregate the input
event of packets by source MAC and Regroup to split the nested events whenever a packet from a given host
appears on a different ingress port (i.e., because the host has moved). This leaves an event of pairs (m, e)where
m is a source MAC and e is a nested event containing packets that share the same source MAC address and
ingress switch port. The Ungroup event function extracts the àrst packet from each nested event, yielding an
event of pairs of MACs and packets. The LoopPre event function takes an initial value of type γ and an event
function of type (α × γ) (β × γ) EF as an arguments and produces an event function of type α β EF that
works by looping the second component of each pair into the next iteration of the top-level event function.
In this instance, it builds up a dictionary structure that associates MAC addresses to a rule that forwards

10

helper functions
def add_rule(((m,p),t)):

a = forward(inport(header(p)))
pat = dstmac_p(m)
t[m] = (switch,pat,[a])
return (t,t)

def complete_rules(t):
l = t.values()
ps = map(lambda r: r.pattern, l)
r = (switch,reduce(diff_p, ps, true_p()),[flood()])
l.append(r)
return l

main definition
def learning():

(Packets() >>
Group(srcmac_g()) >>
Regroup(lambda p1,p2: inport_r()) >>
Ungroup(1, lambda n,p:p, None) >>
LoopPre({}, Lift(add_rule)) >>
Lift(complete_rules) >>
Register())

Figure 3. Frenetic learning switch

packets to that host (the helper add_rule inserts the rule into the dictionary). The Lift event function uses
complete_rules to extract the list of rules from the dictionary and add a catch-all rule that áoods packets to
unknown hosts. Finally, it registers the resulting rule list event in the Frenetic run-time. Note that unlike the
previous examples, the rules generated for the learning switch are not static. The Register listener takes a
rule list event and registers each new list as the forwarding policy in the run-time.

4.6 Other Operators

Frenetic includes a number of additional operators, which space constraints prevent us from discussing in
detail. Figure 4 lists a few of the most important operators and their types. Note that the composition operator
>> is overloaded to work with events, event functions, and listeners.

5. Subscribe Queries

Each of the Frenetic programs in the previous section applies a user-deàned event function to Packets, the
built-in event containing every packet áowing through the network. These programs are easy to write and
understand—much easier than their NOX counterparts—but implementing their semantics directly would
require sending every packet to the controller, which would lead to unacceptable performance.

Frenetic sidesteps this issue by providing programmers with a simple query language that allows them to
succinctly express the packets and statistics needed in their programs. The Frenetic run-time takes these queries
and generates events that contain the appropriate data, using rules on the switch to move packet processing
into the network and off of the controller.

Frenetic queries are expressed using orthogonal constructs for àltering using high-level patterns, grouping by
one or more header àelds, splitting by time or whenever a header àeld changes value, aggregating by number or
size of packets, and limiting the number of values returned. The syntax of Frenetic queries is given in Figure 5.
Each of the top-level constructs are optional, except for the Select, which identiàes the type of values returned
by the query—actual packets, byte counts, or packet counts. The inàx operator * combines query operators.
As an example, the following query generates an event that may be used in the learning switch:

11

Events
Seconds ∈ int E
Packets ∈ packet E

SwitchJoin ∈ switch E
SwitchLeave ∈ switch E
PortChange ∈ (switch × int × bool) E

Event Functions
>> ∈ α E → α β EF → β E
Lift ∈ (a → β) → α β EF
>> ∈ α β EF → β γ EF → α γ EF

First ∈ α β EF → (α × γ) (β × γ) EF
Second ∈ α β EF → (γ × α) (γ × β) EF
Merge ∈ (α E × β E) → (α option × β option) E

LoopPre ∈ (γ × ((α × γ) (β × γ) EF)) → α β EF
Calm ∈ α α EF
Filter ∈ (α → bool) → α α EF

Group ∈ (α → β) → α (β × α E) EF
Regroup ∈ ((α × α) → bool) → (β × α E) (β × α E) EF
Ungroup ∈ (int option × (γ × α → γ) × γ) → (β × α E) (β × γ) EF

Listeners
>> ∈ α E → α L → unit

Print ∈ α L
Register ∈ (packet × action list) list L

Send ∈ (switch × packet × action) L

Figure 4. Core Frenetic Operators

Queries q ::= Select(a) *
Where(qp) *
GroupBy([qh1, . . . , qhk]) *
SplitOn([qh1, . . . , qhk]) *
Every(n) *
Limit(n)

Aggregates a ::= packets | bytes | counts

Headers qh ::= inport | srcmac | dstmac | ethtype | vlan | srcip | dstip | protocol | srcport | dstport

Patterns qp ::= true p() | qh p(n) | qp & qp | qp | qp | qp – qp | ~qp

Figure 5. Frenetic query syntax

Select(packets) *
GroupBy([srcmac]) *
SplitOn([inport]) *
Limit(1)

It groups packets (using Select) by source MAC (using GroupBy), splits each group when the ingress port
changes (using SplitOn), and limits the number of packets in each group to one (using Limit). The event
generated by this query contains pairs (m, e), where m is a MAC address and e is an event carrying the àrst
packet sent from that host. We can use this event to rewrite the learning switch as follows:

def learning():
(Select(packets) *

GroupBy([srcmac]) *
SplitOn([inport]) *
Limit(1) >>

12

Ungroup(1,lambda n,p:p,None) >>
LoopPre({}, Lift(add_rule)) >>
Lift(complete_rules) >>
Register())

In this program, the grouping and regrouping of packets is done using a query instead of an event function.
This revised program makes it easier for the run-time to determine which packets need to be sent up to the

controller and which ones can be processed using rules on the switch. It also helps the programmer predict
how their program will perform—in general, the run-time will move as much processing from the controller
to the switches as possible. In this case, since the learning switch only needs a single packet from each host (as
long as that host does not move to a different port on the switch), the run-time will indeed install switch-level
rules that forward most trafàc without having to send it up to the controller.

Queries can subscribe to streams of trafàc statistics. For example, the following query looks only at web
trafàc, groups by destination MAC, and aggregates the number of bytes every 60 seconds:

Select(bytes) *
Where(srcport_p(80)) *
GroupBy([dstmac]) *
Every(60)

Queries such as this can be used to implement many monitoring applications. The run-time can implement
them efàciently by polling the counters associated with rules on the switch.

Subscribing to queries is fully compositional—a program can subscribe to multiple, overlapping events
withoutworrying about harmful low-level interactions between the switch-level rules used to implement them.
In addition, the policy for forwarding packets registered in the run-time does not affect the values sent to the
subscribers. In contrast, in OpenFlow/NOX installing a rule can prevent future packets from being sent to the
controller.

6. Frenetic Implementation

Frenetic provides high-level programming abstractions that free programmers from reasoning about many
low-level details involving the underlying switch hardware. However, the need to deal with these details
does not disappear just because the language raises the level of abstraction. The rubber meets the road in the
implementation, which is described in this section.

We have implemented a complete working prototype of Frenetic as an embedded combinator library in
Python. Figure 2(b) depicts its architecture, which consists of three main pieces: an implementation of the
language itself, a run-time system, and NOX. The use of NOX is convenient but not essential—we borrow
its OpenFlow API but could also use a different back-end.

The core piece of the implementation is the run-time system, which sits between the high-level FRP program
and NOX. The run-time system manages all of the bookkeeping related to installing and uninstalling rules on
switches. It also generates the necessary communication patterns between switches and the controller. To do
all of this, the run-time maintains several global data structures:

• rules, a set of high-level rules that describe the current packet-forwarding policy,

• áows, a set of low-level rules that are currently installed on the switches in the network, and

• subscribers, a set of tuples of the form (q, e, cs, rs) where q is the query that deànes the subscriber, e is the
event for that subscriber, cs tracks byte and packet counts, and rs is a set of identiàers for outstanding
requests for statistics,

Currently, our implementation translates the high-level forwarding policy installed in the run-time into switch-
level rules using a simple strategy that reacts to áows of network trafàc as they occur. At the start of the
execution of a program, the áow table of each switch in the network is empty, so all packets are sent up to
the controller and passed to the packet in handler. Upon receiving a packet, the run-time system iterates

13

function packet in(packet, inport)
isSubscribed := false
actions := []
for (query, event, counters, requests) ∈ subscribers do

if query.matches(packet.header) then
event.push(packet)
isSubscribed := true

for rule ∈ rules do
if (rule.pattern).matches(packet.header) then
actions.append(rule.actions)

if isSubscribed then
send packet(packet, actions)

else
install(packet.header,DEFAULT,None, actions)
áows.add(packet.header)

function stats in(xid, ps, bs)
for (query, event, counters, requests) ∈ subscribers do

if requests.contains(xid) then
counters.add(ps, bs)
requests.remove(xid)
if requests.is empty() then
event.push(counters)

function stats loop()
while true do

for (query, event, counters, requests) ∈ subscribers do
if query.ready() then
counters.reset()
for pattern ∈ áows do

if query.matches(pattern) then
xid := stats request(pattern)
requests.add(xid)

sleep(1)

Figure 6. Frenetic run-time system handlers

through the set of subscribers and propagates the packet to each subscriber whose deàning query depends on
being provided with this packet. Next, it traverses the set of rules and collects the list of actions speciàed in
all rules. Finally, it processes the packet in one of two ways: If there were no subscribers for the packet, then it
installs a microáow rule that processes future packets with the same header àelds on the switch. Alternatively,
if there were subscribers for the packet, then the run-time sends the packet back to the switch and applies
the actions there, but does not install a rule, as doing so would prevent future packets from being sent to the
controller, and, by extension, the subscribers that need to be supplied with those packets. In effect, this strategy
dynamically unfolds the forwarding policy expressed in the high-level rules into switch-level rules, moving
processing off the controller and onto switches in a way that does not interfere with any subscriber.

The run-time uses a different strategy to implement aggregate statistics subscribers, using the byte and
packet counters maintained by the switches to calculate the values. The run-time system executes a loop
that waits until the window for a statistics subscriber has expired. At that point, it traverses the áows set and
issues a request for the byte and packet counters from each switch-level rule whose pattern matches the query,
adding the request identiàer to the set of outstanding requests maintained for this subscriber in subscribers. The
stats_in handler receives the asynchronous replies to these requests, adds the byte and packet counters to
the counters maintained for the subscriber in subscribers, and removes the request id from the set of outstanding

14

requests. When the set of outstanding requests becomes empty, it pushes the counters, which now contain the
correct statistics, onto the subscriber’s event stream.

Figure 6 gives pseudocode for the NOX handlers used in the Frenetic run-time system. These algorithms de-
scribe the basic behavior of the run-time, but elide some additional complications and details with which
the actual implementation has to deal. For example, if the forwarding policy changes—e.g., because the
rule_listener receives a new set of rules—the microáow rules that the run-time has installed on some
of the switches in the network may be stale. To repair them, the run-time system traverses the set of áows,
uninstalling stale rules and re-installing fresh ones using the actions speciàed in the updated policy. Of course,
when the run-time uninstalls a rule on a switch due to a change in the high-level forwarding policy, the byte
and packet counters associated with the switch-level rule should not be lost. Thus, the Frenetic run-time also
deànes a handler for flow_removed messages that receives the counters for uninstalled rules and adds them
to the counters maintained for the subscriber on the controller. The run-time deals with several other compli-
cations, such as spurious packets that get sent to the controller due to race conditions between the receipt of a
message to install a rule and the arrival of the packet at the switch.

The other major piece of the Frenetic implementation is the library of FRP operators themselves. This
library deànes representations for events, event functions, and listeners, as well as each of the primitives
in Frenetic including Lift, Filter, LoopPre, etc. Unlike classic FRP implementations, which support both
continuous streams called behaviors and discrete streams called events, Frenetic focuses almost exclusively on
discrete streams. This means that the pull-based strategy used in most previous FRP implementations, which
is optimized for behaviors, is not a good àt for Frenetic. Instead, our FRP library uses a push-based strategy to
propagate values from input to output streams.

The run-time’s current use of microáow (exact-match) rules follows the approach of Ethane [6] and many
OpenFlow-based applications [10, 12], and is well-suited for dynamic settings. Moreover, microáow rules can
use the plentiful conventional memory (e.g., SRAM) many switches provide for exact-match rules, as opposed
to the small, expensive, power-hungry Ternary Content Addressable Memories (TCAMs) needed to support
wildcard matches. Still, wildcard rules are more concise and well-suited for static settings. We plan to develop
a more proactive, priority-based wildcard approach as part of Frenetic’s run-time in the future. Longer term,
we plan to extend the run-time to choose adaptively between exact-match and wildcard rules, depending on the
capabilities of the individual switches in the network.

7. Experiments

Section 4 described a naive version of Frenetic that leads to programs that forward all trafàc to the controller.
In Section 5 we described subscribe queries, which allow us to provide optimized functionality where programs
process most packets directly in the switches. We now compare these two implementations of Frenetic to pure
NOX programs. We evaluate the programs according to two metrics: lines of code and total trafàc between the
switch and the controller. The “lines of code” gives a sense of how much Frenetic simpliàes the programmer’s
task, as well as the savings from code reuse in composed modules. The “total trafàc” gauges howwell Frenetic
keeps trafàc in the “fast path”—crucial to assessing the feasibility of using Frenetic in practice. We compare
pure NOX, naive Frenetic, and optimized Frenetic programs using four micro-benchmark experiments.

Setup We ran the experiments using the Mininet virtualization environment [16] on a Linux host with a
2.4GHz Intel Core2 Duo processor and 2GB of RAM. Although Mininet cannot provide performance àdelity,
it does give accurate measurements of the volume of trafàc áowing through the network.

Microbenchmarks We compared the performance of Frenetic against NOX using the following microbench-
marks:

LSW: In the learning switch (LSW) benchmark, the switch forwards packets fromhosts it has learned directly
but sends packets from unknown hosts to the controller. Our experiment sends ICMP echo request (“pings”)

15

LSW WSS WSL HHL
Pure NOX
Lines of Code 55 29 121 125
Controller Trafàc (Bytes) 71224 1932 5300 18010

Naive Frenetic
Lines of Code 15 7 19 36
Controller Trafàc (Bytes) 120104 6590 14075 95440

Optimized Frenetic
Lines of Code 14 5 16 32
Controller Trafàc (Bytes) 70694 3912 5368 19360

Figure 7. Experimental results.

between all-pairs of four hosts. This experiment evaluates the effectiveness of programs that reactively install
microáow rules.

WSS: In the web statistics static (WSS) benchmark, the switch behaves like a repeater between a client and
server. The forwarding rules do not change during the experiment but the controller collects HTTP request
statistics every àve seconds. Our experiment sends multiple HTTP requests to a single web server. This
experiment evaluates the effectiveness of monitoring queries.

WSL: The web statistics learning (WSL) benchmark combines the forwarding logic from LSW with the
monitoring logic from WSS. Our experiment sends multiple HTTP requests from three hosts to a single web
server. This experiment illustrates the composition of twomodules and the effectiveness of monitoring queries
in a dynamic forwarding context.

HHL: The “heavy hitters” learning (HHL) benchmark combines the forwarding logic from LSW with a
monitoring program that computes the top-k sourceMACs by total bytes sent. Our experiment sends a varying
number of ICMP echo requests from three hosts, which are measured and tabulated on the controller. This
experiment illustrates the behavior of a more sophisticated monitoring application.

We measured lines of code (up to 80 characters of properly-indented Python, excluding non-essential
whitespace) as well as the total amount of controller trafàc—control messages, switch responses, and whole
packets sent to the controller on áow-table misses.

Results The results of our experiments, shown in Figure 7, demonstrate that naive Frenetic achieves signià-
cant savings in code complexity over NOX, but sends more trafàc to the controller. The data shows that naive
Frenetic does not scale well. However, we also see that optimized Frenetic does perform comparably with the
pureNOX implementations of each benchmark. Optimized Frenetic’s performance in theWSS benchmark is an
outlier because the benchmark exploits an inherent weakness in a reactive áow installation strategy. While the
pure NOX program can install permanent static forwarding rules in the switch immediately after coming on-
line, Frenetic’s run-time waits for the switch to send a packet to the controller before consulting the forwarding
rules that a program registers, even if they are static in nature.

Conversely,we also see in LSWwhere the optimized Frenetic implementation actually (slightly) outperforms
the traditional NOX implementation in terms of trafàc between the switch and the controller. To deal with the
two-tiered architecture of OpenFlow and the ànite size of the áow table, many NOX programs use áow time-
outs to evict installed áows from the switch. Using timeouts ensures that installed rules “self-destruct” without
the programmer needing to perform extra bookkeeping to remember all of the installed rules. However, such
timeouts result in additional packets being sent to the controller for subsequent áow setups. In contrast, Fre-
netic’s run-time system can react to changes in the forwarding logic and manage the set of installed rules,
obviating the need for short áow timeouts, without burdening the programmer.

16

.

.Co
nt
ro
lle

r
Tr
af
àc

(k
B
)

.# Hosts

.0

.20

.40

.60

.80

.25 .50

.Frenetic
.NOX

Figure 8. Controller trafàc as number of hosts grows.

Scalability In addition to the micro-benchmarks we measured, we also conducted a host scalability analysis
against a single benchmark to evaluate whether or not Frenetic programs could continue performing compa-
rably to traditional NOX programs as the number of devices in the network grows. In theWSL experiment, we
varied the number of hosts fetching web resources on a single switch. The results shown in Figure 8 demon-
strate that not only does optimized Frenetic perform comparably with pure NOX in this benchmark, but it also
scaleswith the pure NOX implementation.

8. Case Studies

This section describes two more substantial network applications we have developed in Frenetic. The àrst is a
monitoring application that detects network scans as they occur and adaptively blocks the scanning host from
sending additional packets into the network. The second is an in-network query router for the Memcached
key-value store that makes it possible to seamlessly add and remove servers without rebooting clients.

Detecting and Blocking Scanning Trafàc Malicious users often scan the the hosts in a network to identify
machines that are vulnerable to attack. Although scanning also has legitimate uses, many operators block scans
to prevent unknown users from probing their network. Using Frenetic, we implemented a proof-of-concept
scan detector that can be composed with the learning switch from Section 4 to obtain a switch that adaptively
responds to scans by blocking offending hosts from sending packets on the network.

The high-level architecture of the detector is shown in Figure 9(a). The LearningSwitch event function at the
top-left of the diagram subscribes to an event with source MACs and produces an event carrying rules. The
ScanDetect event function at the top-right subscribes to an event with pairs of source-destination MACs and
produces a set of suspected scanners. We currently use a simple strategy to detect scanners—maintaining a
table that counts the number of unique destination hosts contacted recently by each source and considering
a host a scanner if the number exceeds a threshold—but plan to explore more sophisticated strategies in the
future. Next, the Merge event function combines the rules and scanners and the FilterScanners event function
transforms the rules to another set in which scanning hosts are explicitly prevented from sending trafàc on the
network. The Register operator at the bottom of the diagram represents a listener that registers this ànal set of
rules with the run-time.

This application demonstrates how Frenetic facilitates building large programs in a compositional way. In
particular, we did not have tomake anymodiàcations to the learning switch—were able to use it “off the shelf.”
It also shows the beneàts of being able to subscribe to events identiàed by different, overlapping queries as
manually crafting rules for these subscribers would be tedious and difàcult to get right.

17

.

.

ServerStatus

MakeRules ARPServer

Register Send

Merge

Register

(b)(a)

Send

Subscribe(src) Subscribe(src,dst)

PortChange Subscribe(DHCP)

Subscribe(ARP)
MakePartitions

DHCPServer

Learning
Switch

ScanDetect

Merge

FilterScanners

Figure 9. (a) Scan Detector (b) Memcached Request Router

Routing Requests toMemcached Servers Memcached [2] is a distributed key-value store used bymany online
services to cache data objects inmemory. In a typical usage scenario, a collection ofMemcached servers handles
get and set requests from clients, with the keyspace partitioned between the servers. The current Memcached
conàgures a static set of servers at each client, a restriction that prevents services from automatically adapting
to new servers becoming available or existing servers failing.

Wedeveloped a novel “plug-and-play” solution to this problem in Frenetic that adapts dynamically to server
churn. We introduce a layer of indirection between the clients and servers: clients are conàgured with a large
number of virtual addresses and an OpenFlow switch translates between these virtual addresses and server’s
physical addresses.When a server fails, the controller program reassigns its virtual addresses to another server;
when a new server becomes available, a virtual addresses belonging to some other server is remapped to it. As
this solution works entirely in the network, it can be used with existing, unmodiàed servers and clients.

Figure 9(b) depicts the high-level structure of the Frenetic Memcached application. The DHCPServer event
function at the top right of the àgure implements a DHCP server that subscribes to DHCP requests, generates
responses, and emits them onto the network using a Packet listener. The DHCP server also generates an event
with tuples of the form (p,m, a), where p is a physical switch port,m is a MAC address, and a is the IP address
assigned to m. The ServerStatus event function at the top left monitors PortChange events and produces an
event with sets of active physical ports. This event is merged with the DHCP event and the result is supplied
to the MakePartitions function, which reconciles the set of known servers with the set of active ports and
generates a event with the mapping between virtual and physical addresses. MakeRules converts the event
with the current partitioning into the forwarding policy, which is installed in the run-time using a Register
listener. In the future, we plan to add a heartbeat mechanism to help cope with soft failures, where servers
have not crashed outright but applications are unresponsive. Because Frenetic supports a compositional style
of programming, we believe this extension should be easy to integrate into our existing application.

9. Related Work

Frenetic’s event functions are modeled after functional reactive languages such as Yampa and others [9, 21, 23,
24]. Its push-based implementation is based on FrTime [7] and is similar to self-adjusting computation [5]. The
key differences between Frenetic and these previous languages are in the application domain (networking as
opposed to animation, robotics and others) and in the design of our query language and run-time system,which
uses the capabilities of switches to avoid sending packets to the controller. The Flask [19] language applies FRP
in a staged language to assemble efàcient programs for sensor networks.

18

The most similar language to Frenetic is Nettle [26]. Nettle is also based on FRP, but it operates at a different
level of abstraction than Frenetic: Nettle is an effective substitute forNOX; Frenetic, in contrast, sits on top ofNOX,
and, in the future, could potentially sit on top of Nettle. In other words, Nettle is designed to issue streams of
(low-level) OpenFlow commands directly; it does not have any analogue of Frenetic’s run-time system or its
support for composition of possibly overlapping modules.

Another related language is NDLog, which has been used to specify and implement routing protocols,
overlay networks, and services such as distributed hash tables [17, 18]. NDLog differs from Frenetic in that
it is designed for distributed systems (rather than a centralized controller) and is based on logic programming.
Also based on logic programming, FML focuses on specifying policies such as access control in OpenFlow
networks [14]. Finally, the SNAC OpenFlow controller [4] provides a GUI for specifying access control policies
using high-level patterns similar to the ones we have developed for Frenetic. However, SNAC provides amuch
less general programming environment than Frenetic.

One of the main challenges in the implementation of Frenetic involves splitting work between the (powerful
but slow) controller and the (fast but limited) switches. A similar challenge appears in the implementation
of Gigascope [8], a stream database for monitoring networks. In terms of expressiveness, Gigascope is more
limited than Frenetic, as it only supports querying trafàc and cannot be used to control the network itself.

10. Conclusions and Future Work

This paper describes the design and implementation of Frenetic, a new language for programming OpenFlow
networks. Frenetic addresses some serious problems with the OpenFlow/NOX platform by providing a high-
level, compositional, and uniàed programming model. It includes a collection of operators for transforming
streams of network trafàc, and a run-time system that handles all of the details related to installing and
uninstalling switch-level rules.

We are currently working to extend Frenetic in several directions. We are developing applications for a
variety of tasks including load balancing, authentication and access control, and a framework inspired by
FlowVisor [25] for ensuring isolation between programs. We are developing a front-end and an optimizer that
will transform programs into a form that can be efàciently implemented on the run-time system. Finally, we
are exploring a proactive strategy that generates rules from the registered subscribers and forwarding rules
eagerly. We plan to compare the tradeoffs between different rule generation strategies empirically.

Acknowledgments We wish to thank Matt Meola and Minlan Yu for many helpful discussions. Our work is
supported by ONR grant N00014-09-1-0770Networks Opposing Botnets. Any opinions, àndings, and recommen-
dations are those of the authors and do not necessarily reáect the views of the ONR.

References
[1] Beacon: A java-based openáow control platform. See http://www.beaconcontroller.net, Nov 2010.

[2] Memcached: A distributed memory object caching system. See http://www.memcached.org, Nov 2010.

[3] OpenFlow. See http://www.openflowswitch.org, Nov 2010.

[4] SNAC. See http://snacsource.org/, 2010.
[5] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. TOPLAS, 28:990–1034,

November 2006.

[6] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Natasha Gude, Nick McKeown, and Scott Shenker.
Rethinking enterprise network control. Trans. on Networking., 17(4), Aug 2009.

[7] GregoryH. Cooper and ShriramKrishnamurthi. Embedding dynamic dataáow in a call-by-value language. In ESOP,
pages 294–308, 2006.

[8] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gigascope: A stream database for
network applications. In SIGMOD, pages 647–651, New York, NY, USA, 2003. ACM.

[9] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP, pages 163–173, Jun 1997.

19

[10] David Erickson et al. A demonstration of virtual machine mobility in an OpenFlow network, Aug 2008. Demo at
ACM SIGCOMM.

[11] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick McKeown, and Scott Shenker. NOX:
Towards an operating system for networks. SIGCOMM CCR, 38(3), 2008.

[12] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McKeown, and Ramesh Johari. Plug-n-Serve: Load-
balancing web trafàc using OpenFlow, Aug 2009. Demo at ACM SIGCOMM.

[13] BrandonHeller, Srini Seetharaman, PriyaMahadevan, Yiannis Yiakoumis, Puneet Sharma, Sujata Banerjee, andNick
McKeown. ElasticTree: Saving energy in data center networks. In NSDI, Apr 2010.

[14] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell, and Scott Shenker. Practical declarative
network management. InWREN, pages 1–10, New York, NY, USA, 2009. ACM.

[15] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A distributed control platform for large-
scale production networks. In OSDI, Oct 2010.

[16] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid prototyping for software-deàned
networks. In HotNets, pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[17] BoonThauLoo, TysonCondie, JosephM.Hellerstein, PetrosManiatis, TimothyRoscoe, and Ion Stoica. Implementing
declarative overlays. SIGOPS, 39(5):75–90, 2005.

[18] Boon Thau Loo, JosephM. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative routing: Extensible routing
with declarative queries. In SIGCOMM, pages 289–300, New York, NY, USA, 2005. ACM.

[19] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged functional programming for sensor networks. In
ICFP, pages 335–346, 2008.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. Openáow: Enabling innovation in campus networks. SIGCOMM CCR, 38(2):69–74, 2008.

[21] LeoA.Meyerovich, ArjunGuha, Jacob Baskin, GregoryH. Cooper,Michael Greenberg, Aleks Bromàeld, and Shriram
Krishnamurthi. Flapjax: A programming language for Ajax applications. In OOPSLA, pages 1–20, New York, NY,
USA, 2009. ACM.

[22] Ankur Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance: Dynamic access control in enterprise
networks. InWREN, Aug 2009.

[23] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In Haskell
Workshop, pages 51–64, Pittsburgh, Pennsylvania, USA, Oct 2002. ACM Press.

[24] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Controlling robots with Haskell. In PADL, Jan
1999.

[25] Rob Sherwood, Michael Chan, Glen Gibb, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, Masayoshi
Kobayashi, David Underhill, Kok-Kiong Yap, Guido Appenzeller, and Nick McKeown. Carving research slices out
of your production networks with OpenFlow. SIGCOMM CCR, 40(1):129–130, 2010.

[26] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive programming of OpenFlow networks. In PADL, 2011.
To appear.

20

	Introduction
	Background on OpenFlow and NOX
	Analysis of OpenFlow/NOX Difficulties
	Interactions Between Concurrent Modules
	Low-Level Programming Interface
	Two-Tiered System Architecture

	Frenetic
	Basic Concepts
	The See-Every-Packet Abstraction
	High-Level Patterns
	Compositional Semantics
	Learning Switch
	Other Operators

	Subscribe Queries
	Frenetic Implementation
	Experiments
	Case Studies
	Related Work
	Conclusions and Future Work

