
Democratizing Content 
Publication with Coral

Mike Freedman

Eric Freudenthal
David Mazières

New York University

NSDI 2004



A problem…

� Feb 3: Google linked banner to “julia fractals”
� Users clicking directed to Australian University web site
� …University’s network link overloaded, web server taken 

down temporarily…



The problem strikes again!

� Feb 4: Slashdot ran the story about Google
� …Site taken down temporarily…again



The response from down under…

� Feb 4, later…Paul Bourke asks:

“They have hundreds (thousands?) of servers 

worldwide that distribute their traffic load. If even 

a small percentage of that traffic is directed to a 

single server … what chance does it have?”

Help the little guy  



Existing approaches
� Client-side proxying

� Squid, Summary Cache, hierarchical cache, 
CoDeeN, Squirrel, Backslash, PROOFS, …

� Problem: Not 100% coverage

� Throw money at the problem
� Load-balanced servers, fast network connections
� Problem:  Can’t afford or don’t anticipate need

� Content Distribution Networks (CDNs)
� Akamai, Digital Island, Mirror Image
� Centrally managed, needs to recoup costs



Coral’s solution…

� Implement an open CDN

� Allow anybody to contribute

� Works with unmodified clients

� CDN only fetches once from origin server
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Coral’s solution…

� Strong locality without a priori knowledge

� No hotspots in CDN

� Should all work automatically with nobody in charge
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Contributions
� Self-organizing clusters of nodes

� NYU and Columbia prefer one another to Germany

� Rate-limiting mechanism
� Everybody caching and fetching same URL does not 

overload any node in system

� Decentralized DNS Redirection
� Works with unmodified clients

No centralized management or a priori knowledge 
of proxies’ locations or network configurations



Using CoralCDN

� Rewrite URLs into “Coralized” URLs

www.x.com www.x.com.nyud.net:8090

� Directs clients to Coral, which absorbs load

� Who might “Coralize” URLs?

� Web server operators Coralize URLs

� Coralized URLs posted to portals, mailing lists

� Users explicitly Coralize URLs
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Functionality needed
� DNS: Given network location of resolver, return 

a proxy near the client

put (network info, self)

get (resolver info) {proxies} 

� HTTP: Given URL, find proxy caching object, 
preferably one nearby

put (URL, self)

get (URL)  {proxies}



� Supports put/get interface using key-based routing

� Problems with using DHTs as given

Use a DHT? 

� Lookup latency

� Transfer latency

� Hotspots

NYU Columbia

Germany

JapanNYC

NYC



Coral distributed index
� Insight: Don’t need hash table semantics

� Just need one well-located proxy

� put (key, value, ttl)
� Avoid hotspots

� get (key)
� Retrieves some subset of values put under key
� Prefer values put by nodes near requestor

� Hierarchical clustering groups nearby nodes 
� Expose hierarchy to applications

� Rate-limiting mechanism distributes puts
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Key-based XOR routing
000… 111…Distance to key

None

< 60 ms

< 20 ms

Thresholds

� Minimizes lookup latency 
� Prefer values stored by nodes within faster clusters



Prevent insertion hotspots

NYU

� Halt put routing at full and loaded node
� Full M vals/key with TTL > ½ insertion TTL

� Loaded puts traverse node in past minute

� Store at furthest, non-full node seen

� Store value once in each level cluster
� Always storing at closest node causes hotspot

…

(log n) reqs / min



� Coral lacks…

� Central management

� A priori knowledge of network topology

� Anybody can join system

� Any special tools (e.g., BGP feeds)

� Coral has…

� Large # of vantage points to probe topology

� Distributed index in which to store network hints

� Each Coral node maps nearby networks to self

Challenges for DNS Redirection



� Coral DNS server probes resolver

� Once local, stay local

When serving requests from nearby DNS resolver

� Respond with nearby Coral proxies

� Respond with nearby Coral DNS servers

Ensures future requests remain local

� Else, help resolver find local Coral DNS server

Coral’s DNS Redirection



� Return servers within appropriate cluster

� e.g., for resolver RTT = 19 ms, return from cluster < 20 ms

� Use network hints to find nearby servers

� i.e., client and server on same subnet

� Otherwise, take random walk within cluster

DNS measurement mechanism

Resolver

Browser
Coral

httpprx
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Server probes client (2 RTTs)
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Experimental results
� Consider requests to Australian web site:

� Does Coral absorb flash crowds?

� Does clustering help latency?

� Does Coral form sensible clusters?

� Does Coral prevent hotspots?

� Experimental setup
� 166 PlanetLab hosts; Coral node and client on each

� Twelve 41-KB files on 384 Kb/sec (DSL) web server

� (0.6 reqs / sec) / client  32,800 Kb/sec aggregate



Solves flash-crowd problem

Local caches begin to 
handle most requests

Coral hits in 
20 ms cluster

Hits to origin 
web server



Benefits end-to-end client latency



Benefits end-to-end client latency



Finds natural clusters

� Nodes share letter in same < 60 ms cluster

� Size of letter number of collocated nodes
in same cluster



Prevents put hotspots

� Nodes aggregate put/get rate:       ~12 million / min
� Rate-limit per node ( ):                               12 / min
� RPCs at closest leaked through 7 others:   83 / min

494 nodes

3 
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Conclusions

� Coral indexing infrastructure
� Provides non-standard P2P storage abstraction

� Stores network hints and forms clusters

� Exposes hierarchy and hints to applications

� Prevents hotspots

� Use Coral to build fully decentralized CDN
� Solves Slashdot effect

� Popular data widely replicated highly available

� Democratizes content publication



www.scs.cs.nyu.edu/coral

www.scs.cs.nyu.edu.nyud.net:8090/coral

For more information…


