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Abstract
Due to its high performance and decreasing cost per bit, flash
storage is the main storage medium in datacenters for hot data.
However, flash endurance is a perpetual problem, and due to
technology trends, subsequent generations of flash devices
exhibit progressively shorter lifetimes before they experience
uncorrectable bit errors. In this paper, we present an approach
for addressing the flash lifetime problem by allowing devices
to operate at much higher bit error rates. We present DIRECT,
a set of techniques that harnesses distributed-level redundancy
to enable the adoption of new generations of denser and less
reliable flash storage technologies. DIRECT does so by us-
ing an end-to-end approach to increase the reliability of dis-
tributed storage systems.

We implemented DIRECT on two real-world storage sys-
tems: ZippyDB, a distributed key-value store in production
at Facebook that is backed by and supports transactions on
top of RocksDB, and HDFS, a distributed file system. When
tested on production traces at Facebook, DIRECT reduces
application-visible error rates in ZippyDB by more than 100⇥
and recovery time by more than 10,000⇥. DIRECT also al-
lows HDFS to tolerate a 10,000–100,000⇥ higher bit error
rate without experiencing application-visible errors. By sig-
nificantly increasing the availability of distributed storage
systems in the face of bit errors, DIRECT helps extend flash
lifetimes.

1 Introduction
Flash has become the dominant storage medium for hot data in
datacenters [64, 72], since it offers significantly lower latency
and higher throughput than hard disks. Many storage sys-
tems are built atop flash, including databases [6, 11, 15, 44],
caches [5, 36, 57, 58, 78], and file systems [48, 67].

However, a perennial problem of flash is its limited en-
durance, or how long it can reliably correct raw bit errors.
As device writes are the main contributor to flash wear, its
lifetime is measured in the number of writes or program-erase
(P/E) cycles the device can tolerate before exceeding an un-
correctable bit error threshold. Uncorrectable bit errors are

errors that are exposed externally and occur when there are
too many raw bit errors for the device to correct.

In hyper-scale datacenters, operators constantly seek to re-
duce flash wear by limiting flash writes [21, 64]. At Facebook,
for example, a dedicated team monitors application writes to
ensure they do not prematurely exceed manufacturer-defined
device lifetimes. Even worse, each subsequent flash gener-
ation tolerates a smaller number of writes before reaching
end-of-life (see Figure 1a) [42]. Further, given the scaling
challenges of DRAM [49, 56] and the increasing cost gap
between DRAM and flash [2, 37, 38], many operators are
migrating services from DRAM to flash [7, 37], increasing
the pressure on flash lifetime.

There is a variety of work that attempts to extend flash
lifetime by delaying the onset of bit errors [6, 12, 30, 36,
47, 59, 61, 62, 63, 77, 82, 83]. This paper takes a contrarian
approach. We observe that flash endurance can be extended by
allowing devices to go beyond their advertised uncorrectable
bit error rate (UBER) and embracing the use of flash disks
that exhibit much higher error rates; Google recently released
a whitepaper suggesting a similar approach [28]. We can do
so without sacrificing durability because datacenter storage
systems replicate data on remote servers, and this redundancy
can correct bit error rates orders of magnitude beyond the
hardware error correction mechanisms implemented on the
device. However, the challenge with higher flash error rates
is maintaining availability and correctness.

We introduce Distributed error Isolation and RECovery
Techniques (DIRECT), which is a set of three simple general-
purpose techniques that, when implemented, enable dis-
tributed storage systems to achieve high availability and cor-
rectness in the face of uncorrectable bit errors:

1. Minimize data error amplification. DIRECT detects
errors using existing error detection mechanisms (e.g.,
checksums) and recovers data from remote servers at the
smallest possible granularity.

2. Minimize metadata error amplification. A corruption
in local metadata (e.g., database index), often requires a
large amount of data to be re-replicated. DIRECT avoids
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(a) Existing hardware-based error correction.
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(b) Augmenting existing error correction with DIRECT.
Figure 1: For each generation of flash bit density, the average number of P/E cycles after which the uncorrectable bit error rate falls below
the manufacturer specified level (10�15). Beyond MLC, the number of flash writes the application can issue is limited [29]. With current
hardware-based error correction, QLC technology and beyond can only be used for applications that are effectively read-only [8, 22, 76].
DIRECT enables the adoption of denser flash technologies by handling errors in the distributed storage application. We use the model from §3
to compute the UBER tolerated by DIRECT, while the UBER to P/E conversion was derived from data in a Google study [72].

this by adding redundancy locally to local metadata.
3. Ensure safe recovery semantics by treating recovery

operations as write operations. DIRECT serializes re-
covery operations on corrupted data against concurrent
operations with respect to the system’s consistency guar-
antees.

The difficulty of implementing DIRECT depends on two
properties of the underlying storage system. The first property
is whether the system is physically or logically replicated.
Physically-replicated systems replicate data blocks between
servers, while logically-replicated systems replicate the com-
mands (e.g., write, update, delete). In physically-replicated
systems, a certain object is stored in the same block or file
on another server and therefore can be recovered efficiently
by simply re-replicating the remote data block. This does
not work for logically-replicated systems, where physical
blocks are not identical across replicas. The second prop-
erty is whether the data store supports versioning. In systems
with versioning, we need to guarantee the recovered object
does not override a more up-to-date version.

We demonstrate how to generalize DIRECT techniques
by implementing them in two popular systems that are rep-
resentative of two different classes of storage systems: (1)
the Hadoop Distributed File System (HDFS), which is a
physically-replicated storage system without versioning, and
(2) ZippyDB, a distributed system that implements logical
replication and transactions on top of RocksDB, a popular
key-value store that supports key versioning. Objects in HDFS
are physically-replicated, so it is straightforward for DIRECT
to find the corrupt object in another replica and recover it
at a high granularity (§4.1). On the other hand, recovery is
challenging in ZippyDB since the corrupted region of one
replica is stored in a different location on another replica,
so the recovered key-value pairs might not have consistent
versions ZippyDB (§4.2).

DIRECT Limitations and Lessons Learned. We chose
to implement DIRECT by retrofitting existing datacenter stor-
age applications, rather than as a general-purpose application
library. The latter design would be particularly challenging

since DIRECT depends on application-specific details such as
file layout and recovery semantics. Note that the storage sys-
tems we retrofitted (HDFS and RocksDB) and their relatives
serve as the base layer for many storage services and databases
(e.g., MyRocks, Ozone, HBase, Cassandra). Furthermore, we
learned that to implement the first and third DIRECT tech-
niques, storage systems must have a key requirement: we
must be able to infer logical objects from the physical loca-
tion (on the application’s file format) of the bit error. In §6 we
discuss PostgreSQL, which does not satisfy this requirement,
and therefore is difficult to retrofit with DIRECT.

DIRECT leads to significant increases in device life-
time, since systems can maintain the same probability of
application-visible errors (durability) at much higher device
UBERs. In Figure 1b, we estimate the number of P/E cy-
cles gained with DIRECT using an empirical UBER vs P/E
cycle comparisons in a Google study [72]. Depending on
workload parameters and hardware specifications, DIRECT
can increase the lifetime of devices by 10-100⇥. This allows
datacenter operators to replace flash devices less often and
adopt lower cost-per-bit flash technologies that have lower
endurance. DIRECT also provides the opportunity to rethink
the design of existing flash-based storage systems, by remov-
ing the assumption that the device fixes all corruption errors.
Furthermore, while this paper focuses on flash, DIRECT’s
principles also apply in other storage mediums, including
NVM, hard disks, and DRAM.

In summary, this paper makes several contributions:
1. We observe flash lifetime can be extended by allowing

devices to operate at much higher bit error rates.
2. We propose DIRECT, general software techniques that

enable storage systems to maintain performance and
high availabily despite high hardware bit error rates.

3. We design and implement DIRECT in two storage sys-
tems, HDFS and ZippyDB, that are representative of
physical and logical replication, respectively. Applying
DIRECT results in significant end-to-end availability im-
provements: it enables HDFS to tolerate bit error rates
that are 10,000⇥-100,000⇥ greater, reduces application-
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visible error rates in ZippyDB by more than 100⇥, and
speeds up recovery time in ZippyDB by 10,000⇥.

2 Motivation
What Limits Flash Endurance? Flash chips are composed
of memory cells, each of which stores an analog voltage value.
The flash controller reads the value stored in a certain memory
cell by sensing the voltage level of the cell and applying quan-
tization to determine the discrete value in bits. The more bits
stored in a cell, the narrower the voltage range that maps to
each discrete bit, so more precise voltage sensing is required
to get a correct read. A primary way to reduce cost per bit is
to increase the number of bits per cell, which means that even
small voltage perturbations can result in a misread.

Multiple factors cause voltage drift in a flash cell. The
dominant source, especially in datacenter settings where most
data is “hot,” is the program-erase (P/E) cycle, which involves
applying a large high voltage to the cell in order to drain its
stored charge, thus wearing the insulating layer in the flash
cell [30]. This increases the voltage drift of subsequent values
in the cell, which gradually leads to bit errors.

3D NAND is a recent technology that has been adopted for
further increasing flash density by stacking cells vertically.
While 3D NAND relaxes physical limitations of 2D NAND
(traditional flash) by enabling vertical stacking, 3D NAND
inherits the reliability problems of 2D NAND and further
exacerbates them, since a cell in 3D NAND has more adjacent
(vertical) neighbors. For example, voltage retention is worse,
because voltage can now leak in three dimensions [54, 63, 65].
Similarly, disturb errors that occur when adjacent cells are
read or programmed are also exacerbated [50, 75].
Existing Hardware Reliability Mechanisms and Limita-
tions. To correct bit errors, flash devices use error correcting
codes (ECC), which are implemented in hardware. After the
ECC pass, there could still be incorrect bits on the page. To
address this, SSDs also employ internal RAID across the dies
of a flash device [16, 19]. After applying coding and RAID
within the device, there will remain a certain rate of uncor-
rectable bit errors (UBER). Together, ECC and internal RAID
mechanisms can drive the error rates of SSDs from the raw bit
error rate of around 10�6 down to the 10�17 to 10�20 UBER
range typical of enterprise SSDs [14]. “Commodity” SSD
devices typically guarantee an UBER of 10�15.

While it is possible to create stronger ECC engines, the
higher the corrective power of the ECC, the more costly the
device [4, 10]. Furthermore, the level of internal RAID strip-
ing is constant across generations, because the number of dies
inside a flash device remains constant. This means that the
corrective power of RAID is fixed.

Similarly, while RAID across devices [53, 69, 74] can add
redundancy, a main design goal of DIRECT is to avoid adding
unnecessary overhead. We avoid turning to RAID because it
is inflexible since its recovery power is fixed at deployment
time, and, more importantly, it imposes storage and write

unreliable flash

hardened file system
(e.g., ZFS)

local data store
. . .

Distributed Coordination / Replication Layer

unreliable flash

hardened file system
(e.g., ZFS)

local data store

unreliable flash

hardened file system
(e.g., ZFS)

local data store

DIRECT

Figure 2: DIRECT fixes errors in the local data store, sometimes
requiring interaction with the distributed coordination layer.

overheads, in particular generating additional flash writes that
further reduce endurance.
Implications of Limited Flash Endurance. Flash technol-
ogy has already reached the point where its endurance is
inhibiting adoption and operation in various datacenter use
cases. For example, QLC was recently introduced as the next
generation flash cell technology. However, in the worst case,
it can only tolerate ⇠150 P/E cycles [8, 22, 76], so it can
only be used for read-heavy use cases, e.g., a 2 TB QLC drive
with a lifetime of 150 P/E cycles can only write at a rate of
2 MB/s or less in order to preserve its advertised lifetime of 5
years. In the best case, some QLC devices can tolerate ⇠1000
P/E cycles for completely sequential write workloads, due to
an internal SLC cache [8]. But since datacenter applications
like databases and analytics that deal with hot data typically
need to update objects frequently, the adoption of QLC has
been more limited and is the reason that Facebook has avoided
QLC flash. Subsequent cell technology generations will suffer
from even greater problems.

Operational issues also often dictate a device’s usage life-
time. Flash is typically only used for its advertised lifetime
to simplify operational complexity [72]. Further, in a hyper-
scale datacenter where it is common to source devices from
multiple vendors, the most conservative estimate of device
lifetime across vendors is typically chosen as the lifetime for
a fleet of flash devices, so that the entire fleet can be installed
and removed together. If the distributed storage layer could
tolerate much higher device error rates, then datacenter opera-
tors would no longer have to make conservative and wasteful
estimates about entire fleets of flash devices.

Finally, because of the increase in DRAM prices due to its
scaling challenges and tight supply [2, 38, 49, 56], datacenter
operators are migrating services from DRAM to flash [7,
37]. This means flash will be responsible for many more
workloads, further exacerbating its endurance problem.

3 DIRECT Design
DIRECT is a set of techniques that enables a distributed stor-
age system to maintain high availability and correctness in
the face of high UBER.

We define a distributed storage system as a set of many
local stores coupled with a distributed protocol layer that repli-
cates data and coordinates between the local stores. Figure 2
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shows an ideal storage stack that runs on unreliable flash
(flash that exposes high UBERs). Note that there is existing
work on how to make local file systems tolerate corruption
errors (we survey these in §6), so our efforts in this paper
focus on hardening the application-level storage system.

We observe that redundancy already exists in distributed
storage systems in the form of distributed replication [27, 32,
40], which maintains multiple remote copies of each piece of
data, or distributed erasure coding [45, 71, 80], which main-
tains remote parity bits for each piece of data. However, many
systems do not systematically use this redundancy to recover
individual bit errors [39], even though it can significantly
boost resilience to bit errors. We focus on using distributed
replicas to correct bit errors, but the DIRECT principles pre-
sented in the paper also apply to systems that use erasure
coding; for example, error amplification — the number of
bits required to recover an error — can be reduced in erasure
coding schemes by reducing the size of a stripe.
Distributed Redundancy. Consider the following example
of a physically replicated storage system, such as HDFS. Sup-
pose the minimum unit of recovery is a data block1, which is
replicated in each of three data stores. If the block has size
B, and the uncorrectable bit error rate (UBER) is E, then the
expected number of errors in the block will be B ·E. Since the
block is replicated across R different servers, the only way that
the storage system would encounter an application-observable
read error is when at least one error exists in every copy of
the block. Therefore, the probability of an application-level
read error can be expressed as:

P[error] = (1� (1�E)B)R ⇡ (B ·E)R

where we assume B ·E << 1 and use a Taylor series approxi-
mation.

Then, for an UBER of E = 10�15, a block size of B =
128 MB (typical of distributed file systems), and a replication
factor of R = 3, the probability of a read error is 10�18 (files
are measured in bytes, while UBER is in bits).

However, with relatively large blocks, the probability of
encountering at least one error in all block replicas quickly
increases as UBER increases. For example, for an UBER of
E = 10�10, the expected number of errors in a single block
will be B ·E = 0.1 for 128 MB blocks (Table 1). Then in this
case P[error] ⇡ 0.001. We observe that reducing B ·E, by
reducing B, will dramatically reduce the probability of error.
Minimizing Error Amplification of Data Blocks. DI-
RECT captures this intuition with the notion of error am-
plification (B in the previous example), or the number of
bytes required to recover a bit error. DIRECT observes that
the lower the error amplification, the lower the probability
of error and the faster recovery can occur. This similarly
implies a shorter period of time spent in degraded durability

1Note that in HDFS while errors can be detected using checksums at a
smaller granularity than the block size, actual recovery and replication is
conducted at the granularity of a block.

Probability of Application-Observable Error
UBER Block Recovery Chunk Recovery

10�10 1 ·10�3 3 ·10�10

10�15 1 ·10�18 1 ·10�28

Table 1: Probability of application-observable error comparing
block-by-block recovery to chunk-by-chunk recovery, with an UBER
of 10�10, and 10�15. Finer granularity recovery provides signifi-
cantly higher protection against corruptions.

. . . . . . . . . 

X X
. . . . . . . . . 

X X

DataNode A DataNode B DataNode C

10111010
01010010 

10101010
01010110

10111010
11010110

Majority     voting

10111010
01010110

. . . . . .. . .

. . .
Figure 3: Even if the same chunk is corrupted on all replicas, bit-
by-bit majority voting can reconstruct the correct chunk, by taking
the majority vote of each bit across all chunks.

and thus higher availability.
In the example above, suppose the system can recover data

at a finer granularity, for example, at chunk size C = 64 KB.
Then a read error would occur if all three replicas of the same
chunk have at least one bit error. The revised probability of
read error becomes:

P[error] = 1� (1� (1� (1�E)C)R)
B
C

Assuming E ·C << 1, Taylor series approximation leads to
(1� (1�E)C)R)⇡ (E ·C)R, and assuming this value is much
smaller than B

C , the probability of an application-observable
error when correcting chunk-by-chunk is:

P[error]⇡ (E ·C)R · B
C

When C = 64 KB and E = 10�10, this probability is 3 ·10�10,
which is much lower than the probability when recovering at
the block level (see Table 1).

We can further reduce B by using bit-by-bit majority voting,
i.e., the recovered value of a bit in the chunk is the majority
vote across the three chunk replicas (Figure 3). Bit-by-bit
majority voting further reduces the application-observable
error beyond chunk-by-chunk recovery, because the only way
an application-observable error would occur is if an error
occurs in the same bit across two chunks or more.

In a physically-replicated system like HDFS, minimiz-
ing error amplification is straightforward because corrupted
blocks (and even bits) can be directly recovered from remote
replicas. For a logically-replicated system like ZippyDB, how-
ever, blocks are not identical across replicas. This makes min-
imizing error amplification more challenging, since DIRECT
cannot simply recover from a remote physical chunk. For ex-
ample, bit-by-bit majority voting is not possible in ZippyDB,
because the replicas do not store the same physical bits. For
such systems, DIRECT must instead first isolate the region
where the error might have occurred and then retrieve objects
one-by-one from the other servers (see §4.2).
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Minimizing Metadata Error Amplification. Error ampli-
fication can be even more severe if the error occurs in local
metadata. For example, a corrupt index in a key-value store
can prevent a data store from starting up, which can mean re-
replication of hundreds of GBs of data. Thus even though the
likelihood of errors in metadata is lower than in data blocks
(metadata typically takes up less space than data), it still re-
quires protection. Hence DIRECT either locally duplicates
metadata or applies local software error correction.
Safe Recovery Semantics. DIRECT must also ensure re-
covery operations preserve the correctness of the distributed
storage system, which might be dealing with concurrent write
and read operations.

This is relatively straightforward in systems that do not sup-
port versioning or transactions, such as HDFS, since an object
is up-to-date as soon as it is recovered from a remote replica.
Systems like RocksDB which support versioning are more
challenging, because if the system re-writes an object from a
remote replica, recovery might overwrite a newer version with
a stale version. In particular, the versions of the corrupted key-
value pairs are not known, because (a) the corruption prevents
the data from being read and (b) due to logical replication, the
data’s location does not provide information on its version.
Hence to correctly recover corrupted key-value pairs, the sys-
tem must locate some consistent (up-to-date) version of each
pair. To do this, DIRECT forces recovery operations to go
through a fault-tolerant log (for ZippyDB we use its existing
Paxos log), which can provide correct ordering (§4.2.3).

DIRECT Techniques. To summarize, DIRECT includes
the following techniques.

1. Systems must reduce error amplification of data objects
and fix corruptions from remote replicas.

2. Systems must reduce local metadata error amplification,
which is much higher than data error amplification.

3. Systems must ensure safe recovery semantics.
Note that the first and second techniques apply exclusively

to the local data store and affect performance, while the third
technique may require that the local data store interact with
the distributed coordination layer to ensure correctness.

4 Implementing DIRECT
To demonstrate the use of the DIRECT approach, we inte-
grate it into two systems: HDFS, a popular distributed file
system, and ZippyDB, a distributed key-value store backed
by RocksDB. The techniques used to implement DIRECT
in HDFS can be applied to other physically replicated sys-
tems, such as GFS [40], Windows Azure Storage [31], and
RAMCloud [66], which write objects into large immutable
blocks that are replicated across several servers. Similarly,
the techniques used to implement DIRECT in ZippyDB and
RocksDB can be applied to other logically replicated systems,
such as Cassandra [79], MongoDB [9], and CockroachDB [1].
In these systems a distributed coordination layer manages
the replication of objects across different servers and uses

versioning to execute transactions.

4.1 HDFS-DIRECT
4.1.1 HDFS Overview.
HDFS is a distributed file system that is designed for storing
large files that are sequentially written and read. Files are
divided into 128MB blocks, and HDFS replicates and reads
at the block level.

There are three types of HDFS servers: NameNode, Jour-
nalNode, and DataNode. The NameNode and JournalNodes
store cluster metadata by running a protocol similar to Multi-
Paxos; we note that this protocol can tolerate bit errors by
writing an additional entry per Paxos entry (for more infor-
mation, see PAR [20]). DataNodes (the local data stores in
Figure 2) store HDFS data blocks, and they respond to client
requests to read blocks. If a client encounters errors while
reading a block, it will continue trying other DataNodes from
the offset of the error until it can read the entire block. After
an error on a DataNode, the client will not try that node again.
If there are no more DataNodes and the block is not fully read,
the read fails and that block is considered missing.

Additionally, HDFS has a configurable background “block
scanner” that periodically scans data blocks and reports cor-
rupted blocks for re-replication. But the default scan interval
is three weeks, and the scanner still recovers at the 128 MB
block granularity. If there is a bit error in every replica of a
block, then HDFS cannot recover the block.

4.1.2 Implementing DIRECT
Minimizing Error Amplification of Data Blocks. We
leverage the observation that HDFS checksums every 512
bytes in each 128 MB data block. Corruptions thus can be
narrowed down to a 512 byte chunk; verifying checksums
adds no overhead, because by default HDFS will verify check-
sums during every block read. For streaming performance, the
smallest-size buffer that is streamed during a data block read
is 64 KB, so we actually repair 64 KB everytime there is a
corruption. To mask corruption errors from clients, we repair
a data block synchronously during a read. Under DIRECT,
the full read (and recovery) protocol is the following.

Each 128 MB block in HDFS is replicated on three DataN-
odes, call them A,B,C. An HDFS read of a 128 MB block is
routed to one of these DataNodes, say A. A will stream the
block to the client in 64 KB chunks, verifying checksums be-
fore it sends a chunk. If there is a checksum error in a 64 KB
chunk, then A will attempt to repair the chunk by requesting
the 64 KB chunk from B. If the chunk sent by B also contains
a corruption, then A will request the chunk from C.

If C also sends a corrupted chunk, then A will attempt to
construct a correct version of the chunk through bit-by-bit ma-
jority voting: the value of the bit in the chunk is the majority
vote across the three versions provided by A, B, and C. After
reconstructing the chunk via majority voting (Figure 3), A will
verify the checksums again; if the checksums fail, then the
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read fails. Majority voting allows HDFS-DIRECT to tolerate
on the order of 104 �105 times more bit errors than HDFS.
In fact, as we show in Section 5.1, UBERs can be as high
as 10�5 before majority voting failures are detectable in our
experimental framework
Safe Recovery Semantics. Safety is straightforward in
HDFS because data blocks are immutable once written, so
there are never updates that will conflict with chunk recovery.
Before a client does a block read, it first contacts the Name-
Node to get the DataNode IDs of all the DataNodes on which
the block is replicated. In HDFS-DIRECT, when a client
sends a block read request to a DataNode, it also sends this
set of IDs. Because blocks are immutable and do not contain
versions, these IDs are guaranteed to be correct replicas of the
block, if they exist. It could be that a concurrent operation has
deleted the block. In this case, if chunk recovery cannot find
the block on another DataNode because it has been deleted,
then it cannot perform recovery, so it will return the original
checksum error to the client. This is correct, because there is
no guarantee in HDFS that concurrent read operations should
see the instantaneous deletion of a block.
Minimizing Metadata Error Amplification. Each server
in HDFS has local metadata files that must be correct, oth-
erwise it cannot start. These files include a VERSION file,
as well as special files on the NameNode and JournalNode.
Metadata files are not protected in HDFS, thus a single cor-
ruption will prevent the server from starting. DIRECT adds a
standard CRC32 checksum at the beginning of each file and
replicates the file twice so that there are three copies of the
file on disk.

4.2 ZippyDB-DIRECT
4.2.1 ZippyDB Overview

We also implemented DIRECT on a logically replicated sys-
tem, ZippyDB, a distributed key-value store used within Face-
book that is backed by RocksDB (i.e., RocksDB is the local
data store in Figure 2), which is a versioned key-value store.

ZippyDB runs on tens of thousands of flash-provisioned
servers at Facebook, which makes it an ideal target for DI-
RECT. ZippyDB provides a replication layer on top of
RocksDB. ZippyDB is logically separated into shards, and
each shard is fully replicated at least three ways. Each shard
has a primary replica as well as a number of secondary repli-
cas, wherein each replica is backed by a separate RocksDB in-
stance residing on some server. Each ZippyDB server contains
hundreds of shards, including both primary and secondary
replicas. Hence, each ZippyDB server actually contains a
large number of separate RocksDB instances.

ZippyDB runs a Paxos-based protocol for shard operations
to ensure consistency. The primary shard acts as the leader for
the Paxos entry, and each shard also has a Paxos log to persist
each Paxos entry. Writes are considered durable when they
are committed by a quorum of shards, and write operations are

Data	
block	1	 .	 .	 .	

Data	
block	N	

Metadata	
block	1	

Metadata	
block	2	 .	 .	 .	 Index	

block	

.	 .	 .	 Footer	

Figure 4: RocksDB SST file format. Index block entries point to
keys within data blocks. Therefore, consecutive index entries form
a key range. DIRECT modifies this file format by writing each
metadata block at least twice in-line.

applied to the local RocksDB store in the order that they are
committed. A separate service is responsible for monitoring
the primary and triggering Paxos role changes.

4.2.2 RocksDB Overview

RocksDB is a local key-value store based on a log-structured
merge (LSM) tree [68]. RocksDB batches writes in-memory—
each write receives a sequence number that enables key
versioning—and flushes them into immutable files of sorted
key-value pairs called sorted string table (SST) files. SST files
are composed of individually checksummed blocks, each of
which can be a data block or a metadata block. The metadata
blocks include index blocks whose entries point to the keys
at the start of each data block (see Figure 4) [13].

SST files are organized into levels. A key feature of
RocksDB and other LSM tree-backed stores is background
compaction, which periodically scans SST files and compacts
them into lower levels, as well as performs garbage collection
on deleted and overwritten keys.

4.2.3 Implementing DIRECT

ZippyDB has high error amplification since a single bit error
can cause migration of terabytes of data: if a compaction
encounters a corruption, an entire server, which typically has
hundreds of gigabytes to terabytes of data, will shutdown
and attempt to drain its RocksDB shards to another machine.
Meanwhile, this sudden crash causes spikes in error rates
and increases the load on other replicas while the server is
recovering. To make matters worse, the new server could
reside in a separate region, further delaying time to recovery.

Minimizing Error Amplification of Data Blocks. We ob-
serve that checksums in RocksDB are applied at the data
block level, so a data block is the smallest recovery granu-
larity. Data blocks are lists of key-value pairs, and key-value
pairs are replicated at the ZippyDB layer. A corrupted data
block can be recovered by fetching the pairs in the data block
from another replica. However, this is challenging for two
reasons.

First, compactions are non-deterministic in RocksDB and
depend on a variety of factors, such as available disk space
and how compaction threads are scheduled. Hence, two repli-
cas of the same RocksDB instance will have different SST
files, making it impossible to find an exact replica of the cor-
rupted SST file and the corrupted data block, unlike in HDFS.
Second, because the block is corrupted, it is impossible to
know the exact key-value pairs that were stored in that block.
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Figure 5: To serialize a patch properly, we add it as a request in the
Paxos log. If the patch request is serialized at point t, then it must
reflect all entries t 0 < t (shaded). Furthermore, the patch request is
not batched with any writes to ensure atomicity.

Therefore, not only do we not know what data to look for on
the other replica, we also don’t know where to find it.

Instead of repairing the exact keys that are lost, we rewrite
a larger key range that covers the keys in the corrupted block.
The key range is determined from index blocks, which are a
type of metadata block in SST files that has an entry for the
first key of each data block (Figure 4). Hence, consecutive
index block entries form a key range which is guaranteed to
contain the lost keys. Note that relying on these index entries
requires that the index block, a metadata block, be error-free.
See below for how we ensure the index block is uncorrupted.

Unfortunately, just knowing the key range is not enough:
the existence of key versions in RocksDB and quorum repli-
cation in ZippyDB compounds the problem. In particular,
a key must be recovered to a version greater than or equal
to the lost key version, which could mean deleting it as key
versions in RocksDB can be deletion markers. Additionally,
if we naïvely fetch key versions from another replica, we may
violate consistency.

Safe Recovery Semantics. To guide our recovery design,
we introduce the following correctness requirement. Suppose
we learn from the index entries that we must re-replicate key
range [a,b]. This key range is requested from another replica,
which assembles a set of fresh key-value pairs in [a,b], which
we call a patch.

Safety Requirement: Immediately after patch insertion,
the database must be in a state that reflects some prefix of the
Paxos log. Furthermore, this prefix must include the Paxos
entries that originally updated the corrupted data block.

In other words, patch insertion must bring ZippyDB to
some consistent state after the versions of the corrupted keys;
otherwise, if the patch inserts prior versions of the keys, then
the database will appear to go backwards.

Because the Paxos log serializes updates to ZippyDB, the
cleanest way to find a prefix to recover up to is to serialize the
patch insertion via the Paxos log. Then if patch insertion gets
serialized as entry t in the log, the log prefix the patch must
reflect is all Paxos entries t 0 < t, as shown in Figure 5. Serial-
izing a patch at index t tells us exactly how to populate the
patch. In particular, each key in the patch must be recovered
to the largest entry s < t such that s is the index of a Paxos
entry that updates that key.

Furthermore, patch insertion must be atomic. Otherwise, it
could be interleaved with updates to keys in the patch, which
would violate the safety requirement, because then the version
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Figure 6: The process of recovering a corrupted RocksDB data
block: (1) RocksDB compaction iterator determines the corrupted
key range(s) based on the index blocks of the SST files and reports
it to ZippyDB. (2) ZippyDB reports this error to the primary of
that replica. (3) Primary shard adds patch request to Paxos log. (4)
Paxos engine replicates the request to all replicas. (5) Each replica
tries to process the patch request. If the processing shard is not the
corrupted shard (which it knows because the patch request contains
the shard ID of the corrupted shard), then it prepares a patch from
its local RocksDB state and sends it to the corrupted shard. If the
processing shard is the corrupted shard, then it waits for a patch from
any replica. (6) Corrupted shard applies the fresh patch to its local
RocksDB store.

of the key in the patch would not reflect a prefix of t. This
is actually a subtle point because ZippyDB batches many
writes into a single Paxos entry, as shown in Figure 5. If patch
insertion is batched with other writes, then the patch will not
reflect the writes that are in front of it in the batch. Hence, we
force the patch insertion to be its own Paxos entry.
Minimizing Metadata Error Amplification. There are
two flavors of metadata in RocksDB: metadata files and meta-
data blocks in SST files. Metadata files are only read during
startup and then cached in memory. We can easily protect
them with local replication, which adds a minimal space over-
head (on the order of kilobytes per server). We protect meta-
data blocks by writing them several times in-line in the same
SST file. In our implementation, we write each metadata block
twice2. Protecting metadata enables us to isolate errors to a
single data block, rather than invalidating an entire SST file.

As with the HDFS JournalNode, we can protect against
errors in the ZippyDB Paxos log with an additional entry [20].

4.2.4 DIRECT Recovery in ZippyDB
ZippyDB-DIRECT triggers a recovery procedure when
RocksDB encounters a corruption error during compaction.
For user reads, ZippyDB does not synchronously recover cor-
rupted blocks, unlike in HDFS. Instead, it returns the error
to the client, which will retry on a different replica, and Zip-
pyDB will then trigger a manual compaction involving the
file of the corrupted data block.

Figure 6 depicts this process. Importantly, we do not re-
lease a compaction’s output files until the recovery procedure

2For increased protection, metadata blocks can be locally replicated more
than twice or protected with software error correction.
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finishes; otherwise, stale key versions may reappear in the key
ranges still undergoing recovery. Fortunately, because com-
paction is a background process, we can wait for recovery
without affecting client operations.

Step (1) is implemented entirely within RocksDB. A
RocksDB compaction iterator will record corrupted key
ranges as they are encountered and withhold them from ap-
pearing in the compaction’s result. At the end of the iterator’s
lifetime, ZippyDB is notified about the corrupted key range.
Note that the compaction may encounter multiple corrupt key
ranges, which are batched into a single patch request.

In step (2), the patch is reported to the primary. Step (3)
must go through the primary because the primary is the only
shard that can propose entries to the Paxos log. Note this
does not mean primaries cannot recover from corrupted data
blocks. The patch request in the Paxos log is simply a no-op
that reserves a point of reference for the recovery procedure
and includes information necessary for recovery, such as the
corrupted key ranges and the ID of the corrupted shard. Any
replica that encounters the patch request in the log is by defi-
nition up-to-date to that point in the Paxos log, which means
any replica that isn’t the corrupted replica is eligible to send a
patch to the corrupted replica. In step (4), ZippyDB waits for
the Paxos log to replicate the Paxos entry as well as for other
replicas to consume the log until they encounter the patch
request.

In step (5), an uncorrupted replica assembles a patch on the
specified key range(s) with a RocksDB iterator. To do this, the
uncorrupted replica opens a range scan iterator on each key
range. Note that this replica might encounter a bit corruption
while assembling the patch. In practice the probability of this
is small because the number of keys covered by the patch is on
the order of kilobytes (§5.2), and any scans to find such keys
would predominantly look through metadata blocks, such
as bloom filter or index blocks. However, if a replica does
encounter a corruption while assembling a patch, it simply
does not send a patch. Therefore, for the patch request to
fail, both (or more, if the replication factor is more than 3)
uncorrupted replicas will have to encounter a bit corruption,
and this probability is low.

Step (6) is also implemented at the RocksDB level. When
a replica applies a patch, simply inserting all the key-value
pairs present in the patch is insufficient because of deleted
keys. In particular, any key present in the requested key range
and not present in the patch is an implicit delete. Therefore, to
apply a patch, the corrupted shard must also delete any keys
that it can see that aren’t present in the patch. This case is pos-
sible because RocksDB deletes keys by inserting a tombstone
value inline in SST files, but such a tombstone might have
already been compacted away on the replica providing the
patch. Hence the corrupted data block may contain tombstone
operators that delete a key, and these must be preserved.

4.2.5 Transactions and Invalidating Snapshots
ZippyDB uses RocksDB snapshots to execute transactions.
RocksDB snapshots are represented by a sequence number, s.
Then, for as long as the snapshot s is active, RocksDB will
not compact any version, s0, of a key where s0 is the greatest
version of the key such that s0 < s. If RocksDB invalidates a
snapshot, then the ZippyDB transaction using that snapshot
will abort and retry.

A subtle side-effect of a corrupted data block is snapshot
corruption. For example, suppose the RocksDB store has
a snapshot at sequence number 100 and the corrupted data
block contains a key with sequence number 90. Because the
data block is corrupted, it cannot be read, so we do not know
whether the corruption affects snapshot 100. Then for safety,
we need to invalidate all local snapshots, because any of them
could have been affected by the corrupted key range. In prac-
tice, this is reasonable because most ZippyDB transactions
(and hence RocksDB snapshots) have short lifetimes.

More generally, any transactional system that relies on ver-
sioning (e.g., MyRocks that is built on RocksDB), through
either optimistic concurrency control or multi-version concur-
rency control (MVCC) can similarly deal with corruptions by
aborting ongoing transactions.

4.3 Cascading Errors
In both HDFS-DIRECT and ZippyDB-DIRECT, the system
will visit multiple replicas if necessary to resolve a bit error.
However, currently DIRECT ignores and does not try to fix
any cascading errors encountered during this process. For
example, if a replica tries to assemble a patch in ZippyDB-
DIRECT and fails because the iterator encounters a corrup-
tion, the replica will simply cleanup, ignore the patch request,
and move to executing the next request in the Paxos log. We
ignore cascading errors for simplicity but can easily incorpo-
rate recovery of cascaded errors in the future.

5 Evaluation
This section evaluates DIRECT by answering the follow-
ing questions: (1) By how much does DIRECT decrease
application-level errors in both HDFS and ZippyDB? In
HDFS, how far can DIRECT drive UBER while avoiding
application-level errors? (2) How much does DIRECT de-
crease time to recovery from corruption errors in ZippyDB?

Note we do not measure recovery time in HDFS because
DIRECT handles bit errors synchronously, which means read
errors only propagate to the application level if DIRECT can-
not fix them. Therefore, “recovery time” can be measured
by its effect on read latency. On the other hand, in ZippyDB,
DIRECT handles bit errors asynchronously because recov-
ery procedures must go through the coordination layer, as
described in Section 4.2.
Experimental Setup. To evaluate ZippyDB, we set up a
cluster of 60 Facebook servers that capture and duplicate
live traffic from a heavily loaded service used in computing
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Figure 7: Read error rate for HDFS with varying UBER. HDFS-
DIRECT Chunk is based on chunk-by-chunk recovery, while HDFS-
DIRECT Majority is computed on bit-by-bit majority. The analyzed
data is computed using the formulas in §3.

user feeds. To evaluate HDFS, we set up an HDFS cluster on
machines with 8 ARMv8 cores at 2.4 GHz, 64 GB of RAM,
and 120 GB of flash. The cluster has three DataNode ma-
chines, and four machines act as HDFS clients. The machines
are connected with 10Gb links. HDFS experiments have a
load and read phase: in the load phase, we load the cluster
with 500, 128MB files with random data. In the read phase,
clients randomly select files to read. After the load phase, we
clear the page cache.

Error Injection. To simulate UBERs, we inject bit errors
into the files of both systems. In ZippyDB, we inject errors
with a custom RocksDB environment that flips bits as they
are read from a file. In HDFS, we run a script in between
the load and read phases that flips bits in on-disk files and
flushes them. For an UBER of µ, e.g. µ = 10�11, we inject
errors at the rate of 1 bit flip per 1/µ bits read. We tested with
UBERs higher than the manufacturer advertised 10�15 to test
the system’s performance under high error rates, and so that
we can measure enough bit errors during an experiment time
of 12 hours rather than several days (or years)3.

Baselines. We compare against unmodified HDFS and Zip-
pyDB, both systems used in production for many years.
Although unmodified HDFS does compute checksums for
chunks, it does not recover at that granularity. HDFS-DIRECT
leverages these checksums during recovery, which allows it
to recover blocks synchronously within client reads. In un-
modified ZippyDB, when a RocksDB instance encounters a
compaction error, the entire ZippyDB server crashes. While
this may seem like an overly aggressive baseline, due to the
difficulty of recovering an individual object in a logically-
replicated system, we did not find an alternative baseline that
was correct and easier to implement. One possible strawman
is to recover the individual RocksDB instance that encoun-
tered a bit error. Even this approach has significant error
amplification (tens of GBs per bit error), and suffers from
high implementation complexity, as ZippyDB has no existing
logic for recovering individual RocksDB instances.

3 Note that an UBER 10�11 is 10,000⇥ higher than 10�15.

UBER HDFS Thruput
[GB/s]

HDFS-DIRECT
Thruput [GB/s]

10�7 0.00±0.00 2.09±0.08
10�8 0.00±0.00 2.56±0.09
10�9 2.46±0.08 2.55±0.07
10�10 2.89±0.10 2.84±0.07
No errors 2.83±0.07 2.88±0.07

Table 2: Throughput of HDFS and HDFS-DIRECT. At UBER of
10�8, HDFS throughput collapses due to bit errors.
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Figure 8: Read latencies (128 MB) of HDFS and HDFS-DIRECT.
All reads fail in HDFS an UBER of 10�8 and higher. (Note that all
latencies in HDFS-DIRECT are shifted slightly to the left, and this
is due to temporal variations in our shared, experimental testbed.)

5.1 HDFS

UBER Tolerance. The main advantage of HDFS-DIRECT
over HDFS is the ability to tolerate much higher UBERs
with chunk-level recovery and majority voting. Figure 7 re-
ports block read error rates of HDFS with varying UBERs. In
HDFS, read errors are also considered data loss, because the
data is unreadable (and hence unrecoverable) even after trying
all 3 replicas. The figure shows the measured read error on our
HDFS experimental setup, within the UBER range in which
we could effectively measure errors, as well as the computed
read error based on the computation presented in §3. We com-
pared unmodified HDFS, with chunk-by-chunk recovery and
bit-by-bit majority. The experimental read error is collected
by running thousands of file reads and measuring how many
fail. The measured results are relatively close to the analyti-
cal results, and in fact experience even fewer errors than the
analytical model (the measured curves are shifted to the right
of the analytic curves). We believe the primary reason is that
the Taylor’s approximation used in the analytical model does
not hold for high UBERs. As expected, bit-by-bit majority
(green lines) reduces the read error rate even further due to
its lower error amplification (it can recover bit-by-bit). Both
our analysis and the experimental results show that HDFS-
DIRECT can tolerate a 10,000⇥–100,000⇥ higher UBER
and maintain the same read error rate.
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Figure 9: Read error rates over time in ZippyDB and ZippyDB-DIRECT, under varying UBERs.

UBER Time to Complete Benchmark (s)

10�7 177.4±2.5
10�8 169.4±2.1

No errors 166.2±1.8

Table 3: Time for HDFS-DIRECT to complete TeraSort benchmark.
Note that we do not present results for unmodified HDFS, because
for the UBERs tested, HDFS cannot complete any reads.

Overhead of DIRECT. Because DIRECT corrects bit errors
synchronously in HDFS, error correction poses an overhead
on reads that encounter bit errors. Table 2 shows the through-
put of both systems, measured by saturating the DataNodes
with four, 64-threaded clients that are continuously reading
random files. The throughput of HDFS goes to zero at an
UBER of 10�8, because it cannot complete any reads due
to corruption errors. Such failures do not occur in HDFS-
DIRECT, although its throughput decreases modestly due
to the overhead of synchronously repairing corrupt chunks
during reads.

For HDFS-DIRECT, we are also interested in latency in-
curred by synchronous chunk recovery. We compare the CDF
of read latencies of 128 MB blocks for different UBERs in
Figure 8. The higher the UBER, the more chunk recovery
requests that need to be made during a block read and the
longer these requests will take. The results in Figure 8 (and
Table 2) highlight the fine-grained tradeoff between perfor-
mance and recoverability that is exposed by DIRECT. We also
report HDFS read latencies, but there is little difference across
UBERs because only latency for successful block reads are
included; again, we do not report results for UBERs higher
than 10�8, since at those error rates HDFS cannot successfully
read any blocks.

We also note that the latencies reported are the time it
takes to read an entire 128 MB file, which is composed of
many (64K) chunks. Hence Figure 8 hides a small chunk tail
latency introduced by DIRECT. For example, chunks can now
encounter errors on 0, 1, 2, or 3 of its replicas. Most chunks
will encounter 0 errors, but some may encounter errors on all
3 of its replicas, which will require a relatively costly majority

voting round. However, these disparate chunk latencies are
hidden in the file latency, because all files have almost the
expected number of errors (128 MB·UBER).

Interestingly, these overheads become minimal when we
run an end-to-end benchmark. We ran the TeraSort bench-
mark, a canonical Hadoop benchmark. We configured Tera-
Sort to generate and sort 20 GB of data. Table 3 shows the
time it takes HDFS-DIRECT to complete the TeraSort bench-
mark. Note that at an UBER of 10�8, the time it takes to
complete the benchmark is similar to when there are no er-
rors (in fact, we do not report results for UBERs lower than
10�8 because they are so similar to results when there are no
errors). Even at an UBER of 10�7, the performance overhead
is relatively low, because TeraSort is dominated by sort time
in the mappers and reducers, rather than the time it takes to
read the data into memory. These results suggest that even at
very high UBERs, DIRECT imposes a low recovery overhead
in workloads that are not disk-bound.

5.2 ZippyDB
UBER Tolerance. One main difference between unmodified
ZippyDB and ZippyDB-DIRECT is that ZippyDB-DIRECT
avoids crashing when encountering a bit error. To character-
ize how many server crashes are mitigated with DIRECT, we
measured the average rate of compaction errors per hour per
server, over 12 hours. The results are shown in Table 4. Fig-
ure 9 shows the read error rate over time of both systems, and
Table 4 also shows the number of read errors as a percentage
of all reads. Note that the error rate patterns across UBERs are
different because they are run during different time intervals,
so each UBER experiment sees different traffic. We did try to
ensure read/write QPS and query distribution remain steady
throughout the experiments4.

The error rate is much higher for ZippyDB than ZippyDB-
DIRECT because not only do clients see errors from regular
read operations, but also they experience the spike in errors
when a server shuts down due to a compaction corruption.

4Unfortunately, there is no tracing system set up for ZippyDB, so we
were unable to capture and replay traces for consistency.
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Read Errors Compaction Errors
per Hour per Server

UBER ZippyDB ZippyDB-DIRECT ZippyDB

10�10 2.7308% 0.1865% 0.1991±0.1077
10�11 1.9808% 0.0400% 0.0621±0.0455
10�12 0.2650% 0.0008% 0.0038±0.0035
10�13 0.0108% 0.0002% 0.0003±0.0005

Table 4: Read and compaction errors with ZippyDB and ZippyDB-
DIRECT. The read errors are a percentage of the total number of
reads, and the compaction errors are the number of errors per hour
per server. ZippyDB-DIRECT is able to fix all compaction errors in
our experiment, while the server crashes in ZippyDB.

Time Spent in Reduced Durability. With DIRECT, we also
seek to minimize the amount of time spent in reduced durabil-
ity to decrease the likelihood of simultaneous replica failures.
Figure 10 shows a CDF of the time it takes to recover from
compaction errors in ZippyDB-DIRECT. The graph shows
the amount of time it takes for replicas to process the Paxos
log up until the patch request, as well as the overhead of con-
structing and inserting the patch. With DIRECT, this recovery
time is on the order of milliseconds. In contrast, the period
of reduced durability in unmodified ZippyDB due to a com-
paction error is on the order of minutes, depending on the
amount of data stored in the crashed ZippyDB server. This is
due to the high error amplification of ZippyDB, which inval-
idates 100s of RocksDB shards due to a single compaction
bit error. With DIRECT, ZippyDB can reduce its recovery
time due to a bit error by around 10,000⇥. Even with a more
reasonable baseline that only invalidates the single RocksDB
shard that experienced the error, we estimate that DIRECT
can reduce the recovery time by around 100x.

We also found that the recovery latency is dependent on the
size of the patch required to correct the corrupted key range.
Figure 11 presents a CDF of the size of the patches generated
during the recovery process. Patch size is also interesting
because the recovery mechanism described in Section 4.2.4
recovers a range of keys, since the exact keys on the corrupted
data block are impossible to identify. As we see in Figure 11,
even though recovering a range can in theory increase error
amplification, the number of keys required for recovery is
still low (a single RocksDB instance contains on the order
of millions of key-value pairs). Figure 11 also confirms that,
generally, as the UBER increases, patch sizes increase due to
more key ranges getting corrupted during a single compaction
operation. We note that UBER=10�12 yielded an anomalous
line, but by the time we analyzed the data, we no longer
had access to the experimental system to rerun the results.
We speculate that a variety of factors could have caused the
anomaly: 1) The corruption error could have occurred on a
particularly dense subset of the key space. 2) the corruption
error might have occurred during a read to a bottom-level
SST file in RocksDB; due to compaction, key-ranges used
for recovery grow progressively larger in lower levels of the
RocksDB LSM tree.
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Figure 10: CDF of compaction recovery latencies in ZippyDB-
DIRECT. ZippyDB-DIRECT takes milliseconds to recover from
corruptions, while ZippyDB takes minutes.
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Figure 11: CDF of patch sizes generated during the ZippyDB-
DIRECT recovery process. The patch size is small, which means
low error amplification.

Measuring Cost. DIRECT trades off higher reliability and
longer device lifetime for engineering and operational costs.
We are unable to capture these costs in our evaluation but
describe the changes to the software stack needed in order to
run DIRECT in production. For example, ZippyDB-DIRECT
required around 1200 lines of C++ code and HDFS-DIRECT
required around 450 lines of Java code. As we discuss in
Section 6, a DIRECT stack will also require running a hard-
ened filesystem, such as ZFS, so that the local filesystem can
continue functioning after encountering bit errors.

6 Discussion
Local File System Error Tolerance. When devices exhibit
higher UBERs, local file systems also experience higher
UBERs. DIRECT protects application-level metadata and
data, which are data blocks to the local file system. Pro-
tecting local file system metadata such as inodes, the FS
journal, etc. is beyond the scope of this paper. Several
existing file systems protect metadata against bit corrup-
tions [3, 17, 18, 43, 55, 70, 81]. The general approach is to
add checksums and locally replicate for error correction. An-
other approach is to use more reliable hardware for metadata
and less reliable hardware for data blocks [55].
Support for DIRECT. Some simple device-level mecha-
nisms would help datacenter operators run devices past their
manufacturer defined UBER. First, it would be beneficial if
devices have a less aggressive “bad block policy”, which is a
firmware protocol for retiring blocks once they reach some
heuristic-defined level of errors.

Second, it would be helpful if devices return the content of
corrupted pages, although this is not a hard requirement This
enables distributed storage applications to minimize recovery
amplification by recovering data at a granularity smaller than
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a device page. For example, to use majority voting, a system
operator must use devices that return the content of corrupted
pages, such as Open-Channel SSDs [25]. Fortunately, major-
ity voting is optional and only applicable to block-replicated
systems, and all other aspects of DIRECT apply if the sys-
tem operator uses traditional flash devices. In case corrupt
pages cannot be read, copies of local metadata must be stored
on separate physical pages. Otherwise, a page error could
invalidate all copies of the metadata.
Retrofitting PostgreSQL. As we discussed earlier, Post-
greSQL is difficult to retrofit with DIRECT. This is because
Postgres pages do not have indexing information; indexes in
Postgres are stored on separate pages, if at all (no indexes are
built without explicit user commands). Postgres checksums
are at the page granularity, so if there is a bit error on a data
page, DIRECT would need to figure out all the tuples stored
on the page in order to both minimize error amplification and
do correct recovery (Postgres uses MVCC to support trans-
actions). The only way to determine these tuples and their
versions is to comb through the index pages for any point-
ers to the corrupt page: in particular, we observe that what
we need for DIRECT is a reverse index, one that maps from
pages to tuples, rather than from tuples to pages. Generally,
for DIRECT to be efficient in logically-replicated systems, the
page layout must provide insight into what tuples are stored
on a page. For example, RocksDB builds such a reverse index
implicitly in the index blocks of its file format.
Network Partitions. Because DIRECT uses remote redun-
dancy to correct bit errors, network failures can now affect
the recovery process. Fortunately, real-world studies have
shown that the most common kind of network failure— link
failures — do not greatly affect application availability, be-
cause there are enough redundant paths built into the network
topology [41]. In future work, we plan to both model and
evaluate how transient or permanent network failures affect
both recovery latency and error rate.

7 Related Work
Our work departs from existing work on data integrity in
data storage systems [24, 26, 53, 73] because we expose bit
corruptions at the distributed layer, rather than containing
them in the storage layer. Furthermore, DIRECT does not
stop at identifying corruptions but introduces a principled and
performant way of fixing them to achieve high availability.
Software-level Redundancy. DIRECT is related to
PAR [20] and PASC [33], which demonstrate how consensus-
based protocols can be adapted to address bit-level errors.
Unlike both of these works, which only address consensus
protocols, our work tackles bit-level errors in general purpose
storage systems. We also show how increasing the resiliency
to bit errors can significantly reduce storage costs and
improve live recovery speed in datacenter environments.

Other related work use different approaches. HARDFS [35]
hardens local HDFS nodes by augmenting each node with a

lightweight version that verifies its behavior. HDFS-DIRECT
generalizes HARDFS, by only applying local protection to
metadata and leveraging distributed replicas to recover data.
FlexECC [46] and Duracache [60] are flash-based key-value
caches that use less reliable disks by treating devices errors
as cache misses. D-GRAID is a RAID storage system that
gracefully degrades by minimizing the amount of data needed
to recover from bit corruptions [74]. AHEAD and EDB-Tree
apply software-level error detection and correction to address
DRAM corruption in databases [51, 52].

There is a large number of distributed storage systems that
use inexpensive, unreliable hardware, while providing consis-
tency and reliability guarantees [23, 34, 40]. However, these
systems treat bit corruptions similar to entire-node failures
and suffer from high recovery amplification.

Hardware-level Redundancy. Several studies explore ex-
tending SSD lifetime via more aggressive or adaptive hard-
ware error correction. Tanakamuru et al. [77] propose adapt-
ing codeword size based on the device’s wear level to improve
SSD lifetime. Cai et al. [30] and Liu et al. [61] introduce tech-
niques to dynamically learn and adjust the cell voltage levels
based on retention age. Zhao et al. [83] propose using the soft
information with LDPC error correction to increase lifetime.
Our approach is different: instead of improving hardware-
based error correction, we leverage existing software-based
redundancy to address bit-level errors.

8 Conclusion and Future Work
This paper presents DIRECT, a set of general techniques that
use the inherent redundancy that exists in distributed storage
applications for live recovery of bit corruptions. We showed
with implementations of DIRECT in HDFS and ZippyDB
that these techniques are widely applicable and, once imple-
mented, can increase the bit error rate tolerance of distributed
systems by orders of magnitude.

We envision extending the DIRECT approach in several
directions. First, distributed storage systems can control error
correction depending on how sensitive particular data is to bit
corruptions (e.g. critical metadata). Second, distributed stor-
age systems can control hardware mechanisms that influence
the reliability as well as the performance of the device. For
example, storing fewer bits per cell may reduce the latency
of the device (at the expense of its capacity), and offer higher
reliability. Certain applications may prefer to use a hybrid
of low latency and low capacity devices for hot data, while
reserving the high capacity devices for colder data.
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