Algorithmic Improvements for
Fast Concurrent Cuckoo Hashing

Xiaozhou Li (Princeton)
David G. Andersen (CMU)
Michael Kaminsky (Intel Labs)

Michael J. Freedman (Princeton)

Carnegie
"% PRINCETON -~)
N UNIVERSITY ('ntel, %ﬁ}i‘;}sny

In this talk

e How to build a fast concurrent hash table

— algorithm and data structure engineering

* Experience with hardware transactional memory

— does NOT obviate the need for algorithmic optimizations

Concurrent hash table

* Indexing key-value objects
— Lookup (key)
— Insert (key, value)
— Delete (key)

 Fundamental building block for modern systems
— System applications (e.g., kernel caches)

— Concurrent user-level applications

 Targeted workloads: small objects, high rate

Goal: memory-efficient and high-throughput

 Memory efficient (e.g., > 90% space utilized)

* Fast concurrent reads (scale with # of cores)

* Fast concurrent writes (scale with # of cores)

Preview our results on a quad-core machine

64-bit key and 64-bit value
120 million objects, 100% Insert

wl C++11 std::unordered_map J

"1 Google dense_hash_map
M Intel TBB concurrent_hash_map | |

"I cuckoo+ with fine-grianed locking ‘
ul cuckoo+ with HTM [

cuckoo+ uses (less than) half of

the memory compared to others 10 20 30 40

Throughput (million regs per sec)

Background: separate chaining hash table

Chaining items hashed in same bucket

// \A // Y 7 \A y; \A

lookup | &——>|K|V| &—>{k|V| H—>{K]|V

——> K|V Good: simple

Bad: poor cache locality

i g LS Bad: pointers cost space

- e.g., Intel TBB concurrent hash map

Background: open addressing hash table

Probing alternate locations for vacancy
e.g., linear/quadratic probing, double hashing

T~

Good: cache friendly RN
lookup _.-

Bad: poor memory efficiency

— performance dramatically degrades when the P
usage grows beyond 70% capacity or so

- e.g., Google dense hash map wastes 50%
memory by default.

Our starting point

* Multi-reader single-writer cuckoo hashing [Fan, NSDI'13]
— Open addressing

— Memory efficient

— Optimized for read-intensive workloads

Cuckoo hashing

Each bucket has b slots for items (b-way set-associative)

Each key is mapped to two random buckets

— stored in one of them
buckets

hash, (x)

key x

hash,(x)

coNO UL A WNPEFE O

Predictable and fast lookup

* Lookup: read 2 buckets in parallel

— constant time in the worst case

Lookup X

coNO UL A WNPEFE O

Insert may need “cuckoo move”

e Tnsert:

Write to an empty slot in
one of the two buckets

Insert y

/\

coNO UL A WNPEFE O

Insert may need “cuckoo move”

e Tnsert:

0
11 r
2| e
Botharefull? 3| s | b
41 c f
Insert y /5 3 | n
\ °
71 k | x
8

Insert may need “cuckoo move”

e Insert: move keys to alternate buckets

0
1pr '?‘ ., possible
21 e | /b locations
|
318 ,?1 b ™ possible
41 c [f 9 Jocations
Insert vy ’ /

5 dan N _

- ™. possible
6 \\ /X locations
71 k | x
8

Insert may need “cuckoo move”

e ITnsert: move keys to alternate buckets

— find a “cuckoo path” to an empty slot
— move hole backwards

A technique in [Fan, NSDI’13]
No reader/writer false misses

Insert y

N\

coNO UL A WNPEFE O

Review our starting point [Fan, NSDI'13]:
Multi-reader single-writer cuckoo hashing

 Benefits
— support concurrent reads

— memory efficient for small objects
over 90% space utilized when set-associativity > 4
* Limits
50% Lookup
— Inserts are serialized 100% Lookup

poor performance for write-heavy workloads

Improve write concurrency

* Algorithmic optimizations
— Minimize critical sections

— Exploit data locality

* Explore two concurrency control mechanisms

— Hardware transactional memory

— Fine-grained locking

Algorithmic optimizations

* Lock after discovering a cuckoo path
— minimize critical sections

* Breadth-first search for an empty slot

— fewer items displaced
— enable prefetching

* |ncrease set-associativity (see paper)

— fewer random memory reads

Previous approach: writer locks the table
during the whole insert process

All Insert operations of other threads are blocked

unlock();

Lock after discovering a cuckoo path

Multiple Insert threads can look for cuckoo paths concurrently

Search for a cuckoo path; // no locking required

unlock();

2 |&collision =%

Lock after discovering a cuckoo path

Multiple Insert threads can look for cuckoo paths concurrently

while(1) {
Search for a cuckoo path; // no locking required

if(success)
unlock();
break;

unlock();

)

Cuckoo hash table = undirected cuckoo graph

bucket — vertex

key — edge
0
1. 0 1
// 1 V‘\
/ S a
X, L X a
a3 a_|v,
A LI 3
' J y b
" 6lclb
N . 7 6
, -7 C
91 z 9

Previous approach to search for an empty slot:
random walk on the cuckoo graph

Inserty--> g

*

*1e

cuckoo path:

a—e—r*s—rPx—rk>f>rd It

9 writes

One Insert may move at most hundreds
of items when table occupancy > 90%

Breadth-first search for an empty slot

Inserty--> g | *

—

7 *

Breadth-first search for an empty slot

cuckoo path: Inserty--> g | *
a—z—u—9 4 writes 4*/ =T =
Reduced to a logarithmic factor z
E 3 E 3 E 3 u * E 3 t 3
 Same # of reads — unlocked
* Far fewer writes — locked ¥

Prefetching: Scan one bucket and load next bucket concurrently

Concurrency control

 Hardware transactional memory

— Intel Transactional Synchronization Extensions (TSX)
— Hardware support for lock elision

Lock elision

Thread 1 Thread 2

acquire [N
I acquire
GE) critical
i section o
critical
section
release —
: release
v

No serialization if no data conflicts

Lock: Free

Hash Table

Implement lock elision with Intel TSX

fallback

\

LOCK START TX

l executel
C Critical Section)
abort

-- Abort reasons:
l success l e data conflicts

- optimized to make
< i€ .
g better decisions

e |limited HW resources

UNLOCK COMMIT

I I e unfriendly instructions

Principles to reduce transactional aborts

1. Minimize the size of transactional regions.

— Algorithmic optimizations

* J|ock later, BFS, increase set-associativity

Maximum size of transactional regions

previous cuckoolfan Nsbri3] optimized cuckoo

cuckoo search: 500 reads —
cuckoo move: 250 writes cuckoo move: 5 writes/reads

Principles to reduce transactional aborts

2. Avoid unnecessary access to common data.
— Make globals thread-local

3. Avoid TSX-unfriendly instructions in transactions

— e.g.,malloc () may cause problems

4. Optimize TSX lock elision implementation

— Elide the lock more aggressively for short transactions

Evaluation

* How does the performance scale?

— throughput vs. # of cores

* How much each technique improves performance?
— algorithmic optimizations

— lock elision with Intel TSX

Experiment settings

e Platform

— Intel Haswell i7-4770 @ 3.4GHz (with TSX support)
— 4 cores (8 hyper-threaded cores)

* Cuckoo hash table
— 8 byte keys and 8 byte values
— 2 GB hash table, ~¥134.2 million entries
— 8-way set-associative

e Workloads

— Fill an empty table to 95% capacity
— Random mixed reads and writes

Multi-core scaling comparison (50% Insert)

5 30 ==cuckoo+ w/ TSX lock elision

85 <@=cuckoo+ w/ fine-grained locking
% 20 Intel TBB concurrent_hash_map
é_ cuckoo w/ TSX

%" 10 -e-cuckoo+

_E . cuckoo

1 2 3 4 5 6 7 8
Number of threads

cuckoo: single-writer/multi-reader [Fan, NSDI’13]
cuckoo+: cuckoo with our algorithmic optimizations

Multi-core scaling comparison (10% Insert)

E 1512 ==cuckoo+ w/ TSX lock elision

o <@=cuckoo+ w/ fine-grained locking
< 30 -®-cuckoo+

E‘ 20 cuckoo w/ TSX

%D 10 Intel TBB concurrent_hash_map
_E . cuckoo

1 2 3 4 5 6 7 8
Number of threads

cuckoo: single-writer/multi-reader [Fan, NSDI’13]
cuckoo+: cuckoo with our algorithmic optimizations

Factor analysis of Insert performance

* cuckoo: multi-reader single-writer cuckoo hashing [Fan, NSDI’13]
* +TSX-glibc: use released Intel glibc TSX lock elision

* +TSX*: replace TSX-glibc with our optimized implementation

* +lock later: lock after discovering a cuckoo path

* +BFS: breadth first search for an empty slot

Lock elision enabled first and
algorithmic optimizations applied later

Throughput
(million regs per sec)
N
o

W
o

=
(&)

-

100% Insert

1 1 thread 29.21
[—1 8 threads 22 11
N 7.94
5.64
1.38 1.84
——
C(/ C(/ K K x/ K
op Chog Sk, S ooy, hs

Algorithmic optimizations applied first
and lock elision enabled later

Throughput
(million reqs per sec)

W

N

(-

100% Insert

ok 1 1 thread 29.21
1 8 threads
)]s 17.72
O_
>.64 3.72 3.67
1.38
0 '
<, ,
cx,oo C,(,OO

Both data structure and concurrency control optimizations

are needed to achieve high performance

Conclusion

e Concurrent cuckoo hash table
— high memory efficiency

— fast concurrent writes and reads

* Lessons with hardware transactional memory

— algorithmic optimizations are necessary

Q&A

Source code available: github.com/efficient/libcuckoo
— fine-grained locking implementation

Thanks!

