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Don’t Settle for Eventual Consistency 

Stronger properties for low-latency geo-replicated storage
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Geo-replicated storage provides copies of the same data at multiple, geographically distinct locations. 
Facebook, for example, geo-replicates its data (profiles, friends lists, likes, etc.) to data centers on the 
east and west coasts of the United States, and in Europe. In each data center, a tier of separate Web 
servers accepts browser requests and then handles those requests by reading and writing data from 
the storage system, as shown in figure 1. 

Geo-replication brings two key benefits to Web services: fault tolerance and low latency. It 
provides fault tolerance through redundancy: if one data center fails, others can continue to provide 
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the service. It provides low latency through proximity: clients can be directed to and served by a 
nearby data center to avoid speed-of-light delays associated with cross-country or round-the-globe 
communication. 

Geo-replication brings its challenges, however. The famous CAP theorem, conjectured by 
Brewer1 and proved by Gilbert and Lynch,7 shows it is impossible to create a system that has strong 
consistency, is always available for reads and writes, and is able to continue operating during network 
partitions. Each of these properties is highly desirable. Strong consistency—more formally known 
as linearizability—makes programming easier. Availability ensures that front-end Web servers can 
always respond to client requests. Partition tolerance ensures that the system can continue operating 
even when data centers cannot communicate with one another. Faced with the choice of at most 
two of these properties, many systems5,8,16 have chosen to sacrifice strong consistency to ensure 
availability and partition tolerance. Other systems—for example, those that deal with money—
sacrifice availability and/or partition tolerance to achieve the strong consistency that is necessary for 
the applications built on top of them.4,15 

The former choice of availability and partition tolerance is not surprising, however, given that it 
also enables the storage system to provide low latency—defined as latency for reads and writes that 
is less than half the speed-of-light delay between the two most distant data centers. A proof that 
predates the CAP theorem by 14 years10 shows that it is impossible to guarantee low latency and 
provide strong consistency at the same time. Front-end Web servers read or write data from the storage 
system potentially many times to answer a single request; therefore, low latency in the storage system 
is critical for enabling fast page-load times, which are linked to user engagement with a service—and, 
thus, revenue. An always-available and partition-tolerant system can provide low latency on the order 
of milliseconds by serving all operations in the local data center. A strongly consistent system must 
contact remote data centers for reads and/or writes, which takes hundreds of milliseconds. 

Thus, systems that sacrifice strong consistency gain much in return. They can be always available, 
guarantee responses with low latency, and provide partition tolerance. In COPS (Clusters of Order-
preserving Servers),11 developed for our original work on this subject, we coined the term ALPS for 
systems that provide these three properties—always available, low latency, and partition tolerance—and 
one more: scalability. Scalability implies that adding storage servers to each data center produces a 
proportional increase in storage capacity and throughput. Scalability is critical for modern systems 
because data has grown far too large to be stored or served by a single machine. 

The question remains as to what consistency properties ALPS systems can provide. Before 
answering this, let’s consider the consistency offered by existing ALPS systems. For systems such as 
Amazon’s Dynamo, LinkedIn’s Project Voldemort, and Facebook/Apache’s Cassandra, the answer is 
eventual consistency. 

EVENTUAL CONSISTENCY
Eventual consistency is a widely used term that can have many meanings. Here it is defined as the 
strongest property provided by all systems that claim to provide it: namely, writes to one data center 
will eventually appear at other data centers, and if all data centers have received the same set of 
writes, they will have the same values for all data. 

Contrast this with the following part of the definition of strong consistency (linearizability): a 
total order exists over all operations in the system. This makes programming a strongly consistent 
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storage system simple, or at least simpler: it behaves as a single entity. Eventual consistency does not 
say anything about the ordering of operations. This means that different data centers can reflect 
arbitrarily different sets of operations. For example, if someone connected to the West Coast data 
center sets A=1, B=2, and C=3, then someone else connected to the East Coast data center may 
see only B=2 (not A=1 or C=3), and someone else connected to the European data center may see 
only C=3 (not A=1 or B=2). This makes programming eventually consistent storage complicated: 
operations can appear out of order. 

The out-of-order arrival leads to many potential anomalies in eventually consistent systems. Here 
are a few examples for a social network: 

Figure 2 shows that in the West Coast data center, Alice posts, she comments, and then Bob 
comments. In the East Coast data center, however, Alice’s comment has not appeared, making Bob 
look less than kind. Figure 3 shows that in the West Coast data center, a grad student carefully 
deletes incriminating photos before accepting an advisor as a friend. Unfortunately, in the East Coast 
data center, the friend-acceptance appears before the photo deletions, allowing the advisor to see the 
photos.3 

Figure 4 shows that in the West Coast data center, Alice uploads photos, creates an album, and 
then adds the photos to the album, but in the East Coast data center, the operations appear out of 
order and her photos do not end up in the album. Finally, in figure 5, Cindy and Dave have $1,000 
in their joint bank account. Concurrently, Dave withdraws $1,000 from the East Coast data center 
and Cindy withdraws $1,000 from the West Coast data center. Once both withdrawals propagate 
to each data center, their account is in a consistent state (-$1,000), but it is too late to prevent the 
mischievous couple from making off with their ill-gotten gains. 

IS EVENTUAL CONSISTENCY THE ONLY OPTION?

Given that theoretical results show that the ALPS properties are incompatible with strong 
consistency, do we have to settle for eventual consistency? Are we stuck with all the anomalies that 
come with eventual consistency? No! 

Our research systems, COPS11 and Eiger,12 have pushed on the properties that ALPS systems can 
provide. In particular, they provide causal consistency instead of eventual, which prevents the first 
three anomalies. (The fourth anomaly in figure 5 is unfortunately unavoidable in a system that 
accepts writes in every location and guarantees low latency.) In addition, they provide limited forms 
of read-only and write-only transactions that allow programmers to consistently read or write data 
spread across many different machines in a data center. 

CAUSAL CONSISTENCY 
Causal consistency ensures that operations appear in the order the user intuitively expects. More 
precisely, it enforces a partial order over operations that agrees with the notion of potential causality. 
If operation A happens before operation B, then any data center that sees operation B must see 
operation A first. 

Three rules define potential causality:9

1. Thread of execution. If a and b are two operations in a single thread of execution, then a -> b if 
operation a happens before operation b. 
2. Reads-from. If a is a write operation and b is a read operation that returns the value written by a, 
then a -> b.
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3. Transitivity. For operations a, b, and c, if a -> b and b -> c, then a -> c. Thus, the causal relationship 
between operations is the transitive closure of the first two rules. 

Causal consistency ensures that operations appear in an order that agrees with these rules. This 
makes users happy because their operations are applied everywhere in the order they intended. It 
makes programmers happy because they no longer have to reason about out-of-order operations. 
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Causal consistency prevents each of our first three anomalies, turning them into regularities. 

REGULARITY 1: NO MISSING COMMENTS.

In the West Coast data center, Alice posts, and then she and Bob comment:
Op1 Alice: I’ve lost my wedding ring. 
Op2 Alice: Whew, found it upstairs. 
Op3 [Bob reads Alice’s post and comment.] 
Op4 Bob: I’m glad to hear that. 
Op1 -> Op2 by the thread-of-execution rule; Op2 -> Op3 by the reads-from rule; Op3 -> Op4 by the 

thread-of-execution rule.
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Write operations are only propagated and applied to other data centers, so the full causal ordering 
that is enforced is Op1 -> Op2 -> Op4. 

Now, in the East Coast data center, operations can appear only in an order that agrees with 
causality. Thus: 

Op1 Alice: I’ve lost my wedding ring.
Then 
Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs. 
Then 
Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs. 
Op4 Bob: I’m glad to hear that.

but never the anomaly that makes Bob look unkind. 

REGULARITY 2: NO LEAKED PHOTOS

In the West Coast data center, a grad student carefully deletes incriminating photos before accepting 
an advisor as a friend:

Op1 [Student deletes incriminating photos.]
Op2 [Student accepts advisor as a friend.] 
Op1 -> Op2 by the thread-of-execution rule. 
Now, in the East Coast data center, operations can appear only in an order that agrees with 

causality, which is: 
[Student deletes incriminating photos.]
Then 
[Student deletes incriminating photos.]
[Student accepts advisor as a friend.]

but never the anomaly that leaks photos to the student’s advisor. 

REGULARITY 3: NORMAL PHOTO ALBUM

In the West Coast data center, Alice uploads photos and then adds them to her Summer 2013 album: 
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.] 
Op1 -> Op2 -> Op3 by the thread-of-execution rule. 
Now, in the East Coast data center, the operations can appear only in an order that agrees with 

causality: 
Op1 [Alice uploads photos.]
Then 
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Then 
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.]
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but never in a different order that results in an empty album or complicates what a programmer 
must think about. 

WHAT CAUSAL CONSISTENCY CANNOT DO

Anomaly 4 represents the primary limitation of causality consistency: it cannot enforce global 
invariants. Anomaly 4 has an implicit global invariant—that bank accounts cannot go below 
$0—that is violated. This invariant cannot be enforced in an ALPS system. Availability dictates 
that operations must complete, and low latency ensures they are faster than the time it takes to 
communicate between data centers. Thus, the operations must return before the data centers can 
communicate and discover the concurrent withdrawals. 

True global invariants are quite rare, however. E-commerce sites, where it seems inventory cannot 
go below 0, have back-order systems in place to deal with exactly that scenario. Even some banks do 
not enforce global $0 invariants, as shown by a recent concurrent withdrawal attack on ATMs that 
extracted $40 million from only 12 account numbers.14

Another limitation of causal consistency also stems from the possibility of concurrent operations. 
Programmers must decide how to deal with concurrent write operations to the same data at different 
data centers. A common strategy is the last-writer-wins rule in which one concurrent update 
overwrites the other. For example, a social-network user can have only one birthday. Some situations, 
however, require a more careful approach. Consider a scenario where Alice has two pending friend 
requests being accepted concurrently at different data centers. Each accepted friend request should 
increase Alice’s friend count by one. With the last-writer-wins rule, however, one of the increments 
will overwrite the other. Instead, the two increments must be merged to increase Alice’s total friend 
count by two. With causally consistent storage (as with eventually consistent storage), programmers 
must determine if the last-writer-wins rule is sufficient, or if they have to write a special function for 
merging concurrent updates. 

The final limitation of causal consistency is that it cannot see or enforce causality outside of the 
system. The classic example is a cross-country phone call. If Alice on the West Coast updates her 
profile, calls Bob on the East Coast, and then Bob updates his profile, the system will not see the 
causal relationship between the two updates and will not enforce any ordering between them. 

PROVIDING CAUSAL CONSISTENCY 

At a high level, our systems, COPS and Eiger, capture causality through a client library and then 
enforce the observed ordering when replicating writes to other data centers. The ordering is enforced 
by delaying the application of a write until all causally previous operations have been applied. This 
delay is necessary only in remote data centers; all causally previous operations have already been 
applied at the data center that accepts the write. The client library that tracks causality sits between 
the Web servers and the storage tiers in each data center. (In current implementations it is on the 
Web servers.) Individual clients are identified through a special actor_id field in the API to the client 
library that allows the operations of different users on the same Web server to be disentangled. For 
example, in a social network the unique user ID could be used as the actor_id. 

Let’s first describe an inefficient system that provides causality and then explain how to refine it 
to make it efficient. 

Our systems operate by tracking and enforcing the ordering only between write operations. Read 
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operations establish causal links between write operations by different clients, but they are not 
replicated to other data centers and thus do not need to have an ordering enforced on them. For 
example, in anomaly/regularity 1, Bob’s read (Op3) of Alice’s post (Op1) and comment (Op2) creates 
the causal link that orders Bob’s later comment (Op4) after Alice’s post and comment. A causal link 
between two write operations is called a dependency—the later operation depends on the earlier 
operation. 

Figure 6 shows the relationship between the graph of causality and the graph of dependencies. A 
dependency is a small piece of metadata that uniquely identifies a write operation. It has two fields: 
a key, which is the data location that is updated by the write; and a timestamp, which is a globally 
unique logical timestamp assigned by the logical clock of the server in the data center where it 
was originally written. Figure 6 illustrates (a) a set of example operations; (b) the graph of causality 
between them; (c) the corresponding dependency graph; and (d) a table listing dependences with 
one-hop dependencies shown in bold.

In the initial design the client library tracks the full set of dependencies for each client. Tracking 
all dependencies for a client requires tracking three sets of write operations: 
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1. All of the client’s previous write operations, because of the thread-of-execution rule. 
2. All of the operations that wrote values it read, because of the reads-from rule. 
3. All of the operations that the operations in 1 and 2 depend on, because of the transitivity rule. 

Tracking the first set is straightforward: servers return the unique timestamp assigned to each 
write to the client library, which then adds a dependency on that write. Tracking the second set 
is also straightforward: servers return the timestamp of the write that wrote the value when they 
respond to reads, and then the client library adds a dependency on that write. The third set of 
operations is a bit trickier: it requires that every write carry with it all of its dependencies, and that 
these dependencies are stored with the value, returned with reads of that value, and then added to 
the reader’s set of dependencies by the client library. 

With the full set of dependencies for each client stored in its client library, all of these 
dependencies can be attached to each write operation the client issues. Now when a server in a 
remote data center receives a write with its full set of dependencies, it blocks the write and verifies 
that each dependency is satisfied. Blocking these replicated write operations is acceptable because 
they are not client-facing and do not block reads to whatever data they update. Here we have 
explicitly chosen to delay these write operations until they can appear in the correct order, as shown 
in figure 7. The dependency check for Bglad does not return until after Afound is applied on the East 
Coast, which ensures Bob is never misunderstood. 

The system described thus far provides causal consistency and all of the ALPS properties. Causal 
consistency is provided by tracking causality with a client library and enforcing the causal order 
with dependency checks on replicated writes. Availability and partition tolerance are ensured 
by keeping all operations inside the local data center. Low latency is guaranteed by keeping all 
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operations local, nonblocking, and lock-free. Finally, a fully decentralized design ensures that the 
system has scalability. 

The current system, however, is inefficient. It has a huge amount of dependency metadata that 
travels around with write operations and a huge number of dependency checks to execute before 
applying them. Both of these factors steal throughput from user-facing operations and reduce 
the utility of the system. Luckily, our systems can exploit the transitivity inherent in the graph 
of causality to drastically reduce the dependencies that must be tracked and enforced. The subset 
of dependencies being tracked are the one-hop dependencies, which have an arc to the current 
operation in the graph of causality. (Note that in graph-theoretic terms, the one-hop dependencies 
subset is the direct predecessor set of an operation.) In figure 6 the one-hop dependencies are shown 
in bold. They transitively capture all of the ordering constraints on an operation. In particular, 
because all other dependencies are depended upon by at least one of the one-hop dependencies by 
definition, if this current operation occurs after the one-hop dependencies, then by transitivity it 
will occur after all others as well.

LIMITED TRANSACTIONS 
In addition to causal consistency, our systems provide limited forms of transactions. These include 
read-only transactions, which transactionally read data spread across many servers in a data center, 
and write-only transactions, which transactionally update data spread across many servers in a data 
center. 

These limited transactions are necessitated—and complicated—by the current scale of data. Data 
for many services is now far too large to fit on a single machine and instead must be spread across 
many machines. With data resident on many machines, extracting a consistent view of that data 
becomes tricky. Even though a data store itself may always be consistent, a client can extract an 
inconsistent view because the client’s reads will be served at different times by different servers. This, 
unfortunately, can reintroduce many of the anomalies inherent in eventual consistency. In figure 8, 

student

remove advisor

THEN

add bad photos

friends
server

photo
server Advisor

friends check
& photo fetch

yes friends

bad photos

west coast

Sremove

Sadd

tim
e

Anomaly 5: Leaked Photos

ERUGIF



DATA

11

for example, in the West Coast data center, a grad student removes photo-viewing permissions from 
an advisor and uploads incriminating photos. The advisor concurrently tries to view the student’s 
photos and, incorrectly, is shown the incriminating photos. To avoid these anomalies, causal 
consistency must be extended from the storage system to the Web servers and then on to users of the 
service. This can be done using read-only transactions.

Read-only transactions allow programmers to transactionally read data spread across many 
servers, yielding a consistent view of the data. The interface for a read-only transaction is simple: 
a list of data locations. Instead of issuing many individual reads for different data locations, a 
programmer issues a single read for all those locations. This is similar to batching these operations, 
which is often done to make dispatching reads more efficient—except that it also ensures that the 
results are isolated. 

With read-only transactions, anomaly 5 can now be converted into a regularity as well. Figure 9 
shows that with read-only transactions, the permissions and photos are read together transactionally, 
yielding any of the three valid states shown, but never the anomaly that leaks the incriminating 
photos to the student’s advisor. 

PROVIDING READ-ONLY TRANSACTIONS 

There are many techniques for ensuring isolated access to data locations spread across many 
machines. The most popular of these include 2PL (two-phase locking), using a TM (transaction 
manager) to schedule when reads are applied, and maintaining multiple versions of data with MVCC 
(multiversion concurrency control). The first two approaches are at odds with the ALPS properties. 
All forms of locking, and 2PL in particular, can encounter locks that are already acquired and then 
either fail the operation, which gives up on availability, or block the operation until it can acquire 
the lock, which gives up on low latency. A TM is a centralized entity, and directing all reads though 
it is a bottleneck that inhibits scalability. This leaves MVCC, and our approach may be viewed as a 
particularly aggressive variant of it that is possible because our transactions are limited. 
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The basic idea behind our read-only transaction algorithm is that we want to read the entire 
distributed data store at a single logical time. (For logical time, each node in the system keeps a 
logical clock that is updated every time an event occurs (e.g., writing a value or receiving a message). 
When sending a message, a node includes a timestamp t set to its logical clock c; when receiving 
a message, a node sets c ←max(c, t + 1).9 Logical time LT provides a progressing logical view of the 
system even though it is distributed and there is no centralized coordination of it. If event a happens 
before event b, then LT(a) < LT(b). Thus, if distributed data is read at a single logical time LT for all 
events seen at time t, we know all events that happen before them have lower logical times and thus 
are reflected in the results. Figure 10 shows an example of this graphically, with validity periods for 
values, represented by letters, written to different locations. 

You can determine if values within a set are consistent with one another by annotating them with 
the logical time they became visible and then were overwritten. For example, in figure 10 consistent 
sets include {A,J,X}, {B,K,X}, {B,K,Y}, {B,L,Y} and inconsistent sets include {A,K,X}, {B,J,Y}, and {C,L,X}, 
among others. Our servers annotate values in this way and include them when returning results to 
the client library so it can determine if values are mutually consistent. 

Our read-only transaction algorithm is run by the client library and takes at most two rounds of 
parallel reads. In the first round, the client library sends out parallel requests for all requested data. 
Servers respond with their current visible values and validity intervals, which is the logical time the 
value was written and the current logical time at the server. The value may be valid at future logical 
times as well, but conservatively we know it is valid for at least this interval. Once the client receives 
all responses, it determines if all the values are mutually consistent by checking for intersection in 
their validity intervals. If there is intersection—which is almost always the case unless some of the 
values are overwritten concurrently with the read-only transaction—then the client library knows 
the values are consistent and returns them to the client. 

If the validity intervals do not all intersect, then the process moves to the second round of the 
algorithm. The second round begins by calculating a single logical time at which to read values, 
called the effective time. It is calculated by choosing a time that ensures an up-to-date view of the 
data instead of being stuck on an old consistent cut of it, and it allows the use of many of the values 
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retrieved in the first round. The client library then issues a second round of parallel reads for all 
data for which it does not have a valid value at the effective time. These second-round reads ask for 
the value of the data at the effective time, and servers answer these reads by traversing the older 
version of a value until they find the one that was valid at the effective time. Figure 11 shows the 
second round in action. Figure 11a is a read-only transaction that completes in a single round, while 
figure 11b is a read-only transaction that requires a second round and requests data location 1 at the 
effective time 15 and receives value B in response. 

This read-only transaction algorithm is specifically designed to maintain all the ALPS properties 
and provide high performance. It is available because all reads ask for a current value or an old value. 
It is low-latency because it requires at most two nonblocking rounds of parallel reads. It is partition-
tolerant because all reads are in the local data center (partitions are assumed to occur only in the 
wide area, not in the local data center). It is scalable because it is fully decentralized. Finally, it is 
performant because it normally takes only a single round of parallel reads and only two rounds of 
reads in the worst case. 

Our previous work on Eiger12 has more details on how to choose the effective time, how to limit 
server-side storage of old versions, and an algorithm for write-only transactions that also maintains 
all the ALPS properties. 

THE COST OF CAUSAL CONSISTENCY AND LIMITED TRANSACTIONS

After evaluating Eiger in depth, we reproduce two of our biggest takeaway results here: Eiger has 
throughput competitive with eventually consistent systems; and it scales to large clusters. 

For one realistic view of Eiger’s overhead, we parameterized a synthetic workload based upon 
Facebook’s production TAO (The Associations and Objects) system.2 We then compared Eiger’s 
throughput with that of eventually consistency Cassandra, from which it was forked, in an 
experiment with clusters of eight servers each in Washington and California. The Cassandra setup 
achieved 23,657 operations per second that touched 498,239 data locations per second on average. 
The Eiger setup, with causal consistency and all inconsistent batch operations converted to read 
or write transactions, achieved 22,891 operations per second that touched 480,904 data locations 
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per second on average. This experiment shows that for this real-world workload Eiger’s causal 
consistency and stronger semantics do not impose significant overhead. 

To demonstrate the scalability of Eiger, we ran the Facebook TAO workload on N client machines 
that fully loaded an N-server cluster that is replicating writes to another N-server cluster (i.e., the 
N=128 experiment involves 384 machines). This experiment was run on PRObE’s Kodiak testbed,6 
which provides an Emulab with exclusive access to hundreds of machines. Figure 12 shows the 
throughput for Eiger as N scales from eight to 128 servers/cluster. The bars show throughput 
normalized against the throughput of the eight-server cluster. Eiger scales out as the number of 
servers increases; each doubling of the number of servers increases cluster throughput by 96 percent 
on average.

MORE INFORMATION 

More information is available in our papers on COPS11 and Eiger,12 and Wyatt Lloyd’s dissertation.13 
The code for Eiger is available from https://github.com/wlloyd/eiger. 
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