
Democratizing
content distribution

Michael J. Freedman
New York University

Primary work in collaboration with:
Martin Casado, Eric Freudenthal, Karthik Lakshminarayanan, David Mazières

Additional work in collaboration with:
Siddhartha Annapureddy, Hari Balakrishnan, Dan Boneh, Nick Feamster,

Scott Garriss, Yuval Ishai, Michael Kaminsky, Brad Karp, Max Krohn,
Nick McKeown, Kobbi Nissim, Benny Pinkas, Omer Reingold,

Kevin Shanahan, Scott Shenker, Ion Stoica, and Mythili Vutukuru

Overloading content publishers

 Feb 3, 2004: Google linked banner to “julia fractals”
 Users clicked onto University of Western Australia web site
 …University’s network link overloaded, web server taken

down temporarily…

Adding insult to injury…

 Next day: Slashdot story about Google overloading site

 …UWA site goes down again

Insufficient server resources

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

 Many clients want content

 Server has insufficient resources

 Solving the problem requires more resources

Serving large audiences possible…

 Where do their resources come from?
 Must consider two types of content separately

• Static
• Dynamic

Static content uses most bandwidth

 Dynamic HTML: 19.6 KB
 Static content: 6.2 MB

 1 flash movie
 18 images

 5 style sheets
 3 scripts

Serving large audiences possible…

 How do they serve static content?

Content distribution networks (CDNs)
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Not solved for little guy

 Problem:
 Didn’t anticipate sudden load spike (flash crowd)

 Wouldn’t want to pay / couldn’t afford costs

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

Leveraging cooperative resources
 Many people want content
 Many willing to mirror content

 e.g., software mirrors, file sharing, open proxies, etc.

 Resources are out there
 …if only we can leverage them

 Contributions
 CoralCDN: Leverage bandwidth of participants to

make popular content more widely available

 OASIS: Leverage information from participants to
make more effective use of bandwidth

Theme throughout talk: How to leverage previously

untapped resources to gain new functionality

Proxies absorb client requests

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

httpprx

httpprx

httpprx

httpprx

httpprx
httpprx

Proxies absorb client requests

Origin
Server

httpprx

httpprx

httpprx

httpprx
httpprx

httpprx

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

 Reverse proxies handle all client requests

 Cooperate to fetch content from one another

A comparison of settings
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Decentralized CDNs
 Use participating machines
 No central operations
 Implications:

 Less reliable or untrusted
 Unknown locations

A comparison of settings
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Decentralized CDNs
 Use participating machines
 No central operations
 Implications:

 Less reliable or untrusted
 Unknown locations

Costs scale linearly ⇒ scalability concerns

 “The web infrastructure…does not scale” -Google, Feb’07
 BitTorrent, Azureus, Joost (Skype), etc. working with

movie studios to deploy peer-assisted CDNs

Getting content

Origin
Server

example.comServer
DNS

Resolver

Browser
1.2.3.4

http://example.com/file

Getting content with CoralCDN

Origin
Server Coral

httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

example.com.nyud.net

Resolver

Server selection
What CDN node

should I use?

Browser
216.165.108.10

1

 Participants run CoralCDN software, no configuration

 Clients use CoralCDN via modified domain name
example.com/file → example.com.nyud.net:8080/file

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

 Participants run CoralCDN software, no configuration

 Clients use CoralCDN via modified domain name
example.com/file → example.com.nyud.net:8080/file

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

 Goals
 Reduce load at origin server

 Low end-to-end latency

 Self-organizing

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?

 Why participate?
 Ethos of volunteerism

 Cooperatively weather peak loads spread over time

 Incentives: Better performance when resources scarce

Browser3
2

1File delivery
From which caching nodes

should I download file?

lookup(URL)

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

“ Real deployment ”
 Currently deployed on 300-400 PlanetLab servers

 CoralCDN running 24 / 7 since March 2004

 An open CDN for any URL:
 example.com/file → example.com.nyud.net:8080/file

“ Real deployment ”
 Currently deployed on 300-400 PlanetLab servers

 CoralCDN running 24 / 7 since March 2004

 An open CDN for any URL:
 example.com/file → example.com.nyud.net:8080/file

1 in 3000
Web users

per day

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

 Given a URL:
 Where is the data cached?
 Map name to location: URL ⇒ {IP1, IP2, IP3, IP4}

lookup(URL) ⇒ Get IPs of caching nodes
insert(URL,myIP) ⇒ Add me as caching URL

 Can’t index at central servers
 No individual machines reliable or scalable enough

 Need to distribute index over participants

Coral
httpprx

URL?
Coral

httpprx

Coral
httpprx

We need an index

,TTL)
for TTL seconds

Strawman: distributed hash table (DHT)

 Use DHT to store mapping of URLs (keys) to locations

 DHTs partition key-space among nodes

 Contact appropriate node to lookup/store key

 Blue node determines red node is responsible for URL

 Blue node sends lookup or insert to red node

URL1 URL2 URL3

URL1={IP1,IP2,IP3,IP4}

lookup(URL1)insert(URL1,myIP)

Strawman: distributed hash table (DHT)

 Partitioning key-space among nodes
 Nodes choose random identifiers: hash(IP)

 Keys randomly distributed in ID-space: hash(URL)

 Keys assigned to node nearest in ID-space
• Minimizes XOR(hash(IP),hash(URL))

0000 0010 0110 1010 11111100 1110
URL1 URL2 URL30001 0100 1011

Strawman: distributed hash table (DHT)

 Provides “efficient” routing with small state
If n is # nodes, each node:
 Monitors O(log n) peers
 Discovers closest node (and URL map) in O(log n) hops
 Join/leave requires O(log n) work

 Spread ownership of URLs evenly across nodes

0010 0110 1010 11111100 11100000

Is this index sufficient?

 Problem: Random routing

URL ⇒ {IP1, IP2, IP3, IP4}

Is this index sufficient?

 Problem: Random routing
 Problem: Random downloading

URL ⇒ {IP1, IP2, IP3, IP4}

Is this index sufficient?

 Problem: Random routing
 Problem: Random downloading
 Problem: No load-balancing for single item

 All insert and lookup go to same closest node

Don’t need hash-table semantics

 DHTs designed for hash-table semantics
 Insert and replace: URL ⇒ IPlast

 Insert and append: URL ⇒ {IP1, IP2, IP3, IP4}

 We only need few values
 lookup(URL) ⇒ {IP2, IP4}

 Preferably ones close in network

Next…

 Solution: Bound request rate to prevent hotspots

 Solution: Take advantage of network locality

Prevent hotspots in index
1 2 3# hops:

 Route convergence
 O(log n) nodes are 1 hop from root

Leaf nodes
(distant IDs)

Root node
(closest ID)

Prevent hotspots in index
1 2 3# hops:

 Route convergence
 O(log n) nodes are 1 hop from root

 Request load increases exponentially towards root

URL={IP1,IP2,IP3,IP4}

Root node
(closest ID)

Leaf nodes
(distant IDs)

Rate-limiting requests
1 2 3# hops:

 Bound rate of inserts towards root
 Nodes leak through at most β inserts per min per URL

 Locations of popular items pushed down tree
 Refuse if already storing max # “fresh” IPs per URL

Root node
(closest ID)

URL={IP1,IP2,IP3,IP4} URL={IP3,IP4}

Leaf nodes
(distant IDs)

URL={IP5}

Rate-limiting requests
1 2 3# hops:

 High load: Most stored on path, few on root

 On lookup: Use first locations encountered on path

Root node
(closest ID)

URL={IP1,IP2,IP3,IP4}

Leaf nodes
(distant IDs)

Theorem: Fixing 1 bits per hop, root receives
 insertion requests per time period

!

" # log2 n

Theorem: Fixing b bits per hop, root receives
 insertion requests per time period

!

" # 2b $1() #
log

b+1 n

b

%

& &
'

((

URL={IP3,IP4}

URL={IP5}

lookup(URL) ⇒ {IP5,}

lookup(URL) ⇒ {IP1, IP2}

Wide-area results follow analytics

 Nodes aggregate request rate: ~12 million / min
 Rate-limit per node (β): 12 / min
 Requests at closest fan-in from 7 others: 83 / min

494 nodes
on PlanetLab

3 β

2 β

1 β

7 β

!

log2(494)" #= 9

Convergence
of routing paths

Next…

 Solution: Bound request rate to prevent hotspots

 Solution: Take advantage of network locality

Cluster by network proximity

 Organically cluster nodes based on RTT
 Hierarchy of clusters of expanding diameter
 Lookup traverses up hierarchy

 Route to node nearest ID in each level

Cluster by network proximity

 Organically cluster nodes based on RTT
 Hierarchy of clusters of expanding diameter
 Lookup traverses up hierarchy

 Route to node nearest ID in each level

Preserve locality through hierarchy
000… 111…Distance to key

None

< 60 ms

< 20 ms

Thresholds

 Minimizes lookup latency
 Prefer values stored by nodes within faster clusters

Reduces load at origin server

Local disk caches begin
to handle most requests

Most hits in
20-ms Coral

cluster

Few hits
to origin

Aggregate thruput: 32 Mbps
100x capacity of origin

Clustering benefits e2e latency
Hierarchy

Lookup and
fetch remains

in Asia
1 global cluster

Lookup and
fetch from

US/EU nodes

2 secs

CoralCDN’s deployment

 Deployed on 300-400 PlanetLab servers

 Running 24 / 7 since March 2004

Current daily usage

 20-25 million HTTP requests

 1-3 terabytes of data

 1-2 million unique client IPs

 20K-100K unique servers contacted (Zipf distribution)

 Varied usage
 Servers to withstand high demand
 Portals such as Slashdot, digg, …
 Clients to avoid overloaded servers or censorship

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

Strawman: probe to find nearest
mycdn

I
D

B

C

A

E ICMP

E

 Lots of probing
 Slow to redirect
  Negates goal of faster e2e download

⇒ Cache after first lookup?

Browser

What about yourcdn?

mycdn E yourcdn M

 Lots of probing
 Slow to redirect
 Every service pays same cost

Browser

Whither server-selection?

 Many replicated systems could benefit
 Web and FTP mirrors

 Content distribution networks

 DNS and Internet Naming Systems

 Distributed file and storage systems

 Routing overlays

Goal: Knew answer without probing on critical path

 Measure the entire Internet in advance
 Are you mad ?!?!
 Resources are out there…if only can leverage

 OASIS: a shared server-selection infrastructure
 Amortize measurement cost over services’ replicas

• Total of ~20 GB/week, not per service
• More nodes ⇒ higher accuracy and lower cost each

 In turn, services benefit from functionality

[NSDI ‘06]

If had a server-selection infrastructure…

1. Client issues DNS request for mycdn.nyuld.net

2. OASIS redirects client to nearby application replica

mycdn

OASIS core

Client Resolver

1
2

a) Location of client?
b) What live replicas in mycdn?
c) Which replicas are best?

 (locality, load, …)

 Measure the entire Internet in advance

 Reduce the state space

 Intermediate representation for locality

 Detect and filter out measurement errors

 Architecture to organize nodes and manage data

What would this require?

Reduce the state space

mycdn yourcdn

18.0.0.0/8

 3-4 orders of magnitude by aggregating IP addresses

 [IMC ‘05]: nodes in same IP prefix are often close
 99% of prefixes with same first three-octets (x.y.z.*)

 Dynamically split prefixes until at same location

Representing locality

mycdn yourcdn(12,-14,81) (52,34,5)

[IPTPS ‘05]

 Use virtual coordinates?
 Predicts Internet latencies, fully decentralized

 But designed for clients participating in protocol

 Cached values useless: Coordinates drift over time

18.0.0.0/8

Representing locality

mycdn yourcdn(42N,71W)

9 ms(39N,74W)

(28N,8E)

93 ms

 Combine geographic coordinates with latency
 Add’t assumption: Replicas know own geo-coords

 RTT accuracy has real-world meaning
• Check if new coordinates improve accuracy

18.0.0.0/8

3 ms
(39N,74W,9ms)(42N,71W,3ms)

Representing locality

Correlation b/w geo-distance and RTT

Designing for high-density deployments

More nodes
participate

Higher
accuracy

Measurements have errors

 Many conditions cause wildly wrong results
 Need general solution robust against errors

Probes hit local web-proxy,
not remote location

Israeli node 3 ms from NYU ?

Finding measurement errors

 Require measurement agreement
 At least two results from different services must

satisfy constraints (e.g., speed of light)

mycdn yourcdn

 OASIS core
 Global membership view
 Epidemic gossiping

• Scalable failure detection
• Replicate network map

 Consistent hashing
• Probing assignment, liveness of replicas

 Service replicas
 Heartbeats to core
 Meridian overlay for probing

• O(log2 n) probes finds closest

OASIS core

Engineering… (Lessons from Coral)

E2E download of web page

290% faster than on-demand

500% faster than RRobin

Cached virtual coords
highly inaccurate

Deployed with thousands of replicas
 AChord topology-aware DHT (KAIST)

 Chunkcast block anycast (Berkeley)

 CoralCDN content distribution (NYU)

 DONA data-oriented network anycast (Berkeley)

 Galaxy distributed file system (Cincinnati)

 Na Kika content distribution (NYU)

 OASIS: RPC, DNS, HTTP interfaces

 OCALA overlay convergence (Berkeley)

 OpenDHT public DHT service (Berkeley)

 OverCite distributed library (MIT)

 SlotNet overlay routing (Purdue)

Systems as research platforms

 Measurements made possible by CoralCDN
 Can’t probe clients behind middleboxes
 CoralCDN clients execute active content

Measuring the edge: illuminati
 DNS redirection: Clients near their nameservers?

 Mostly within 20ms; diminishing returns to super-optimize

 Client blacklisting: Safe to blacklist an IP?
 Quantify collatoral damage: NATs small, DHCP slow

 Client geolocation: Where are clients truly located?
 Product for real-time proxy detection with Quova

[NSDI ‘07]

Use of anonymizer networks by single class-C network

 Cooperative content distribution
 Locate and deliver cached content ⇒ CoralCDN
 Select good servers ⇒ OASIS

 Adding security enables untrusted resources
 Shark: scaling distributed file systems

• Mutually-distrustful clients use each others’ file caches

Security too…

Theme throughout talk: How to leverage previously
untapped resources to gain new functionality

[NSDI ‘06]

 Encode blocks of large file, block negotiation unneeded
 Exponential number of potential code blocks

 Prevents traditional hash trees for verification

 Instead, hashing based on homomorphic accumulator
 Given h(f1), h(f2), c1+2 = f1+f2, compute h(c1+2) = h(f1)⋅h(f2)

 By batching PK operations, can verify at 60 Mbps

σ()

Large-file delivery via rateless erasure codes
[S&P ‘04]

file blocks
code blocks ...

hash tree

Need not be security or functionality

 Private matching (PM)
 Parties compute set intersection (oblivious polynomials)
 P encodes xi’s
 e.g., Passenger manifests ∩ govt. no-fly lists
 e.g., Social path in email correspondence for whitelisting

 Private keyword search (KS)

[EUROCRYPT ‘04]

[TCC ‘05]

[NSDI ‘06]
∀yi, E(riP(yi) + yi) ⇒ O(n lg lg n)

Future: Securing and managing
distributed systems

 Building and running large-scale systems difficult
 Security, managability, reliability, scalability, …
 Especially when decentralized, untrusted, …
 Hard to reason about, hard to audit, hard to ensure QoS, …

 New architectures
 Ethane: auditable, secure enterprise networks

 New algorithms
 Smaller groups with well-defined properties

 New tools
 Tracing transactions across hosts

[IPTPS ‘06]

[Sec ‘06]

Research approach

 Today:
 Techniques for cooperative content distribution
 Production use for 3 years, millions of users daily

 Generally:
 New functionality through principled design

• Distributed algorithms, cryptography, game theory, …

 Build and deploy real systems
• Evaluates design and leads to new problems
• Hugely satisfying to have people use it

Thanks…

source code (GPL), data, papers available online

www.coralcdn.org

