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User Facing Services are
Geo-Replicated
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Reasoning About Server Selection

Client Mapping Service
Requests Nodes Replicas
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Example: Distributed DNS
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Example: HTTP Redir/Proxying

Clients Mapping Nodes Service Replicas

HTTP Clients HTTP Proxies Datacenters
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Reasoning About Server Selection

Client Mapping Service
Requests Nodes Replicas
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Reasoning About Server Selection

Client Mapping Service
Requests Nodes Replicas
\ O Outsource to

DONAR
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Naive Policy Choices
Load-Aware: “Round Robin”

Client Mapping Service
Requests Nodes Replicas
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Naive Policy Choices
Location-Aware: “Closest Node”

Client Mapping Service
Requests Nodes Replicas

Goal: support
complex policies

across many nodes.
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Policies as Constraints

DONAR
Nodes

bandwidth_cap
= 10,000 req/m

split_ratio = 10%
allowed _dev =t 5%
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Eg. 10-Server Deployment
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How to describe policy
with constraints?



No Constraints
Equivalent to “Closest Node”
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No Constraints
Equivalent to “Closest Node”
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Cap as Overload Protection
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12 Hours Later...
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‘Load Balance”
(split = 10%, tolerance = 5%
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“Load Balance”
(split = 10%, tolerance

Trade-off network proximity
& load distribution
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12 Hours Later...

Large range of policies

by varying cap/weight

Requests per Replica
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Optimization:
Policy Realization

Clients: c € C Nodes: n € N

* Global LP describing “optimal” pairing

Replica Instances: i € |

-~

Minimize network cost

Server loads within
tolerance
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Optimization Workflow

Calculate
Measure Track :
: : Optimal
Traffic Replica Set :
Assignment



Optimization Workflow
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Optimization Workflow
Measure Track Calcglate
' - Optimal
Traffic Replica Set |
Assignment

Continuously!

(respond to underlying traffic)



By The Numbers

101 102 103 10%

DONAR Nodes

Customers

replicas/customer

client groups/ %
customer

Problem for each customer:
102 * 104 = 106°




Measure Traffic & Optimize Locally?

Mapping Service
Nodes Replicas




Not Accurate!

Client Mapping Service
Requests Nodes Replicas

No one node sees
entire client population




Aggregate at Central Coordinator?

Mapping Service
Nodes Replicas
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Aggregate at Central Coordinator?

Mapping Service
Nodes Replicas
Share Traffic
Measurements
(10°)
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Aggregate at Central Coordinator?

Mapping Service
Nodes Replicas
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Aggregate at Central Coordinator?

Mapping Service
Nodes Replicas
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So Far

Local only

Central YeS NO NO
Coordinator



Decomposing Objective Function

\ ﬁ Trafficfromc  cost of mappingctoi

We also decompose

constraints
(more complicated)
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Decomposed Local Problem
For Some Node (n*)

load, = f(prevailing load on each server +
load | will impose on each server)
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Global load Local distance

information minimization




DONAR Algorithm

Solve local Mapping Service
problem Nodes Replicas




DONAR Algorithm

Solve local Mapping Service
problem Nodes Replicas
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DONAR Algorithm

Mapping Service
Nodes Replicas
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DONAR Algorithm

Mapping Service
Nodes Replicas

Share summary O >
data w/ others
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DONAR Algorithm

Mapping Service
* Provably Nodes Replicas

converges to
global optimum

* Requires no
coordination

* Reduces message
passing by 104
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Better!

Local only

Central Yes NO NO
Coordinator

DONAR Yes Yes Yes
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Production and Deployment

Publicly deployed 24/7 since November 2009

IP2Geo data from Quova Inc. QUOVA

Production use:

— All MeasurementLab Services MLAB
(incl. FCC Broadband Testing) -
— CoralCDN <CORAL

Services around 1M DNS requests per day



Systems Challenges (See Paper!)

* Network availability
Anycast with BGP

* Reliable data storage
Chain-Replication with Apportioned Queries

* Secure, reliable updates
Self-Certifying Update Protocol



CoralCDN Experimental Setup

split_weight =.1
Client DONAR tolerance = .02 CoralCDN
Requests Nodes Replicas
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Results: DONAR Curbs Volatility

“Closest Node”
policy

DONAR “Equal
Split” Policy

DNS Answers for each Replica

DNS Answers for each Replica
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Results: DONAR Minimizes Distance

B Minimal (Closest Node)
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Conclusions

 Dynamic server selection is difficult
— Global constraints
— Distributed decision-making

* Services reap benefit of outsourcing to DONAR.

— Flexible policies
— General: Supports DNS & HTTP Proxying
— Efficient distributed constraint optimization

* |nterested in using? Contact me or visit
http://www.donardns.org.



Questions?



Related Work (Academic and Industry)

Academic

— Improving network measurement

* iPlane: An informationplane for distributed services

H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani, “” in OSDI, Nov. 2006

— “Application Layer Anycast”
* OASIS: Anycast for Any Service

Michael J. Freedman, Karthik Lakshminarayanan, and David Maziéeres
Proc. 3rd USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI '06) San Jose, CA, May 2006.

Proprietary

— Amazon Elastic Load Balancing
— UltraDNS
— Akamai Global Traffic Management


http://www.usenix.org/events/nsdi06/

Doesn’t [Akamai/UltraDNS/etc]
Already Do This?

* Existing approaches use alternative,
centralized formulations.

e Often restrict the set of nodes per-service.

* Lose benefit of large number of nodes
(proxies/DNS servers/etc).



