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In this talk

e How to build a fast concurrent hash table

— algorithm and data structure engineering

* Experience with hardware transactional memory

— does NOT obviate the need for algorithmic optimizations



Concurrent hash table

* Indexing key-value objects
— Lookup (key)
— Insert (key, value)
— Delete (key)

 Fundamental building block for modern systems
— System applications (e.g., kernel caches)

— Concurrent user-level applications

 Targeted workloads: small objects, high rate



Goal: memory-efficient and high-throughput

 Memory efficient (e.g., > 90% space utilized)

* Fast concurrent reads (scale with # of cores)

* Fast concurrent writes (scale with # of cores)




Preview our results on a quad-core machine

64-bit key and 64-bit value
120 million objects, 100% Insert
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Background: separate chaining hash table

Chaining items hashed in same bucket
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- e.g., Intel TBB concurrent hash map




Background: open addressing hash table

Probing alternate locations for vacancy
e.g., linear/quadratic probing, double hashing

T~

Good: cache friendly RN
lookup _.-

Bad: poor memory efficiency

— performance dramatically degrades when the P
usage grows beyond 70% capacity or so

- e.g., Google dense hash map wastes 50%
memory by default.




Our starting point

* Multi-reader single-writer cuckoo hashing [Fan, NSDI'13]
— Open addressing

— Memory efficient

— Optimized for read-intensive workloads



Cuckoo hashing

Each bucket has b slots for items (b-way set-associative)

Each key is mapped to two random buckets

— stored in one of them
buckets
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Predictable and fast lookup

* Lookup: read 2 buckets in parallel

— constant time in the worst case

Lookup X
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Insert may need “cuckoo move”

e Tnsert:

Write to an empty slot in
one of the two buckets

Insert y
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Insert may need “cuckoo move”

e Tnsert:
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Insert may need “cuckoo move”

e Insert: move keys to alternate buckets
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Insert may need “cuckoo move”

e ITnsert: move keys to alternate buckets

— find a “cuckoo path” to an empty slot
— move hole backwards

A technique in [Fan, NSDI’13]
No reader/writer false misses
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Review our starting point [Fan, NSDI'13]:
Multi-reader single-writer cuckoo hashing

 Benefits
— support concurrent reads

— memory efficient for small objects
over 90% space utilized when set-associativity > 4
* Limits
50% Lookup
— Inserts are serialized 100% Lookup

poor performance for write-heavy workloads



Improve write concurrency

* Algorithmic optimizations
— Minimize critical sections

— Exploit data locality

* Explore two concurrency control mechanisms

— Hardware transactional memory

— Fine-grained locking



Algorithmic optimizations

* Lock after discovering a cuckoo path
— minimize critical sections

* Breadth-first search for an empty slot

— fewer items displaced
— enable prefetching

* |ncrease set-associativity (see paper)

— fewer random memory reads



Previous approach: writer locks the table
during the whole insert process

All Insert operations of other threads are blocked

unlock();



Lock after discovering a cuckoo path

Multiple Insert threads can look for cuckoo paths concurrently

Search for a cuckoo path; // no locking required

unlock();

2 |&collision =%




Lock after discovering a cuckoo path

Multiple Insert threads can look for cuckoo paths concurrently

while(1) {
Search for a cuckoo path; // no locking required

if(success)
unlock();
break;

unlock();

)



Cuckoo hash table = undirected cuckoo graph

bucket — vertex

key — edge
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Previous approach to search for an empty slot:
random walk on the cuckoo graph

Inserty--> g

*

*1e

cuckoo path:
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9 writes

One Insert may move at most hundreds
of items when table occupancy > 90%



Breadth-first search for an empty slot

Inserty--> g | *

—

7 *




Breadth-first search for an empty slot

cuckoo path: Inserty--> g | *
a—z—u—9 4 writes 4*/ =T =
Reduced to a logarithmic factor z
E 3 E 3 E 3 u * E 3 t 3
 Same # of reads — unlocked
* Far fewer writes — locked ¥

Prefetching: Scan one bucket and load next bucket concurrently



Concurrency control

 Hardware transactional memory

— Intel Transactional Synchronization Extensions (TSX)
— Hardware support for lock elision



Lock elision

Thread 1 Thread 2
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release —
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No serialization if no data conflicts

Lock: Free

Hash Table




Implement lock elision with Intel TSX

fallback

\

LOCK START TX

l executel
C Critical Section )
abort

-- Abort reasons:
l success l e data conflicts

- optimized to make
< i€ .
g better decisions

e |limited HW resources

UNLOCK COMMIT

I I e unfriendly instructions




Principles to reduce transactional aborts

1. Minimize the size of transactional regions.

— Algorithmic optimizations

* J|ock later, BFS, increase set-associativity

Maximum size of transactional regions

previous cuckoolfan Nsbri3] optimized cuckoo

cuckoo search: 500 reads —
cuckoo move: 250 writes cuckoo move: 5 writes/reads




Principles to reduce transactional aborts

2. Avoid unnecessary access to common data.
— Make globals thread-local

3. Avoid TSX-unfriendly instructions in transactions

— e.g.,malloc () may cause problems

4. Optimize TSX lock elision implementation

— Elide the lock more aggressively for short transactions



Evaluation

* How does the performance scale?

— throughput vs. # of cores

* How much each technique improves performance?
— algorithmic optimizations

— lock elision with Intel TSX



Experiment settings

e Platform

— Intel Haswell i7-4770 @ 3.4GHz (with TSX support)
— 4 cores (8 hyper-threaded cores)

* Cuckoo hash table
— 8 byte keys and 8 byte values
— 2 GB hash table, ~¥134.2 million entries
— 8-way set-associative

e Workloads

— Fill an empty table to 95% capacity
— Random mixed reads and writes



Multi-core scaling comparison (50% Insert)
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Multi-core scaling comparison (10% Insert)
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Factor analysis of Insert performance

* cuckoo: multi-reader single-writer cuckoo hashing [Fan, NSDI’13]
* +TSX-glibc: use released Intel glibc TSX lock elision

* +TSX*: replace TSX-glibc with our optimized implementation

* +lock later: lock after discovering a cuckoo path

* +BFS: breadth first search for an empty slot



Lock elision enabled first and
algorithmic optimizations applied later

Throughput
(million regs per sec)
N
o

W
o

=
(&)

-

100% Insert

1 1 thread 29.21
[—1 8 threads 22 11
N 7.94
5.64
1.38 1.84
——
C(/ C(/ K K x/ K
op Chog Sk, S ooy, hs



Algorithmic optimizations applied first
and lock elision enabled later

Throughput
(million reqs per sec)
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Both data structure and concurrency control optimizations

are needed to achieve high performance



Conclusion

e Concurrent cuckoo hash table
— high memory efficiency

— fast concurrent writes and reads

* Lessons with hardware transactional memory

— algorithmic optimizations are necessary



Q&A

Source code available: github.com/efficient/libcuckoo
— fine-grained locking implementation

Thanks!



