
Democratizing Content
Publication with Coral

Mike Freedman

Eric Freudenthal
David Mazières

New York University

NSDI 2004

A problem…

� Feb 3: Google linked banner to “julia fractals”
� Users clicking directed to Australian University web site
� …University’s network link overloaded, web server taken

down temporarily…

The problem strikes again!

� Feb 4: Slashdot ran the story about Google
� …Site taken down temporarily…again

The response from down under…

� Feb 4, later…Paul Bourke asks:

“They have hundreds (thousands?) of servers

worldwide that distribute their traffic load. If even

a small percentage of that traffic is directed to a

single server … what chance does it have?”

Help the little guy

Existing approaches
� Client-side proxying

� Squid, Summary Cache, hierarchical cache,
CoDeeN, Squirrel, Backslash, PROOFS, …

� Problem: Not 100% coverage

� Throw money at the problem
� Load-balanced servers, fast network connections
� Problem: Can’t afford or don’t anticipate need

� Content Distribution Networks (CDNs)
� Akamai, Digital Island, Mirror Image
� Centrally managed, needs to recoup costs

Coral’s solution…

� Implement an open CDN

� Allow anybody to contribute

� Works with unmodified clients

� CDN only fetches once from origin server

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

Coral’s solution…

� Strong locality without a priori knowledge

� No hotspots in CDN

� Should all work automatically with nobody in charge

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Contributions
� Self-organizing clusters of nodes

� NYU and Columbia prefer one another to Germany

� Rate-limiting mechanism
� Everybody caching and fetching same URL does not

overload any node in system

� Decentralized DNS Redirection
� Works with unmodified clients

No centralized management or a priori knowledge
of proxies’ locations or network configurations

Using CoralCDN

� Rewrite URLs into “Coralized” URLs

www.x.com www.x.com.nyud.net:8090

� Directs clients to Coral, which absorbs load

� Who might “Coralize” URLs?

� Web server operators Coralize URLs

� Coralized URLs posted to portals, mailing lists

� Users explicitly Coralize URLs

httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one

near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

?

?

Origin
Server

�

Functionality needed
� DNS: Given network location of resolver, return

a proxy near the client

put (network info, self)

get (resolver info) {proxies}

� HTTP: Given URL, find proxy caching object,
preferably one nearby

put (URL, self)

get (URL) {proxies}

� Supports put/get interface using key-based routing

� Problems with using DHTs as given

Use a DHT?

� Lookup latency

� Transfer latency

� Hotspots

NYU Columbia

Germany

JapanNYC

NYC

Coral distributed index
� Insight: Don’t need hash table semantics

� Just need one well-located proxy

� put (key, value, ttl)
� Avoid hotspots

� get (key)
� Retrieves some subset of values put under key
� Prefer values put by nodes near requestor

� Hierarchical clustering groups nearby nodes
� Expose hierarchy to applications

� Rate-limiting mechanism distributes puts

httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one

near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one

near client

Cooperative
Web Caching

CoralCDN components

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrvCoral

httpprx
dnssrv

www.x.com.nyud.net

Fetch data
from nearby get get

216.165.108.10

Key-based XOR routing
000… 111…Distance to key

None

< 60 ms

< 20 ms

Thresholds

� Minimizes lookup latency
� Prefer values stored by nodes within faster clusters

Prevent insertion hotspots

NYU

� Halt put routing at full and loaded node
� Full M vals/key with TTL > ½ insertion TTL

� Loaded puts traverse node in past minute

� Store at furthest, non-full node seen

� Store value once in each level cluster
� Always storing at closest node causes hotspot

…

(log n) reqs / min

� Coral lacks…

� Central management

� A priori knowledge of network topology

� Anybody can join system

� Any special tools (e.g., BGP feeds)

� Coral has…

� Large # of vantage points to probe topology

� Distributed index in which to store network hints

� Each Coral node maps nearby networks to self

Challenges for DNS Redirection

� Coral DNS server probes resolver

� Once local, stay local

When serving requests from nearby DNS resolver

� Respond with nearby Coral proxies

� Respond with nearby Coral DNS servers

Ensures future requests remain local

� Else, help resolver find local Coral DNS server

Coral’s DNS Redirection

� Return servers within appropriate cluster

� e.g., for resolver RTT = 19 ms, return from cluster < 20 ms

� Use network hints to find nearby servers

� i.e., client and server on same subnet

� Otherwise, take random walk within cluster

DNS measurement mechanism

Resolver

Browser
Coral

httpprx
dnssrv

Server probes client (2 RTTs)

Coral
httpprx
dnssrv

Experimental results
� Consider requests to Australian web site:

� Does Coral absorb flash crowds?

� Does clustering help latency?

� Does Coral form sensible clusters?

� Does Coral prevent hotspots?

� Experimental setup
� 166 PlanetLab hosts; Coral node and client on each

� Twelve 41-KB files on 384 Kb/sec (DSL) web server

� (0.6 reqs / sec) / client 32,800 Kb/sec aggregate

Solves flash-crowd problem

Local caches begin to
handle most requests

Coral hits in
20 ms cluster

Hits to origin
web server

Benefits end-to-end client latency

Benefits end-to-end client latency

Finds natural clusters

� Nodes share letter in same < 60 ms cluster

� Size of letter number of collocated nodes
in same cluster

Prevents put hotspots

� Nodes aggregate put/get rate: ~12 million / min
� Rate-limit per node (): 12 / min
� RPCs at closest leaked through 7 others: 83 / min

494 nodes

3

2

1

Conclusions

� Coral indexing infrastructure
� Provides non-standard P2P storage abstraction

� Stores network hints and forms clusters

� Exposes hierarchy and hints to applications

� Prevents hotspots

� Use Coral to build fully decentralized CDN
� Solves Slashdot effect

� Popular data widely replicated highly available

� Democratizes content publication

www.scs.cs.nyu.edu/coral

www.scs.cs.nyu.edu.nyud.net:8090/coral

For more information…

