Object Storage on CRAQ

High throughput chain replication for
read-mostly workloads

Jeff Terrace

Michael J. Freedman

PRINCETON
UNIVERSITY

Data Storage Revolution

e Relational Databases

géwflf Server2008 ORAC |_€®
MHS& @postgresm

e Object Storage (put/get)

Speed

— Dynamo Scalability

— PNUTS Availability
— CouchDB Throughput
— MemcacheDB No Complexity

— Cassandra

Eventual Consistency

Read Request

Write Request

\»\ Manager

Replica

Read Request

Eventual Consistency

e \Writes ordered after commit

e Reads can be out-of-order or stale
» Easy to scale, high throughput (&)

« Difficult application programming model &

Traditional Solution to Consistency

Write Request \ @ TWO-Phiolse
\ Commit:
eplica
P / 1. Prepare
\ eneeer 2. Vote: Yes
Reolica 3. Commit
- . Replica 4 ACk

Strong Consistency

e Reads and Writes strictly ordered

» Easy programming (&)

e Expensive implementation

. N

e Doesn’t scale well

Our Goal

» Easy programming (&)

e Easy to scale, high throughput \'\D

Chain Replication

van Renesse &

Schneider
(OSDI 2004)

Write Request

'

-~

~

\A/]_ W1
R1 —| R1
W2 | RrR2
R? W2
R3 | R3
‘ Read Request

Replica

— Manager
HEAD

; >
Replica

o

TAIL

Chain Replication

e Strong consistency
e Simple replication \:.9
e Increases write throughput

e Low read throughput %

e Can we increase throughput?

e Insight:
— Most applications are read-heavy (100:1)

CRAQ

e Two states per object — clean and dirty

Read Request

Read Request

Read Request

Read Request

Read Request

'

'

A

i

&

HEAD i Replica i Replica i Replica i TAIL)
Vl Vl Vl Vl Vl

CRAQ

e Two states per object — clean and dirty
o If latest version is clean, return value

o If dirty, contact tail for latest version number

Write Request Read Request Read Request

K i

—_— —_—
HEAD Replica Replica

e T T—
]]

«

TAIL

VJ! ’V2 v2’v2

Multicast Optimizations

e Each chain forms group

e Tail multicasts ACKs

Replica Replica Replica

V,,V, V,,V, V,,V, v,,V,

Multicast Optimizations

e Each chain forms group
e Tail multicasts ACKs

e Head multicasts write data

Write Request

. Replica . Replica Replica . TAIL
V2, V3 \£ ,[V v, r[V \£ r[Va] V3 r[VeJ

CRAQ Benefits

e From Chain Replication
— Strong consistenc |
; 9

— Simple replication
— Increases write throughput

o Additional Contributions
— Read throughput scales : :)
e Chain Replication with Apportioned Queries =%

— Supports Eventual Consistency

High Diversity

e Many data storage systems assume locality
— Well connected, low latency

e Real large applications are geo-replicated
— To provide low latency
— Fault tolerance

(source: Data Center Knowledge)

Multi-Datacenter CRAQ

Multi-Datacenter CRAQ

Chain Configuration

Motivation

1.

2.

3.

4.

Popular vs. scarce objects

Subset relevance

Datacenter diversity

Write locality

Solution

1.

Specify chain size

List datacenters
— dcy, dc,, ... dcy

. Separate sizes

— dcy, chain_size,, ...

Specify master

Master Datacenter

Implementation

e Approximately 3,000 lines of C++

e Uses Tame extensions to SFS asynchronous
I/O and RPC libraries

e Network operations use Sun RPC interfaces

e Uses Yahoo's ZooKeeper for coordination

Coordination Using ZooKeeper

e Stores chain metadata

e Monitors/notifies about node membership

DC1 DC2 @
S v

Evaluation
e Does CRAQ scale vs. CR?
e How does write rate impact performance?
e Can CRAQ recover from failures?

e How does WAN effect CRAQ?

e Tests use Emulab network emulation testbed

Read Throughput as Writes Increase

Reads/s

5000 10000 15000

0

/X-

b

MMHHM%%%%

>

O
O
A

'

CRAQ-7
CRAQ-3
CR-3

t

Writes/s

3X-@m@@@
SET
b 5 3 FEDEE B 6 ED|B
IX-%mmmammmmmammﬁaaammmé
[[[[[[
0 20 40 60 80 100

Failure Recovery (Read Throughput)

Reads/s

20000 40000 60000

0

DDDDDDDDDD | /l:ll:ll:lI:II:I|:|I:Il:lDI:II:IDDDDDDDDDDDDDDDDDDDDDD

O Length 7
A Length 5
O Length 3

30 40 50
Time (S)

Failure Recovery (Latency)

Read Latency (ms)

1.5

1.0

0.5

0.0

o
o
o
__________ LO _
.) | il
JE—— 5.. 8 1
[0 O |
GC) ™M M
b T | | | o T
oohoo b PP « |
2 i
| - —_
< o
8 | 1
= 0
O -4 EEEEEEEEs “;EEE}EEEE
| [| [[
10 20 0 10 20

Time (s) Time (s)

Geo-replicated Read Latency

60 80

Mean Latency (ms)
40

20

I N N N B — I I — A A

—mm—mmm}

- 0-B—-E2-85
IZII/
/
[
/
B /IZII
[J/J R
/IZII/
/[II
b _
_m A CR
1] L+ CRAQ
| | |
) 10 20

Writes/s

If Single Object Put/Get Insufficient

e Test-and-Set, Append, Increment
— Trivial to implement

— Heac

alone can evaluate

e Multip

e object transaction in same chain

— Can still be performed easily

— Head

alone can evaluate

e Multip

e chains

— An agreement protocol (2PC) can be used

— Only

heads of chains need to participate

— Although degrades performance (use carefully!)

Summary

e CRAQ Contributions?
— Challenges trade-off of consistency vs. throughput

e Provides strong consistency

e Throughput scales linearly for read-mostly

e Support for wide-area deployments of chains
e Provides atomic operations and transactions

Thank

You Questions?

