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Data Storage Revolution

e Relational Databases

géwflf Server2008 ORAC |_€®
MHS& @postgresm

e Object Storage (put/get)

Speed

— Dynamo Scalability

— PNUTS Availability
— CouchDB Throughput
— MemcacheDB No Complexity

— Cassandra



Eventual Consistency
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Eventual Consistency

e \Writes ordered after commit

e Reads can be out-of-order or stale
» Easy to scale, high throughput (&)

« Difficult application programming model &



Traditional Solution to Consistency
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Strong Consistency

e Reads and Writes strictly ordered

» Easy programming (&)

e Expensive implementation

. N

e Doesn’t scale well



Our Goal

» Easy programming (&)

e Easy to scale, high throughput \'\D



Chain Replication

van Renesse &

Schneider
(OSDI 2004)
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Chain Replication

e Strong consistency
e Simple replication \:.9
e Increases write throughput

e Low read throughput %

e Can we increase throughput?

e Insight:
— Most applications are read-heavy (100:1)



CRAQ

e Two states per object — clean and dirty
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CRAQ

e Two states per object — clean and dirty
o If latest version is clean, return value

o If dirty, contact tail for latest version number
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Multicast Optimizations

e Each chain forms group

e Tail multicasts ACKs
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Multicast Optimizations

e Each chain forms group
e Tail multicasts ACKs

e Head multicasts write data
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CRAQ Benefits

e From Chain Replication
— Strong consistenc |
; 9

— Simple replication
— Increases write throughput

o Additional Contributions
— Read throughput scales : :)
e Chain Replication with Apportioned Queries =%

— Supports Eventual Consistency



High Diversity

e Many data storage systems assume locality
— Well connected, low latency

e Real large applications are geo-replicated
— To provide low latency
— Fault tolerance

(source: Data Center Knowledge)




Multi-Datacenter CRAQ




Multi-Datacenter CRAQ




Chain Configuration

Motivation

1.

2.

3.

4.

Popular vs. scarce objects

Subset relevance

Datacenter diversity

Write locality

Solution

1.

Specify chain size

List datacenters
— dcy, dc,, ... dcy

. Separate sizes

— dcy, chain_size,, ...

Specify master



Master Datacenter




Implementation

e Approximately 3,000 lines of C++

e Uses Tame extensions to SFS asynchronous
I/O and RPC libraries

e Network operations use Sun RPC interfaces

e Uses Yahoo's ZooKeeper for coordination



Coordination Using ZooKeeper

e Stores chain metadata

e Monitors/notifies about node membership

DC1 DC2 @
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Evaluation
e Does CRAQ scale vs. CR?
e How does write rate impact performance?
e Can CRAQ recover from failures?

e How does WAN effect CRAQ?

e Tests use Emulab network emulation testbed



Read Throughput as Writes Increase

Reads/s
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Failure Recovery (Read Throughput)

Reads/s
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Failure Recovery (Latency)

Read Latency (ms)
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Geo-replicated Read Latency
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If Single Object Put/Get Insufficient

e Test-and-Set, Append, Increment
— Trivial to implement

— Heac

alone can evaluate

e Multip

e object transaction in same chain

— Can still be performed easily

— Head

alone can evaluate

e Multip

e chains

— An agreement protocol (2PC) can be used

— Only

heads of chains need to participate

— Although degrades performance (use carefully!)



Summary

e CRAQ Contributions?
— Challenges trade-off of consistency vs. throughput

e Provides strong consistency

e Throughput scales linearly for read-mostly

e Support for wide-area deployments of chains
e Provides atomic operations and transactions

Thank

You Questions?




