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Wide-Area Storage

Stores:

Status Updates
Likes

Comments
Photos
Friends List

Stores:
Tweets
Favorites
Following List

g+

Stores:
Posts

+1s
Comments
Photos
Circles



Wide-Area Storage

Serves Requests Quickly
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Desired Properties: ALPS

Availability
Low Latency
Partition Tolerance

Scalability

“Always On”



Scalability

Increase capacity and throughput in each datacenter




Desired Property: Consistency

* Restricts order/timing of operations

* Stronger consistency:

— Makes programming easier

— Makes user experience better




Consistency with ALPS

Strong Impossible [Brewer00, GilbertLynch02]

Sequential Impossible [LiptonSandberg88, AttiyaWelch94]

N od

Causal COPS

Amazon LinkedIn Facebook/Apache
Eventual Dynamo Voldemort Cassandra
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Causality By Example

Causality (—>)

Remove boss from
Thread-of-Execution

‘ Gets-From
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M Post to friends: Y
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Time for a new job! \
> "L Friend reads post ® ®
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Causality Is Useful

For Users: For Programmers:

Friends
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Conflicts in Causal




Conflicts in Causal
Causal + Conflict Handling = Causal+
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Previous Causal+ Systems

e Bayou ‘94, TACT ‘00, PRACTI ‘06
— Log-exchange based

* Log is single serialization point
— Implicitly captures and enforces causal order
— Limits scalability OR
— No cross-server causality



Scalability Key Idea

 Dependency metadata explicitly captures causality

* Distributed verifications replace single serialization

— Delay exposing replicated puts until all
dependencies are satisfied in the datacenter
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Dependencies

* Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters



Dependencies

 Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters

Client 1

-

put_after(Key,Val,deps)

>

put(Key, VaI))

version

~ (Thread-Of-Execution Rule)




Dependencies

 Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters

Client 2
get(K) N
get(K) > | value,version,deps'
? <« value |
~ (Gets-From Rule) deps'
> (Transitivity Rule) w




Causal+ Replication
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put_after(K,V,deps)
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Causal+ Replication

dep_check(L337l P~ N

put_after(K,V,deps)

Exposing values after
dep_checks return
ensures causal+




Basic COPS Summary

* Serve operations locally, replicate in background
— “Always On”

e Partition keyspace onto many nodes
— Scalability

* Control replication with dependencies
— Causal+ Consistency



Gets Aren’t Enough

You're
Fired!!

Operations Remote

Datacenter

My Remote [

New Job!




Gets Aren’t Enough

My Remote [

You're
Fired!!

Operations Datacenter

Progress



Get Transactions

Provide consistent view of multiple keys

— Snapshot of visible values

Keys can be spread across many servers

Takes at most 2 parallel
rounds of gets

No locks, no blocking

Low Latency



Get Transactions

Remote
Datacenter

My
Operations Remote

Could Get
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System So Far

 ALPS and Causal+, but ...

* Proliferation of dependencies reduces efficiency
— Results in lots of metadata
— Requires lots of verification

* We need to reduce metadata and dep checks
— Nearest dependencies
— Dependency garbage collection



Many Dependencies

* Dependencies grow with client lifetime

Put

Put

Put Get




Nearest Dependencies

* Transitively capture all ordering constraints




The Nearest Are Few

* Transitively capture all ordering constraints

N

/
N\

/

| 17

AN

¢
l

o
L1/
|

@

V)

«—



The Nearest Are Few

Only check nearest when replicating
COPS only tracks nearest
COPS-GT tracks non-nearest for transactions

Dependency garbage collection tames
metadata in COPS-GT



Extended COPS Summary

* Gettransactions _—

—>

— Provide consistent view of multiple keys =——

: v >
* Nearest Dependencies VY !
— Reduce number of dep checks \%7
— Reduce metadata in COPS



Evaluation Questions

* Overhead of get transactions?
 Compare to previous causal+ systems?

e Scale?



Experimental Setup
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Max Throughput (Kops/sec)

COPS & COPS-GT
Competitive for Expected Workloads

All Put Workload — 4 Servers / Datacenter
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Max Throughput (Kops/sec)

COPS & COPS-GT
Competitive for Expected Workloads

Varied Workloads — 4 Servers / Datacenter
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COPS Low Overhead vs. LOG

* COPS —dependencies = LOG

e 1 server per datacenter only

 COPS and LOG achieve very similar throughput
— Nearest dependencies mean very little metadata
— In this case dep_checks are function calls
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Throughput (Kops)

LOG

COPS Scales Qut
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Conclusion

* Novel Properties
— First ALPS and causal+ consistent system in COPS
— Lock free, low latency get transactions in COPS-GT

* Novel techniques

— Explicit dependency tracking and verification with
decentralized replication

— Optimizations to reduce metadata and checks

* COPS achieves high throughput and scales out



