Don’t Settle for Eventual:

Scalable Causal

g Consistency for

B \\/ide-Area Storage
"W with COPS

Whyatt Lloyd”
Michael J. Freedman”
Michael Kaminsky’

David G. Andersen?
*Princeton, Intel Labs, *CMU



Wide-Area Storage

Stores:

Status Updates
Likes

Comments
Photos
Friends List

Stores:
Tweets
Favorites
Following List

g+

Stores:
Posts

+1s
Comments
Photos
Circles



Wide-Area Storage

Serves Requests Quickly




9| %
-
]
()
-
o
t




Desired Properties: ALPS

Availability
Low Latency
Partition Tolerance

Scalability

“Always On”



Scalability

Increase capacity and throughput in each datacenter




Desired Property: Consistency

* Restricts order/timing of operations

* Stronger consistency:

— Makes programming easier

— Makes user experience better




Consistency with ALPS

Strong Impossible [Brewer00, GilbertLynch02]

Sequential Impossible [LiptonSandberg88, AttiyaWelch94]

N od

Causal COPS

Amazon LinkedIn Facebook/Apache
Eventual Dynamo Voldemort Cassandra




e AL 1P 5 Cominey—

Scatter 3¢ ¥ R o " Strong
Walter X XX PSI + Txn
COPS vV v vy Causal+
Bayou vV vV v Causal+
PNUTS vV v ? vV Per-Key Seq.

Dynamo o/ o/ " " ® Eventual




Causality By Example

Causality (—>)

Remove boss from
Thread-of-Execution

‘ Gets-From
. Transitivit
M Post to friends: Y
. . ., NewJpb!
Time for a new job! \
> "L Friend reads post ® ®

friends group

k.



Causality Is Useful

For Users: For Programmers:

Friends

. Photo Upload

BT

p ) & S e

y

New Job!

%;‘—! Add to album

Sy ¥
-~ e £

Employment Integrity Referential Integrity



Conflicts in Causal




Conflicts in Causal
Causal + Conflict Handling = Causal+

et S




Previous Causal+ Systems

e Bayou ‘94, TACT ‘00, PRACTI ‘06
— Log-exchange based

* Log is single serialization point
— Implicitly captures and enforces causal order
— Limits scalability OR
— No cross-server causality



Scalability Key Idea

 Dependency metadata explicitly captures causality

* Distributed verifications replace single serialization

— Delay exposing replicated puts until all
dependencies are satisfied in the datacenter









put Put 2
put  + ©
after _ ordering be\\@

?

metadata \LG\\’

Client Library
—

Ut
? P - pUt\after .

PN
Replication Q /




Dependencies

* Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters



Dependencies

 Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters

Client 1

-

put_after(Key,Val,deps)

>

put(Key, VaI))

version

~ (Thread-Of-Execution Rule)




Dependencies

 Dependencies are explicit metadata on values
* Library tracks and attaches them to put_afters

Client 2
get(K) N
get(K) > | value,version,deps'
? <« value |
~ (Gets-From Rule) deps'
> (Transitivity Rule) w




Causal+ Replication

A
\ke\\N

put_after(K,V,deps)

<€

Replication Q




Causal+ Replication

dep_check(L337l P~ N

put_after(K,V,deps)

Exposing values after
dep_checks return
ensures causal+




Basic COPS Summary

* Serve operations locally, replicate in background
— “Always On”

e Partition keyspace onto many nodes
— Scalability

* Control replication with dependencies
— Causal+ Consistency



Gets Aren’t Enough

You're
Fired!!

Operations Remote

Datacenter

My Remote [

New Job!




Gets Aren’t Enough

My Remote [

You're
Fired!!

Operations Datacenter

Progress



Get Transactions

Provide consistent view of multiple keys

— Snapshot of visible values

Keys can be spread across many servers

Takes at most 2 parallel
rounds of gets

No locks, no blocking

Low Latency



Get Transactions

Remote
Datacenter

My
Operations Remote

Could Get

BOSS Portugal!

n,\ﬁ’

e Portugal!
!
Portugall o | New Job!
I I
3 S Portugal!

Boss Portugal!

Progress



System So Far

 ALPS and Causal+, but ...

* Proliferation of dependencies reduces efficiency
— Results in lots of metadata
— Requires lots of verification

* We need to reduce metadata and dep checks
— Nearest dependencies
— Dependency garbage collection



Many Dependencies

* Dependencies grow with client lifetime

Put

Put

Put Get




Nearest Dependencies

* Transitively capture all ordering constraints




The Nearest Are Few

* Transitively capture all ordering constraints

N

/
N\

/

| 17

AN

¢
l

o
L1/
|

@

V)

«—



The Nearest Are Few

Only check nearest when replicating
COPS only tracks nearest
COPS-GT tracks non-nearest for transactions

Dependency garbage collection tames
metadata in COPS-GT



Extended COPS Summary

* Gettransactions _—

—>

— Provide consistent view of multiple keys =——

: v >
* Nearest Dependencies VY !
— Reduce number of dep checks \%7
— Reduce metadata in COPS



Evaluation Questions

* Overhead of get transactions?
 Compare to previous causal+ systems?

e Scale?



Experimental Setup

Local Datacenter

Clients COPS Servers

//'C
ay,
(@)
nRemote DC

= { | 0000




Max Throughput (Kops/sec)

COPS & COPS-GT
Competitive for Expected Workloads

All Put Workload — 4 Servers / Datacenter

100
80 . . &' .
High per-client o Low per-client
60 I write rates result #write rates expected
40 k. in 1000s of. g
dependencies ,'
20 |} e COPS —+—

1 10 100 1000

People tweeting | Average Inter-Op Delay (ms) | People tweeting
1000 times/sec 1 time/sec




Max Throughput (Kops/sec)

COPS & COPS-GT
Competitive for Expected Workloads

Varied Workloads — 4 Servers / Datacenter

100

80

60

40

20 | b g COPS —+—
- 3ol COPS-GT ---©---

Pathological < > Expected
Workload



COPS Low Overhead vs. LOG

* COPS —dependencies = LOG

e 1 server per datacenter only

 COPS and LOG achieve very similar throughput
— Nearest dependencies mean very little metadata
— In this case dep_checks are function calls

o4 R---B B BB BHE B R BB
2-MI R B R BB BE BER BB
0

Pathological High 1:16 1/128 16KB Expected
Inter-Op Delay Put:Get Variance Values Workload

Normalized Thrannhniit




Throughput (Kops)

LOG

COPS Scales Qut

2 4 8 16 1 2 4 8
COPS COPS-GT




Conclusion

* Novel Properties
— First ALPS and causal+ consistent system in COPS
— Lock free, low latency get transactions in COPS-GT

* Novel techniques

— Explicit dependency tracking and verification with
decentralized replication

— Optimizations to reduce metadata and checks

* COPS achieves high throughput and scales out



