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Abstract—Users of the BitTorrent file-sharing protocol and its
variants are incentivized to contribute their upload capacity in a
bilateral manner: downloading is possible in return for uploading
to the same user. An alternative is to use multilateral exchange to
match user demand for content to available supply at other users
in the system. We provide a formal comparison of peer-to-peer
system designs based on bilateral exchange with those that enable
multilateral exchange via a price-based market mechanism to
match supply and demand.

First, we compare the two types of exchange in terms of
the equilibria that arise. A multilateral equilibrium allocation is
Pareto efficient, while we demonstrate that bilateral equilibrium
allocations are not Pareto efficient in general. We show that
Pareto efficiency represents the “gap” between bilateral and mul-
tilateral equilibria: a bilateral equilibrium allocation corresponds
to a multilateral equilibrium allocation if and only if it is Pareto
efficient. Our proof exploits the fact that Pareto efficiency implies
reversibility of an appropriately constructed Markov chain.

Second, we compare the two types of exchange through the
expected percentage of users that can trade in a large system,
assuming a fixed file popularity distribution. Our theoretical
results as well as analysis of a BitTorrent dataset provide
quantitative insight into regimes where bilateral exchange may
perform quite well even though it does not always give rise to
Pareto-efficient equilibrium allocations.

I. INTRODUCTION

Early peer-to-peer systems did not provide any incentives
for participation, leading to extensive free riding: many peers
were using the resources of other peers without contributing
their own [2, 18]. The peer-to-peer community responded with
mechanisms to prevent free riding by incentivizing sharing on
a bilateral exchange basis, as used by BitTorrent [11] and its
variants [32, 39, 35].

According to the BitTorrent protocol, each user splits his
available upload rate among users from which he gets the
highest download rates. As a result, an increase in the upload
rate to one user may increase the download rate from that
particular user; however, it does not increase the download
rate from other users. Thus, two users are incentivized to
exchange only if each has content the other wants. This results
in a significant drawback of bilateral exchange: it breaks down
between users that do not have reciprocally desired files.

The difficulties of bilateral exchange (or barter) in an
economy have been long known, the most important being
the improbability of coincidence between persons wanting
and possessing. As discussed in [21], “there may be many
people wanting, and many possessing those things wanted;
but to allow of an act of barter, there must be a double
coincidence, which will rarely happen.” In modern economies,
the aforementioned difficulty is eliminated by the use of
money. Money can enable multilateral exchange by serving as
a medium of exchange and a common measure of value. Even

though modern societies take the use of money for granted,
the same is not the case in peer-to-peer systems.

Peer-to-peer systems could potentially also use market-
based multilateral exchange to match user demand for content
to available supply at other users in the system. This can
be done by using virtual currency and assigning a budget
to each user that decreases when downloading and increases
when uploading. Monetary incentives with a virtual currency
have been previously proposed to encourage contribution in
peer-to-peer systems [17, 38, 36, 6, 5]; however, such designs
are usually more complex than bilateral protocols and are not
widespread.

The two system designs present a significant tradeoff:
bilateral exchange without money is simple, while multilateral
exchange allows more users to trade. In this paper, we provide
a formal comparison of two peer-to-peer system designs:
bilateral barter systems such as BitTorrent, and a market-
based exchange of content enabled by a price mechanism
to match supply and demand. Our main goal is to identify
precisely what benefits a currency-based system might offer,
and whether these benefits are sufficient to actually warrant all
the complexity of implementation presented by such systems.

We start in Section II with a fundamental abstraction of
content exchange in systems like BitTorrent: exchange ratios.
The exchange ratio from one user to another gives the down-
load rate received per unit upload rate. Exchange ratios are a
useful formal tool because they allow us to define and study
the equilibria of bilateral exchange. In the model of bilateral
exchange we consider, each user optimizes with respect to
exchange ratios. In Section III, we define bilateral equilibrium
as a rate vector and a vector of exchange ratios, where all
users have simultaneously optimized given exchange ratios.
We also define multilateral equilibrium, where users optimize
with respect to prices; our definition of multilateral equilibrium
is the same as competitive equilibrium in economics [26]. In
a multilateral equilibrium, the presence of money enables a
potentially wider set of exchanges than is possible in bilateral
equilibrium.

Our main results are the following.

(1) Characterizing efficient equilibria. We compare bilateral
and multilateral peer-to-peer systems through the allocations
that arise at equilibria. A multilateral equilibrium allocation
is always Pareto efficient, while bilateral equilibria may be
inefficient. Our main result is that a bilateral equilibrium
allocation is Pareto efficient if and only if it is a multilat-
eral equilibrium allocation—in other words, efficient bilateral
equilibria must effectively yield “supporting prices” as in a
multilateral equilibrium. This result provides formal justifica-
tion of the efficiency benefits of multilateral equilibria. The



proof exploits an interesting connection between equilibria
and Markov chains: an important step of the proof is to
show that Pareto efficiency of a bilateral equilibrium rate
allocation implies reversibility of an appropriately defined
Markov chain, and that this chain has an invariant distribution
that corresponds to a price vector of a multilateral equilibrium.

(2) Quantifying the efficiency gap between BE and ME.
From a practical standpoint, the preceding insight is somewhat
unsatisfying, because it does not quantify the benefits of
multilateral exchange. Although all efficient equilibria are
multilateral equilibria, if the potential loss of efficiency in
bilateral equilibrium is small, then it may be an acceptable
tradeoff in return for a significantly simpler system design.
To address this issue we perform a quantitative comparison
of bilateral and multilateral exchange, by quantifying how
rarely a double coincidence of wants occurs under different
assumptions on the popularity of files in the system.

(a) Theoretical analysis. We first perform an asymptotic
analysis assuming that file popularity follows a power
law. We find that asymptotically all users are able
to trade bilaterally when the file popularity is very
concentrated (i.e., when the popularity distribution has
a relatively light tail). On the other hand, multilateral
exchange may perform significantly better than bilateral
exchange when the file popularity is not concentrated
(i.e., when the distribution has a heavy tail). Importantly,
we also find that increasing the number of files that each
user shares or wants by a small amount can significantly
improve the performance of bilateral exchange.

(b) Empirical validation. We complement our theoretical
analysis by studying file popularity from a large BitTor-
rent dataset [33]. We find that on this dataset, bilateral
exchange may in general exhibit significant inefficiency
relative to multilateral exchange. However, consistent
with our theoretical observation, the gap between bilat-
eral and multilateral exchange can be narrowed signifi-
cantly if each user shares or is interested in a sufficiently
large number of files: for example, for systems of
the size in the dataset, over 96% of users can trade
if each user shares at least 10 files. The last result
is informative: it suggests that taking small steps to
increase the number of bilateral matches possible can
actually significantly eliminate almost all the advantage
of multilateral exchange.

The remainder of the paper is organized as follows. Section
IV characterizes efficient equilibria. Section V provides both
a theoretical and empirical quantification of the efficiency
gap between bilateral and multilateral exchange. Section VI
discusses the related literature and Section VII concludes. The
proofs are included in the Appendix.

II. EXCHANGE RATIOS IN BILATERAL PROTOCOLS

Many peer-to-peer protocols enable exchange on a bilateral
basis between users: a user i uploads to a user j if and only if
user j uploads to user i in return. Of course, such an exchange
is only possible if each user has something the other wants; this
is known as “double coincidence of wants” in economics. The
foremost examples of such a protocol are BitTorrent and its
variants. While such protocols are traditionally studied solely

through the rates that users obtain, this section provides an
interpretation of these protocols through exchange ratios. As
exchange ratios can be interpreted in terms of prices, these
ratios allow us to compare bilateral barter-based peer-to-peer
systems with multilateral price-based peer-to-peer systems.

Let rij denote the rate sent from user i to user j at a given
point in time in a bilateral peer-to-peer protocol. We define the
exchange ratio between user i and user j as the ratio γij =
rji/rij ; this is the download rate received by i from j, per
unit of rate uploaded to j. By definition, γij = 1/γji. Clearly,
a rational user i would prefer to download from users with
which he has higher exchange ratios.

The exchange ratio has a natural interpretation in terms of
prices. In particular, assume that users charge each other for
content in a common monetary unit, but that all transactions
are settlement-free, i.e., no money ever changes hands. In this
case, if user i charged user j a price pij per unit rate, the
exchange of content between users i and j must satisfy:

pijrij = pjirji
We refer to pij as the bilateral price from i to j. Note
that the preceding condition thus shows the exchange ratio
is equivalent to the ratio of bilateral prices: γij = pij/pji (as
long as the prices and rates are nonzero).

What is the exchange ratio for BitTorrent? A user splits his
upload capacity equally among those users in his active set
from which he gets the highest download rates. Let α be the
size of the active set. Suppose all rates rkj that user j receives
from users k 6= i are fixed and let Rαj be the α-th highest rate
that j receives. Let Bj be the upload capacity of user j. Then,
rji depends on rij . In particular,

rji =

{
Bj/α if rij > Rαj

0 otherwise

Thus for BitTorrent, the exchange ratio is γij = Bj/(α · rij)
if user i is in the active set, and zero otherwise. Note that the
exchange ratios γi1,j and γi2,j may be different for two users
i1, i2 in j’s active set.

The exchange ratio γij decreases with rij as long as user i
is in user j’s active set (in which case rji is constant). Hence, a
strategic user i would prefer to choose rij as small as possible
while remaining in j’s active set. This behavior is exactly the
approach taken by the BitTyrant [32] variation on BitTorrent.
In fact, if all users follow this policy, then rij = Rαj for
all users i in j’s active set. Note that in this case, γij =
Bj/(α ·Rαi ). Thus, user j has the same exchange ratio to all
users i with which he bilaterally exchanges content.

The preceding discussion highlights the fact that the rates in
a bilateral peer-to-peer system can be interpreted via exchange
ratios. Thus far we have assumed that transfer rates are given,
and exchange ratios are computed from these rates. In the
next section, we turn this relationship around: we explicitly
consider an abstraction of bilateral peer-to-peer systems where
users react to given exchange ratios, and we compare the
resulting outcomes to price-based multilateral exchange.

III. BILATERAL AND MULTILATERAL EQUILIBRIA

In this section, we define bilateral equilibrium (BE) and
multilateral equilibrium (ME), i.e., the market equilibria cor-
responding to bilateral and multilateral exchange. In the formal
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Bilateral Peer Optimization:
maximize vi(xi, yi)
subject to xif =

∑
j rjif for all f

yi =
∑

j,f rijf
r ∈ X∑

f rjif = γij
∑

f rijf for all j
Multilateral Peer Optimization:

maximize vi(xi, yi)
subject to xif =

∑
j rjif for all f ∈ Ti

yi =
∑

j,f rijf
r ∈ X∑

j,f pjrjif = pi
∑

j,f rijf

Fig. 1. Optimization problems for price-based exchange.

model we consider, a set of users U shares a set of files F .
User i has a subset of the files Si ⊆ F and is interested in
downloading files in Ti ⊆ F − Si. Throughout, we use rijf
to denote the rate at which user i uploads file f to user j. We
then let xif =

∑
j rjif be the rate at which user i downloads

file f . We denote the vector of download rates for user i by
xi = (xif , f ∈ Ti). Finally, let yi =

∑
j,f rijf be the total

upload rate of user i. We measure the desirability of a rate
vector to user i by a utility function vi(xi, yi), according to
the following assumption. This assumption remains in force
throughout the paper.

Assumption 1 The preference relation of a user on the set
of feasible rate vectors is represented by a continuous strictly
concave utility function vi(xi, yi), which is strictly increasing
in each download rate xif for all f ∈ Ti and strictly
decreasing in the upload rate yi. We further assume that
vi(xi, yi) has finite derivative everywhere with respect to all
xif , f ∈ Ti.

Note that utility functions in our model depend on in-
stantaneous transfer rates, rather than the number of bytes
exchanged. This is consistent with the “snapshot” view that
our model of peer-to-peer file-sharing adopts: informally, it
is as if we are analyzing efficiency of the system at a fixed
moment in time. This is also why our model keeps fixed
both the set of files available for upload and the set of
files desired for download at a given peer; these sets remain
constant on the timescale we are considering. An important
open direction related to this work concerns the analysis of
dynamic efficiency, where these sets might change over time.

Each user is assumed to have a constraint on the available
upload rate; let Bi denote this upper bound for user i. We
assume that users do not face any constraint on their down-
load rate; this is consistent with most end-users’ asymmetric
connections today, where upload capacity is far exceeded by
download capacity. Further, for the purposes of this paper, we
also assume that there are no constraints in the middle of the
network, though our prior work suggests a natural approach
for including such constraints [5].

Let

X = {r : r ≥ 0; rkjf = 0 if f 6∈ Sk;∑
j,f

rijf ≤ Bi ∀i ∈ U}

be the set of feasible rate vectors. In particular, this ensures
that (i) all rates are nonnegative, (ii) users only upload files
they possess, and (iii) each user does not violate his bandwidth
constraint.

In the next two subsections, we look at two different models
of equilibrium, corresponding to exchange in bilateral and
multilateral systems, respectively. In bilateral exchange, we
assume that users maximize their utility given the exchange
ratios they see to other users. Thus, in a bilateral equilibrium,
the exchange ratios must be chosen to exactly balance the rates
each user considers optimal—this is informally the condition
that “supply equals demand.” In multilateral exchange, on
the other hand, we assume that users can earn currency by
uploading to others, and they can spend that currency in
downloading from any users they wish. In this model, users
maximize their utility given the current prices in the system,
and the prices must be set to exactly balance the rates each user
considers optimal. Thus, in both types of exchange, “supply
equals demand” at an equilibrium or, equivalently, the market
clears.

A. Bilateral Equilibrium
We start by considering users’ behavior in bilateral schemes,

given a vector of exchange ratios (γij , i, j ∈ U). User i solves
the Bilateral Peer Optimization problem given in Figure 1.1 In
the definition of this optimization problem, in addition to the
definition of upload and download rates, each user i faces
one constraint for each potential peer j with which i might
exchange content: the restriction that

∑
f rjif = γij

∑
f rijf

ensures that the rate at which i downloads from j is exactly
the exchange ratio times the rate at which i uploads to j.

We can now define bilateral equilibrium.

Definition 1 The rate allocation r∗ and the exchange ratios
γ∗ = (γ∗ij , i, j ∈ U) with γ∗ij · γ∗ji = 1 for all i, j, constitute
a Bilateral Equilibrium (BE) if, for each user i, r∗ solves the
Bilateral Peer Optimization problem given exchange ratios γ∗.

Definition 1 requires that (i) all users have optimized with
respect to the exchange ratios, and (ii) the market clears. Even
though the market clearing condition is not explicitly stated, it
is implicitly required, since the same vector r∗ is an optimal
solution of the Bilateral Peer Optimization problems of all
users. The following proposition shows that a BE exists.

Proposition 1 A BE exists.

B. Multilateral Equilibrium
By contrast, in a multilateral price-based exchange, the

system maintains one price per peer, and users optimize with
respect to these prices.2 We denote the price of user i by

1Note that we allow users to bilaterally exchange content over multiple
files. This is partly supported by swarming systems like BitTorrent through
bundles [28]. In BitTorrent, a file or a collection of files (bundle) compose
a swarm. The files are split into subpieces called chunks, and users joining
a swarm exchange those chunks. Users can download only a subset of the
files in a swarm and may already own some of the files when arriving to the
system.

2It can be shown that in our setting, this is equivalent to having either one
price per file, or one price per peer per file [5]. As explained in that paper,
the choice of one price per peer affords certain advantages for system design,
so we adopt it as our approach in this paper.
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pi. Figure 1 also gives the Multilateral Peer Optimization
problem. Note that the first three constraints (giving download
and upload rates and ensuring that the rate allocation is
feasible) are identical to the Bilateral Peer Optimization; only
the last constraint is different. While the bilateral exchange
requires user i to download only from those users to whom
he uploads, no such constraint is imposed on multilateral
exchanges: user i accrues capital for uploading, and he can
spend this capital however he wishes for downloading.

We next give the definition of ME, which corresponds to
the concept of competitive equilibrium in economics [26].
Definition 2 The rate allocation r∗ and the user prices p∗ =
(p∗i , i ∈ U) with p∗i > 0 for all i ∈ U constitute a Multilateral
Equilibrium (ME) if, for each user i, r∗ solves the Multilateral
User Optimization problem given prices p∗.

Similar to Definition 1, Definition 2 requires that (i) all
users have optimized with respect to prices, and (ii) the market
clears. Again, even though the market clearing condition is
not explicitly stated, it is implicitly required, since the same
vector r is used in the optimization problems of all users. The
following proposition shows that an ME exists.

Proposition 2 An ME exists.

Our model is closely related to exchange economies [26].
In an exchange economy, there is a finite number of agents
and a finite number of commodities. Each agent is endowed
with a bundle of commodities and has a preference relation on
the set of commodity vectors. Given a price vector, each agent
finds a vector of commodities to exchange that maximizes his
utility. In particular, if p is the vector of prices and agent i has
endowment wi, he sells it at the market and obtains wealth
p ·wi. Then the agent buys goods for his consumption at the
same price (he may buy back some of the goods he sold).

A straightforward reformulation reveals that our model
shares much in common with a standard exchange economy: it
is as if agent i has Bi units of his own “good”, priced at pi. He
can trade this for goods from other users on the open market
at prices p. With this interpretation, Bi − yi is the amount of
his own good that he chooses to keep. However, notice that
this is not a standard exchange economy, as the upload rate
is not a true commodity; rather, the commodities are the rates
of specific files that are uploaded. Since Bi imposes a joint
constraint on the upload rates of these files, our model is a
generalization of the standard exchange economy.

C. Convergence to Equilibrium
The focus of this section is equilibria, i.e., a static setting.

However, since it is hard to know a system’s equilibrium prices
or allocation in advance, we need to consider how out-of-
equilibrium prices are updated (price discovery). We briefly
discuss this issue here.

If demand is equal to supply at a given price vector, then this
price vector constitutes an equilibrium. The standard approach
of updating prices out of equilibrium is to increase prices when
demand exceeds supply, and decrease prices when supply
exceeds demand. In a standard exchange economy, this process
converges to equilibrium under the condition of gross substi-
tutes [26, 7], which requires that if the price of one commodity

increases, then the demand for all other commodities increases.
This approach and its variants have been used in many settings
to establish convergence to equilibrium. (Dynamics that do not
depend on mismatches between demand and supply have also
been considered for convergence to ME, e.g., [39].)

In the setting of a peer-to-peer system, demand and supply
consist of desired download and upload rates respectively.
Suppose first that a central server tracks total demand and
supply of each file at current prices. If prices are updated
based on total demand and supply as described in the previous
paragraph, it can be shown that the resulting process converges
to equilibrium. In order to state the convergence results
formally, we introduce the following notation. If peer i has
exactly one file (i.e., |Si| = 1), let h(i) denote that file. On the
other hand, if peer i wants exactly one file (i.e., |Ti| = 1) we
denote that file by w(i). Let xif (p) and yi(p) (resp., xif (γ)
and yi(γ)) be the optimal solution to the Multilateral (resp.,
Bilateral) Peer Optimization problem of i.

We define the ME aggregate excess demand for file f as

zf (p) =
∑
i∈U

xif (p)−
∑

i∈U :Si={f}

yi(p).

Similarly, we define the BE aggregate excess demand for the
pair of files (f, g) as

zfg(γ) =
∑

i∈U :Ti={f},Si={g}

xif (γ)−
∑

i∈U :Si={f},Ti={g}

yi(γ).

We now state the convergence results.

Theorem 1 Assume that |Si| = 1 for all i ∈ U and the gross
substitutes property holds for the ME aggregate excess demand
function. Consider an initial price vector p such that pi = pj
whenever h(i) = h(j). Then the solution trajectory of

dpj
dt

= zh(j)(p)

converge to the unique ME equilibrium (up to scaling of the
price vector).

Theorem 2 Assume that |Si| = |Ti| = 1 for all i ∈ U and the
gross substitutes property holds for the BE aggregate excess
demand function. Consider an initial vector of exchange ratios
γ such that γij = γkl whenever h(i) = h(k) and w(j) = w(l).
Then the solution trajectory of

dγij
dt

= zh(i)w(j)(γ)

converges to the unique BE equilibrium.

We conjecture that similar convergence results hold even if
players are uploading and/or downloading multiple files.

On the other hand, we can consider less centralized versions
of this price updating process. For instance, in the case
of multilateral exchange with |Si| = 1, suppose the total
excess demand (i.e., the amount by which demand exceeds
supply) is allocated equally among peers that have the file and
are currently charging the minimum price. Peers then raise
or lower their prices depending on whether excess demand
is positive or negative, respectively. A peer that does not
currently have the minimum price for the file it is uploading
sees no demand, and as a result has a negative excess demand,
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which forces its price to decrease. Similar ideas can be applied
in the case of bilateral exchange.3

In prior work [5], we considered implementation of a price
discovery mechanism for ME in a decentralized setting appro-
priate for a peer-to-peer system. Our approach was inspired by
the theoretical price dynamics above. Given prices of peers, a
peer requests download rates from other peers in the network.
A peer serves requests sequentially without preemption, and
updates its price according to the mismatch between requests
received and available capacity. Simulations suggest that such
price dynamics converge for a variety of topologies in the
case of multilateral exchange [5]. The same approach can be
applied to BE, by considering exchange ratios instead.

IV. EFFICIENCY OF EQUILIBRIA

This section rigorously analyzes the efficiency properties of
bilateral and multilateral exchange. We assume users explicitly
react to exchange ratios or prices, and we compare the schemes
through their resulting equilibria. In order to proceed, we first
formally define Pareto efficiency.

Definition 3 Given rate allocations r, r′ ∈ X , let x,x′

be the corresponding download rates, and let y,y′ be the
corresponding upload rates. Then r Pareto dominates r′ if
vi(xi, yi) ≥ vi(x

′
i, yi) for all i, with strict inequality for at

least one i.
A rate allocation r ∈ X is Pareto efficient if it is not Pareto

dominated by any other rate allocation r′ ∈ X .

Thus a rate allocation is Pareto efficient if there is no way
to increase the utility of some user without decreasing the
utility of some other user. An ME allocation is always Pareto
efficient; this is the content of the first fundamental theorem
of welfare economics [26]. For completeness, we include the
result here.

Proposition 3 If the rate allocation r∗ and the user prices
(p∗i , i ∈ U) with p∗i > 0 for all i ∈ U constitute an ME, then
the allocation r∗ is Pareto efficient.

BE may not be Pareto efficient. Inefficiencies may arise
because trade does not occur at a BE, while users do trade
at an ME of the same system. Moreover, even when all users
trade at a BE, the allocation may not be Pareto efficient, as
the following example shows.

Example 1 Consider a system with n users and n files,
for n > 2. Each user i has file fi and wants files fi+1

and fi−1. The utility of user i is vi(xi,fi−1
, xi,fi+1

, yi) =
xi,fi−1

+ 4xi,fi+1
+ ln(2 − yi), i.e., user i wants the files of

both user i + 1 and user i − 1, but derives a higher utility
from the file of user i+ 1.

We first consider a symmetric BE with exchange ratios
γ∗i,i+1 = 2 and γ∗i,i−1 = 1/2. The equilibrium rates are
r∗i−1,i = 1 and r∗i+1,i = 1/2, and the download rates are

3To construct a similar procedure for BE, note that we cannot directly use
exchange ratios in a decentralized setting, because then it is not clear whether
i or j should update the exchange ratio γij . Instead, we use bilateral prices
(cf. Section II), so that peer i updates a price pij and peer j updates a price
pji, with γij = pij/pji.

x∗i,fi−1
= 1 and x∗i,fi+1

= 1/2. The utility of each user i is
3 − ln(2) ≈ 2.3. On the other hand, prices p∗i = 1 for all
i, and rates r∗i+1,i = 1.75, r∗i−1,i = 0 constitute an ME. The
utility of each user is 7−ln(4) ≈ 5.61, i.e., significantly larger
than the utility of a user at the BE. This demonstrates that the
BE allocation is not Pareto efficient.

The previous example shows that BE may not be Pareto
efficient. By changing the utility function of a user in this
example, we next provide an example of a BE rate allocation
that is Pareto efficient.

Example 2 Consider a system with n users and n files,
for n > 2. Each user i has file fi and wants files fi+1

and fi−1. The utility of user i is vi(xi,fi−1
, xi,fi+1

, yi) =
xi,fi−1

+ xi,fi+1
+ ln(2− yi).

We consider a symmetric BE with exchange ratios γ∗i,i+1 =
1 and γ∗i,i−1 = 1. The equilibrium rates are r∗i−1,i = 1/2 and
r∗i+1,i = 1/2. The BE rate allocation is Pareto efficient. In
particular, it corresponds to an ME: prices p∗i = 1 for all i,
and rates r∗i+1,i = 1/2, r∗i−1,i = 1/2 constitute an ME.

Thus BE may be inefficient, while ME always have Pareto
efficient allocations (Proposition 3). In Example 2, the BE rate
allocation is Pareto efficient and corresponds to an ME. Our
main result is that a BE allocation is Pareto efficient if and
only if it is an ME allocation. In particular, if a BE allocation is
Pareto efficient, then there exist “supporting prices”, i.e., prices
such that the BE rate allocation is optimal for the Multilateral
Peer Optimization problem of each user. Informally, Pareto
efficiency represents the “gap” between BE and ME.

Proposition 4 Assume that for every user i and any fixed xi,
vi(xi, yi)→ −∞ as yi → Bi. Let (r∗,γ∗) be a BE. The rate
allocation r∗ is Pareto efficient if and only if there exists a
price vector p such that r∗ and p constitute an ME.

Proposition 4 assumes that vi(xi, yi) → −∞ as yi → Bi
for every user i and every fixed xi. This assumption ensures
that the total upload rate of a user is strictly smaller than his
upload capacity at the BE. This is a reasonable assumption
for a peer-to-peer setting, since we do not expect users to
use all their upload capacity. We note that if the total upload
rate of a user is equal to his upload capacity, then there may
exist Pareto efficient BE that do not correspond to ME, simply
because users have already “maxed out” their available upload
capacity.

We provide an overview of the proof of Proposition 4, which
demonstrates an interesting connection between equilibria and
Markov chains; the details of the proof are provided in the
appendix. From a BE rate allocation r∗, we construct a
transition rate matrix Q for a continuous time Markov chain,
such that Qij =

∑
f r
∗
ijf if i 6= j, and Qii = −

∑
j,f r

∗
ijf . We

first observe that πQ = 0 implies that the multilateral budget
constraint is satisfied with price vector π; therefore, for any
invariant distribution π, r∗ is feasible for the Multilateral Peer
Optimization problem of every user when prices are equal to
π. We then show that if r∗ is also Pareto efficient, there exists
an invariant distribution ofQ, say p, such that r∗ is an optimal
solution of the Multilateral Peer Optimization problem of each
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user when the prices are equal to p. We conclude that r∗ and
p constitute an ME.

A key step of the proof is to show that Pareto efficiency of
r∗ implies reversibility of Q. This is proven by contradiction:
if Q is not reversible, then we can find a cycle of peers that
can change their rates only along successive pairs of peers
on the cycle and, in doing so, make all their utilities strictly
higher.

Now let π be an invariant distribution of Q with all entries
positive. If the matrix Q is reversible, then γ∗ij = πi/πj for
all pairs of users i and j that trade at the BE. We conclude
that if r∗ is Pareto efficient, then r∗ solves the Multilateral
Peer Optimization problem for each user given prices π if the
user is restricted to trade with peers he trades with at the BE.
Much of the complexity in the proof is to show that this result
holds even if user i is not restricted to trade only with those
users it transacts with at the BE.

The matrix corresponding to the BE allocation of Example
1 is not reversible, which implies that the BE allocation is not
Pareto efficient. On the other hand, the matrix corresponding
to the BE allocation of Example 2 is reversible, and the
BE allocation is Pareto efficient and corresponds to an ME
allocation.

In closing, we note that if the rate matrix corresponding to
an ME is reversible, then the ME allocation is a BE allocation
and can be realized through bilateral trade. In particular, from
an ME rate allocation r∗, we construct a transition rate matrix
Q for a continuous time Markov chain as described above. If
Q is reversible, then there exists an invariant distribution π
with all entries positive such that πir∗ij = πjr

∗
ji for all i, j.

Setting γij = πi/πj for all i, j, we conclude that (r∗,γ) is a
BE.

V. ABILITY TO TRADE

Propositions 1 and 2 show that both BE and ME exist under
general conditions (in particular if Assumption 1 holds). How-
ever, not all users are guaranteed to trade at these equilibria.
For instance, if user i does not have reciprocally desired files
with any other user (that is, for any user j either Ti ∩ Sj = ∅
or Tj ∩ Si = ∅), at a BE γ∗ij is sufficiently low for all j
that have files desired by i so that i does not trade. In
this section, we compare bilateral and multilateral exchange
through the corresponding percentages of users that can trade.
Though distinct from Pareto efficiency, this metric provides
quantitative insight into the comparison of the two types of
exchange. In particular, we expect that systems that perform
well will also generally encourage high levels of participation.
We characterize regimes where bilateral exchange performs
very well with respect to this metric, and for which, as a result,
it may not be worth the effort to use multilateral exchange.

In Section V-A, we introduce the framework we use to
study the percentage of users that can trade bilaterally and
multilaterally. Our analysis is based on a random model, where
we assume file popularity follows a power law. In Section
V-B we carry out an asymptotic theoretical analysis as the
number of users and files grows large. In Section V-C, we
complement our theoretical analysis by studying file popularity
from a large BitTorrent dataset; here we find that the ability
to trade bilaterally improves significantly if each user shares
or is interested in a sufficiently large number of files.

A. Framework

1) Definitions: We start by formally defining the quantities
we compare. For a given peer-to-peer system, we define the
system profile to consist of the specification of which files each
user desires and possesses, i.e., P = {Ti, Si, i ∈ U}.

We say that user i can trade bilaterally under P if there
exists some user j such that Ti ∩ Sj 6= ∅ and Si ∩ Tj 6= ∅,
that is, i and j have reciprocally desired files. Given a system
profile P , let ρBE(P) be the percentage of users that cannot
trade bilaterally.

Similarly, we say that user i can trade multilaterally under
P if there exist users k1, k2, ..., kn such that Ti ∩ Sk1 6= ∅;
Tkj ∩ Skj+1 6= ∅ for j = 1, ..., n and Tkn ∩ Si 6= ∅. In words,
user i is able to trade multilaterally if and only if there exists
a cycle of users starting (and ending) at i such that each user
possesses a file that is desired by the next user in the cycle.
Clearly, if user i can trade bilaterally under P , then he can also
trade multilaterally under P . Let ρME(P) be the percentage
of users that cannot trade multilaterally.

Note that whether or not a user actually trades in equi-
librium depends on the specific utility functions chosen; for
example, if the marginal utility for downloading is sufficiently
low, the optimal decision for a user may be to not download at
all, even if he can. However, the definition above ensures that
if a user cannot trade bilaterally (resp., multilaterally), then
this user never trades in a BE (resp., ME), regardless of the
utility functions.

2) Random Model: We assume that the system profile P
is chosen according to some distribution that depends on the
popularity of different files, and that the sets Si and Ti are
chosen independently for each user i. We denote by qi the
popularity of the i-th file and assume that the probability that
the i-th file is desired or possessed by a user is proportional
to qi. We assume that each qi does not depend on the number
of files in the system. On the other hand, the probability that
the i-th file is chosen clearly depends on the number of files
K in the system, since it is qi/

∑K
j=1 qj .

We are interested in comparing the expected proportions of
peers that cannot trade bilaterally and multilaterally—that is,
the expected values of ρBE(P) and ρME(P)—for given file
popularities.

B. Asymptotic Analysis

This section theoretically compares the two types of ex-
change through the expected percentages of users that cannot
trade. We focus on large systems, and consider the asymptotic
regime where the number of files and users in the system
becomes large.

We assume the files that users possess and desire are drawn
independently from a Zipf file-popularity distribution that is
identical for each user. Our motivation to study this distribution
comes from the fact that Zipf’s law has been observed in
many settings, and has been suggested as a good model for
file popularity (e.g., [10, 1, 4]).4 Zipf’s law states that the
popularity of the r-th largest occurrence is proportional to

4Gummadi et al. find that peer-to-peer file popularity follows a flattened
Zipf-link distribution [16]; however, the Zipf distribution is still the closest
approximation for which analytical work is possible.
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a power of its inverse rank. We adjust this definition to our
setting.

Definition 4 File popularity has a Zipf distribution with ex-
ponent s if the r-th most popular file has popularity qr = r−s.

Note that s = 0 corresponds to the uniform distribution. On
the other hand, the distribution becomes more concentrated as
s increases.

Recall that we are interested in the expected percentage of
users that cannot trade. This is a function of the number of
users N , the number of files K, and the Zipf exponent s. Let
ρBE(K,N, s) and ρME(K,N, s) be the expected percentages
of users that cannot trade bilaterally and multilaterally, re-
spectively. In particular, ρBE(K,N, s) (resp., ρME(K,N, s))
is the expected value of ρBE(P) (resp., ρME(P)) over system
profiles.

We consider a sequence of peer-to-peer systems indexed
by N . The N th system has N users and K(N) files, where
K(N) is a non-decreasing function of N . The function K(N)
represents how the number of files scales with the number of
users. For simplicity, we suppress the dependence of K on N .
We study an asymptotic regime where N →∞.

Since the number of users that cannot trade bilaterally is
always greater than or equal to the number of users that cannot
trade multilaterally, we have ρBE(K,N, s) ≥ ρME(K,N, s).
The following propositions imply that in a large system
ρBE(K,N, s)−ρME(K,N, s) may be significant when s < 1,
but is always negligible when s > 1.

Proposition 5 If s > 1, then ρBE(K,N, s)→ 0 as N →∞
for any non-decreasing K.

Since ρME(K,N, s) ≤ ρBE(K,N, s), we conclude that if
files are chosen according to a Zipf distribution with s > 1
then both ρBE(K,N, s)→ 0 and ρME(K,N, s)→ 0 as N →
∞. Thus when s > 1, bilateral exchange performs very well
asymptotically for any scaling of K and N . This result holds
regardless of the number of files that peers possess or desire.
For details see the proof of Proposition 5 in the appendix.
We note that the result of Proposition 5 can be generalized to
all popularity distributions for which

∑∞
i=1 qi < ∞; the Zipf

distribution with s > 1 is of course a special case. In particular,
it is easy to adapt the proof of Proposition 5 to show that if the
file popularities qi satisfy

∑∞
i=1 qi < ∞,5 then the expected

proportion of peers that cannot trade bilaterally approaches
zero as N → ∞ for any scaling of the number of peers N
and the number of files K.

This is an interesting result: even though bilateral exchange
significantly restricts trade compared to multilateral exchange,
almost all users can trade in expectation under both types of
exchange when the system is large and file popularity follows
a Zipf distribution with exponent s > 1. The intuition behind
this result is that when s is large, the popularity distribution is
more concentrated, i.e., the most popular files are chosen with
relatively high probability. As a result, for any user i, both Ti
and Si probably consist of one of the most popular files, and

5We are assuming that the file popularities do not depend on the number
of files in the system (K).
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Fig. 2. Percentages of users (from simulations) that cannot trade bilaterally
(ρBE ), when file popularities follow a Zipf distribution with exponent s ∈
{0.4, 0.6, 0.8, 1, 1.2}. Users desire and possess one file, i.e., |Ti| = |Si| = 1
for all users i. There are 7,323 files in the system and the number of users is
shown on the horizontal axis.

it is more likely that there exists a user j such that i and j
have reciprocally desired files.

When s < 1, the asymptotic behavior can be quite different,
as the following proposition shows.

Proposition 6 Assume 0 ≤ s < 1, and |Si| = |Ti| = 1 for all
i ∈ U . As N →∞:

(i) If K/
√
N → ∞, then lim infN→∞ ρBE(K,N, s) ≥

(1− s)2.
(ii) If K/

√
N → 0, then ρBE(K,N, s)→ 0.

(iii) If K/N →∞, then lim infN→∞ ρME(K,N, s) ≥ 1−s.
(iv) If K logK/N → 0, then ρME(K,N, s)→ 0.

The case where N scales slower than K2 but faster than
K logK is of particular interest. In this case, according to
Proposition 6, ρBE(K,N, s) ≥ (1−s)2 and ρME(K,N, s)→
0 as N → ∞. That is, when the system is large, almost
all users can trade multilaterally but a constant proportion of
users cannot trade bilaterally. Thus, for this case, multilateral
exchange performs significantly better than bilateral exchange
in terms of the ability of users to trade. We note that if s = 0,
in this regime ρBE(K,N, s)→ 1, that is, almost all users can
trade multilaterally but cannot trade bilaterally.

By contrast, when 0 ≤ s < 1 and N scales faster than
K2, both bilateral and multilateral exchange perform well.
On the other hand, if N scales slower than K, then neither
type of exchange performs well. We note that Proposition 6
has a small gap, since it does not say how well multilateral
exchange performs when N scales faster than K yet slower
than K logK.

Figure 2 shows the percentages of users (from simulations)
that cannot trade bilaterally when popularities follow a Zipf
distribution for various values of the exponent s, assuming
that users desire and possess one file. (We assume the system
consists of 7,323 files, as this is the number of files in
the dataset considered in the next section.) We observe that
bilateral exchange does not perform well when the exponent
s is small, which agrees with our theoretical results. As the
exponent increases, the performance of bilateral exchange
improves. When the exponent is greater than one, bilateral
exchange performs reasonably well.

In the Appendix, we show that if s = 0, then the conclusions
of Proposition 6 hold even if peers possess and desire multiple
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files (see Proposition 7). In fact, the proof of Proposition 7
shows that when each peer possesses σ files and desires τ
files, there exist constants c1 and c2 such that:

c1 exp

(
−σ

2τ2N

K2

)
≤ ρBE(K,N, 0)

≤ c2 exp

(
− (σ2τ2/2− σ2τ − στ2)N

K2
+ o

(
1

K2

))
for all sufficiently large K and N . Thus to first order, the
exponent scales like −σ2τ2N/K2. This suggests that small
increases in the number of files that agents are willing to trade
can lead to significant improvements in system performance.
Indeed, we observe precisely this phenomenon in the next
section’s analysis.

C. Data Analysis
This section quantitatively compares bilateral and multi-

lateral exchange using data on BitTorrent peer-to-peer file-
sharing collected by Piatek et al. [33]. We find that a signifi-
cant percentage of users cannot trade bilaterally when each
user is sharing one file; however, the percentage becomes
negligible as peers share more files. We conclude by discussing
this finding’s implications for the design of peer-to-peer con-
tent exchange systems.

The dataset consists of 1,364,734 downloads, 679,523 users
and 7,323 files.6 We use the number of downloads of each file
in the dataset to estimate the popularities of different files. We
thus abstract from the details of the specific BitTorrent trace,
and only use the information on the preferences of the users
for different files in order to compare bilateral and multilateral
exchange through simulations.

The estimated popularities are shown in Figure 3. As before,
we assume that the probability that a given file is selected is
proportional to its popularity. We then use these probabilities
to generate system profiles and compute the percentages
of users that cannot trade bilaterally and multilaterally. We
assume that there are 7,323 files with the given distribution,
and vary the number of users in the system.7

The algorithm we use to compute ρBE is exact: for every
user i we check whether there is some user j such that
i and j have reciprocally desired files. On the other hand,
computing the exact value of ρME for a large system appears
computationally intractable. Therefore, we use an approxima-
tion: we recursively remove peers that either possess files not
desired by others or desire files not possessed by others, since
such peers cannot trade multilaterally. Simulations for small
numbers of users suggest that this algorithm provides a very
good approximation for ρME .8

Bilateral and multilateral trade. We first assume that each
user possesses and desires exactly one file, i.e., |Ti| = |Si| = 1

6We equate files to torrents, and neglect bundles, as a first order approxi-
mation.

7We have also considered the case that the number of users N is fixed
and the number of files K varies; as expected, performance degrades as K
increases.

8For instance, suppose there are 1,000 peers and 200 files in the system
whose popularities are equal to the popularities of the 200 most popular files of
the dataset. In 100 simulations, 972 peers can trade multilaterally on average,
while our heuristic finds that 976 peers can trade multilaterally on average
(99.6% accuracy).
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Fig. 3. The popularity of each unique file (qi for all files i)—that is, the
number of times file i was downloaded—shown in decreasing popularity on
a log-log scale.
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Fig. 4. Percentages of users (from simulations) that cannot trade bilaterally,
trilaterally, and multilaterally when users desire and possess one file, i.e.,
|Ti| = |Si| = 1 for all i. The horizontal axis shows the number of users in
the system.

for every i ∈ U . Figure 4 shows the percentages of users that
cannot trade bilaterally and multilaterally from simulations
for various numbers of users in the system. We observe that
a significant majority of users cannot trade bilaterally, while
nearly all users can trade multilaterally. Finally, as the number
of users increases, the percentages of users that can trade
increase for both bilateral and multilateral exchange.

Trading trilaterally. Figure 4 also shows the percentage
ρTE of peers that cannot trade in triangles, i.e., triples (i, j, k),
where i uploads to j, j uploads to k, and k uploads to i.9 We
observe that a very large percentage of peers is able to trade in
triangles when there any at least 600,000 peers in the system.10

Uploading (or downloading) multiple files. We next as-
sume each user desires one file and possesses multiple files.
As the number of files that each user has increases, the number
of possible trades increases, and as a result the percentage of
users that can trade bilaterally increases. In Figure 5 (top),
we show the percentages of users that cannot trade bilaterally
when each user desires one file (|Ti| = 1) and possesses
multiple files (|Si| ∈ {2, 5, 10, 20}). In these experiments,

9We estimate ρTE by sampling at least a few thousand peers and using an
exact algorithm to compute the proportion of the sampled peers that cannot
trade in triangles.

10Analytically, it can be shown that if we allow trade in triangles, then
performance under uniform file popularity (i.e., s = 0) is good as long as
N2/(K3 logK)→∞ as N →∞ (see Prop. 8 in the Appendix). This is a
significant improvement on the corresponding result for bilateral equilibrium.
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Fig. 5. Percentages of users (from simulations) that cannot trade bilaterally
when each user desires one file (|Ti| = 1) and possesses multiple files. The
legend shows |Si| for each line. The horizontal axis shows the number of
users in the system. In the top graph, all users possess the same number of
files (|Si| ∈ {1, 2, 5, 10, 20}). In the bottom graph, we consider the case
where different users possess different numbers of files, where this number
is drawn from the dataset distribution d (denoted by |Si| ∼ d).

all users possess the same number of files, i.e., |Si| = |Sj |
for all i, j ∈ U (the case of |Si| = 1 is already shown in
Figure 4). Note that, by symmetry, we get exactly the same
graph if peers possess one file (|Si| = 1) and desire multiple
files (|Ti| ∈ {2, 5, 10, 20}).

From these simulations, we observe a significant decrease in
the percentage of users that cannot trade when |Si| increases
from 1 to 20 (resp., when |Si| = 1 and |Ti| increases from
1 to 20). We can illustrate this by considering the minimum
required number of users in the system so that at most 10%
are not able to trade: 1,000,000 users are required when each
user has 5 files, but only 50,000 users are needed when each
user possesses 20 files.

Distribution of |Si| across users. Our simulations up to
now have assumed that all users in the system possess the same
number of files, i.e., |Si| = |Sj | for all i, j. We next assume
that the number of files that users possess vary across different
users, inferring this distribution for |Si| from the dataset.11 We
are interested in whether the percentage of users that can trade
bilaterally increases as the variance of the distribution of |Si|
increases (assuming that the mean remains the same). At first
it may seem plausible that users with very large |Si| would
be able to accommodate a lot of trades and as a result ρBE
should increase as the |Si|’s become more dispersed. However,

11We assume that the number of files that a user possesses is equal to
the number of files he downloads in the dataset; note that this may be a bit
optimistic, as it ignores the possibility of deletions over time from a user’s
set of shared files.

this is not the case, as we discuss next.
The dataset shows that most users, in fact, possess only a

few files. Only 32% of users possess more than a single file,
and only 2% of users possess more than 10 files. There are,
however, a few users that have more than 400 files. Since the
mean value of |Si| in the dataset is 2.0084, we are interested
in whether ρBE increases compared to the case that |Si| = 2
for all i. This comparison is shown in Figure 5 (bottom).

We observe that when |Si| is drawn from the dataset distri-
bution d, the percentages of users that cannot trade bilaterally
are between the cases of |Si| = 1 and |Si| = 2, even though
the expected value of |Si| d is slightly greater than 2. This
occurs because, even though some peers have a large number
of files and thus are more likely to be able to trade bilaterally
when the distribution of |Si| is more dispersed, the percentage
of peers that only have one file also increases. Moreover, since
each peer desires one file, the probability that a peer that has
one file is matched with a peer with multiple files does not
significantly increase.

VI. RELATED WORK

In this paper, we have provided a formal comparison of
peer-to-peer system designs, and have studied the advan-
tages and disadvantages of bilateral and multilateral exchange.
Menasché et al. investigate direct and indirect reciprocity in
peer-to-peer systems [27], which correspond to bilateral and
multilateral exchange in our model. They upper bound the effi-
ciency loss of direct reciprocity assuming that users are willing
to download files they do not desire for bartering purposes.
They also consider dynamic scenarios in simulations. On the
other hand, we compare bilateral and multilateral exchange
through equilibrium outcomes and through the expected per-
centage of peers that can trade, and we do not assume that
users download files they do not desire. DeFigueiredo et al.
also consider direct and indirect reciprocity [12], but do not
focus on comparing the two.

The “gap” between bilateral and multilateral exchange in
terms of both efficiency and complexity has motivated the
study of incentive mechanisms that lie between the two types
of exchange in terms of both metrics. Through trace-driven
analysis and measurements of a deployment on PlanetLab,
Piatek et al. find that allowing trades to pass through one
intermediary improves performance and incentives relative to
BitTorrent [33]. Liu et al. study a similar mechanism assum-
ing that peers belong to an underlying social network [25].
Finally, the performance implications of bundling have been
considered [28].

Our work is also related to the study of equilibria in
economies where not all trades are allowed. Kakade et al.
introduce a graph-theoretic generalization of classical Arrow-
Debreu economics, in which an undirected graph specifies
which consumers or economies are permitted to engage in
direct trade [22]; however, the inefficiencies of bilateral ex-
change do not arise in their model. The monetary economics
literature has long studied how money reduces the double
coincidence problem. The implementation of a competitive
equilibrium is a central theme in this literature. The superiority
of monetary exchange has been studied [37], and dynamics of
bilateral trading processes have been considered [29, 13]. The
transactions role of money is surveyed in [30].
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Finally, as discussed in the introduction, we note that a
number of studies consider incentives in peer-to-peer systems
(e.g., [15, 11, 38, 9, 3, 14, 33, 40, 24]). Our work contributes
to this broad line of literature.

VII. CONCLUSION

This paper provides a formal comparison of two peer-to-
peer system designs: bilateral barter systems such as BitTor-
rent, and a market-based exchange of content enabled by a
price mechanism to match supply and demand. Our results
demonstrate that even though bilateral equilibria are not Pareto
efficient in general, bilateral exchange may perform very well
in terms of the expected percentage of users that can trade
for certain file probability distributions. Moreover, our data
analysis shows a significant increase in the percentage of users
that can trade bilaterally when each user shares or desires
multiple files. Informally, the fact that BitTorrent breaks files
into chunks greatly increases the number of matches possible,
leading to performance gains similar to those described in the
last section. More generally, our insight suggests that bilateral
incentives in BitTorrent could be made even stronger if the
protocol considered exchanges across different files, rather
than restricting exchange in a single swarm to chunks of the
same file.12

We conclude by noting that our work has considered a
static “snapshot” view of a file-sharing system. This is com-
plemented by our earlier work in [5], where we considered a
system design for multilateral exchange in a dynamic setting.
In a dynamic system, the number of simultaneous matches
possible may be quite small, even if all content possessed
by the users is available for upload. In such systems, money
plays another important role: it can act as a store of value (e.g.,
see [21]) over time, allowing a user to upload now and earn
the ability to download later. Our design in [5] leverages this
advantage by designing a system where pricing mechanisms
serve only as algorithmic devices to ensure efficient exchange;
to keep the system simple, we never expose prices directly
to the end user.13 However, in our system design currency
functions as a store of value, and allows dynamic trades over
time. Quantifying this advantage (in the sense of Section V)
remains an important direction for future work.
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APPENDIX

Note: Throughout the appendix we write x � 0 if all
components of x are positive.

Proof of Proposition 1: We first define the concept
of restricted BE and show that such an equilibrium always
exists. We then use the exchange ratios of the restricted BE
to construct a BE according to Definition 1.

The rate allocation r∗ and the exchange ratios γ∗ constitute
a restricted BE if

1) γ∗ij = 0 if Si ∩ Tj = ∅ or Sj ∩ Ti = ∅; and
γ∗ij · γ∗ji = 1 otherwise.

2) For each user i, r∗ solves the Bilateral Peer Optimization
problem given exchange ratios γ∗.

Thus at a restricted BE all exchange ratios between peers that
cannot trade bilaterally are set to zero.

We show that a restricted BE exists under Assumption 1.
Let E = {(i, j) : Ti ∩Sj 6= ∅, Tj ∩Si 6= ∅} be the set of pairs
of users with reciprocally desired files. In a restricted BE,
γij > 0 if and only if (i, j) ∈ E. We consider an equivalent
formulation with a price pij for every pair (i, j) ∈ E,
representing the price that user j pays to download from user
i; see Section II for details. The exchange ratio between i and
j is γij = pij/pji. In particular, without loss of generality
we assume that the budget constraint in the Bilateral Peer
Optimization of user i is replaced by

pji
∑
f

rjif = pij
∑
f

rijf .

For this proof, let p = (pij , (i, j) ∈ E). We ignore pairs of
users that are not in E (since by definition such users cannot
trade bilaterally), and show that it is possible to have some
p� 0 such that the market clears.

For the purposes of this proof, let ri(p) be the optimal
solution for the Bilateral Peer Optimization problem of user i
when the exchange ratios are equal to γij = pij/pji. If r and
p constitute a BE, then r ∈ ri(p) for all i ∈ U . We note that
each riijf is in general a correspondence. We define excess
demand for each (i, j) ∈ E as

zij(p) =
∑
f

rjijf (p)−
∑
f

riijf (p).

Our proof follows a similar approach to the standard proof
of existence of competitive equilibrium [26]. We first show
that the excess demand z has the following properties:

1) For every p and z ∈ z(p), p · z(p) = 0.
2) z(·) is convex-valued.
3) z(·) is homogeneous of degree 0.
4) z(·) is upper-hemicontinuous.
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5) There is s > 0 such that zij > −s for any z ∈ z(p)
and p.

6) If pn → p 6= 0, zn ∈ z(pn), and for some (i, j) ∈ E,
pij > 0 while pji = 0, then

max{znij : (i, j) ∈ E} → ∞.

By Assumption 1, the budget constraint of each user binds.
The budget constraint of user i is

pji
∑
f

rijif (p) = pij
∑
f

riijf (p).

By summing over all users, we obtain Property 1.
Fix a price vector p� 0. By Assumption 1, v(·) is strictly

concave; therefore riijf (p) and rjijf (p) are convex-valued.
Thus the aggregate excess demand z(·) is a convex-valued
correspondence (Property 2).

Consider a price vector p� 0, and fix a constant t > 0. It is
clear that the feasible region of the Bilateral Peer Optimization
problem remains unchanged if we replace the price vector p
by tp. Thus the aggregate excess demand is homogeneous of
degree zero (Property 3).

By Assumption 1, v(·) is a continuous function. From
the Theorem of the Maximum [8] it follows that riijf (p)
and rijif (p) are upper hemicontinuous correspondences. The
aggregate excess demand for (i, j) ∈ E is a linear combination
of the rates rjijf (p) and riijf (p), and therefore is also upper
hemicontinuous (Property 4).

The upload rate of any user i is upper bounded by his upload
rate constraint Bi, so the total supply is upper bounded and
the excess demand is bounded from below (Property 5).

Suppose that pn → p 6= 0, and pij > 0 while pji = 0 for
some (i, j) ∈ E. Let f ∈ Ti ∩ Sj . As pn → p the amount
of f that user i can afford approaches infinity. On the other
hand, the total possible supply is bounded above by the upload
rate constraint of user j. Thus max{znij : (i, j) ∈ E} → ∞,
establishing Property 6.

Using Properties 1-6 we show that there exists a restricted
BE. Let

∆ = {p ∈ R|E|+ : pij + pji = 1, (i, j) ∈ E}

∆n = {p ∈ ∆ : pij ≥ 1/n, (i, j) ∈ E}

We observe that ∆n is compact. Then (from Property 4) for
each n, there exists rn > 0 such that z(p) ⊂ [−rn, rn]|E|

if p ∈ ∆n. For each n, define fn : ∆n × [−rn, rn]|E| →
∆n × [−rn, rn]|E| by

fn(p, z) = {q ∈ ∆n : z · q ≥ z · q′,∀q′ ∈ ∆n} × z(p).

For each n, the correspondence fn is convex-valued and
upper-hemicontinuous. We can now apply Kakutani’s fixed
point theorem to conclude that for each n, fn(·) has a fixed
point, which we denote by (pn, zn).

The sequence pn in ∆ has a subsequence that converges,
because ∆ is compact. By Property 5 and the fact that zn is
bounded, the limit must be in the interior of ∆. Therefore, by
taking a subsequence if necessary, we can assume that pn →
p∗ and zn → z∗, where p∗ is in the interior of ∆. Now
observe that z∗ = z(p∗), and (by Property 1) 0 = z∗ · p∗ ≥
z∗ · p for any p ∈ ∆. Now observe that p∗jiz

∗
ji = −p∗ijz∗ij , so

we must in fact have z∗ij = 0 for all i, j. We conclude that the

limit p∗ is a restricted BE price vector, with corresponding
allocation r∗ ∈ ri(p∗) for all i.

We have shown that a restricted BE exists under Assump-
tion 1. We now show how to construct a BE (according to
Definition 1). Suppose r̃ and γ̃ constitute a restricted BE. For
pairs of users i, j such that Si ∩ Tj 6= ∅ and Sj ∩ Ti 6= ∅, set
γ∗ij = γ̃ij . Having set exchange ratios for all pairs of users
where trade is possible at the restricted BE, we now consider
those pairs of users i, j where Sj ∩ Ti = ∅. In this case user
i does not want any of the files user j has. If Si ∩ Tj = ∅
as well, we set γ∗ij = γ∗ji = 1. Otherwise, we simply set γ∗ij
sufficiently high to ensure that user j does not upload to user
i in his optimal solution to the Bilateral Peer Optimization;
(this is possible because of the finite derivatives assured by
Assumption 1). We also set γ∗ji = 1/γ∗ij . Then r∗ solves the
Bilateral Peer Optimization problem of every user with respect
to exchange ratios γ∗. In particular, every user i makes exactly
the same trades as in the restricted BE. Exchange ratios with
users that i cannot trade with bilaterally are set so that they
do not affect i’s optimization problem.

Proof of Proposition 2: We define the user graph as the
directed graph G = (V,E) with V = U , and E = {(i, j) :
Si ∩ Tj 6= ∅}. In other words, G is a graph where nodes
correspond to users. There is a directed edge from user i to
user j if i has a file that j desires. We first show that if
the user graph is strongly connected then an ME exists. We
then discuss how to construct an ME if the user graph is not
strongly connected.

For the purposes of this proof, let ri(p) be the optimal
solution of the Multilateral Peer Optimization problem of user
i when the price vector is p = (pi, i ∈ U). If r and p constitute
an ME, then r ∈ ri(p) for all i ∈ U .

We define excess demand for the upload rate of each user
i ∈ U as

zi(p) =
∑
f,j

rjijf (p)−
∑
f,j

riijf (p).

We show that the aggregate excess demand correspondence
z(·) defined on (0,∞)|U | satisfies the following properties:

1) For every p� 0 and z ∈ z(p), p · z = 0.
2) z(·) is convex-valued.
3) z(·) is homogeneous of degree 0.
4) z(·) is upper hemicontinuous.
5) There is an s > 0 such that zj > −s for any z ∈ z(p),

for every file j ∈ F and every price vector p� 0.
6) If pm → p 6= 0, zm ∈ z(pm) and pj = 0 for some j,

then max{zmj : j ∈ F} → ∞.

Then the existence of an ME follows from standard results in
microeconomics; see, e.g., [26], Exercise 17.C.2.

By Assumption 1, the budget constraint of each user binds.
The budget constraint of user i is∑

j,f

pjr
i
jif (p) = pi

∑
j,f

riijf (p).

By summing over all users, we obtain Property 1.
Fix a price vector p� 0. By Assumption 1, v(·) is strictly

concave; therefore riijf (p) and rjijf (p) are convex-valued.
Thus the aggregate excess demand z(·) is a convex-valued
correspondence (Property 2).
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Consider a price vector p � 0, and fix a constant t >
0. It is clear that the feasible region of the multilateral user
optimization problem remains unchanged if we replace the
price vector p by tp. Thus the aggregate excess demand is
also homogeneous of degree zero (Property 3).

We now show that the aggregate excess demand correspon-
dence is upper hemicontinuous. By Assumption 1, v(·) is a
continuous function. From the Theorem of the Maximum [8]
it follows that riijf (p) and rijif (p) are upper hemicontinuous
correspondences. The aggregate excess demand for user i is
a linear combination of the rates rjijf (p) and riijf (p), and
therefore is also upper hemicontinuous (Property 4).

The upload rate of any user i is upper bounded by his upload
rate constraint Bi, so the total supply is upper bounded and
the excess demand is bounded from below (Property 5).

If pm → p 6= 0 and pj = 0, then pk > 0 for some k.
If the user graph is strongly connected, there is a sequence
of users 1, 2, ..., n ∈ U such that Ti ∩ Si+1 6= ∅. Thus, there
is a user i such that pi approaches a strictly positive limit
and pi+1 approaches zero. Let f ∈ Ti ∩ Si+1. The budget
of user i approaches a strictly positive limit as pm → p and
the amount of f he can afford goes to infinity. On the other
hand, the total possible supply is bounded above by the upload
rate constraints of user i + 1. Thus max{zml : l ∈ F} → ∞,
establishing Property 6.

Now suppose that the user graph is not strongly connected,
i.e., there exist connected components of G that are not
strongly connected. For the purpose of ME existence, we can
consider each connected component separately, since peers
from one connected component are not interested in files
possessed by peers in another connected component.

Consider a connected component of G that is not strongly
connected. Let C be the set of peers in this component. C can
be partitioned into strongly connected subsets C1, C2, ..., CK .
We consider the partition where K is minimized, i.e., each
strongly connected component has the maximum possible
size. This partition is uniquely defined. We consider the
directed graph G′ = (V ′, E′) with V ′ = {1, 2, ...,K}, and
E′ = {(k, k′) : i ∈ Ck, j ∈ Ck′ , Si ∩ Tj 6= ∅}. We observe
that G′ is a directed acyclic graph (cycles would imply that
we have not chosen the minimal partition). Then Assumption
1 implies that an ME exists for each Ck (by setting prices for
desired files that are not in Ck sufficiently large).

We next show that it is possible to scale prices of the ME
in each Ck so that an ME exists for C. This is done in the
following steps.

(1) Let A be the set of sinks of G′, and let p = 1.
(2) Find an ME for each Ck with k ∈ A, and scale the

prices of this ME so that the minimum price is greater
than p.

(3) Choose p sufficiently large so that no user in any Ck,
k ∈ A would consider downloading from a user outside
of Ck; this is possible because of the finite derivatives
assured by Assumption 1.

(4) Remove all peers in A from G′ and let A be the set of
the new sinks.

(5) Repeat steps (2)-(4) until G′ becomes empty.

Proof of Proposition 3: Suppose that r ∈ X is a Pareto
improvement. Then some user i strictly prefers r to r∗. Since

r is not an optimal solution for user i under p, it must be that∑
j,f

pjrjif > pi
∑
j,f

rijf .

All users k 6= i are at least as well off under r as under r∗.
This implies that ∑

j,f

pjrjkf ≥ pk
∑
j,f

rkjf ,

because the utilities are increasing in the total rates of files
that users are interested in. In particular, consider a user k who
gets exactly the same utility under r and r∗: if

∑
j,f pkrjkf <

pk
∑
j,f rkjf , then there is a rate allocation that satisfies k’s

budget constraint and k strictly prefers to r, which implies
that r∗ is not optimal.

Summing over all users,∑
k

∑
j,f

pjrjkf >
∑
k

pk
∑
j,f

rkjf ,

which is a contradiction. We conclude that an ME allocation
is Pareto efficient.

Proof of Proposition 4: Define r∗ij ≡
∑
f r
∗
ijf , the total

rate that user i sends to user j. We define the matrix Q such
that Qij = r∗ij if i 6= j; and Qii = −

∑
j r
∗
ij . By construction,

Q is a transition rate matrix of a continuous time Markov
chain with no transient subclasses, since r∗ij > 0 implies that
r∗ji > 0 (by the definition of BE). In what follows we consider
the communicating classes of Q: if r∗ij > 0, then users i
and j are in the same communicating class. For the purposes
of this proof, let Ni(r∗) be the set of peers with which i
trades under r∗, i.e., Ni(r∗) = {j ∈ U : r∗ji > 0}. Note
that Ni(r∗) is a subset of the communicating class containing
i. Finally, a transition rate matrix Q is called reversible if
for every cycle of distinct nodes i1, i2, . . . , in, i1, there holds:
Qi1i2Qi2i3 · · ·Qin−1inQini1 = Qi1inQinin−1 · · ·Qi3i2Qi2i1 ;
i.e., the product of transition rates is the same in each direction
around the cycle. If a matrix Q is reversible, and π is
a strictly positive invariant distribution, i.e., π � 0 and
πQ = 0, then the detailed balance conditions hold: for all
i, j, πiQij = πjQji. See [23] for details.

Let π be an invariant distribution of Q, i.e., πQ = 0. We
observe that πQ = 0 implies that the budget constraint in the
Multilateral Peer Optimization problem is satisfied with prices
π; therefore for any invariant distribution π, r∗ is feasible for
the Multilateral Peer Optimization problem of every user when
prices are equal to π. We show that if r∗ is Pareto efficient,
then for some invariant distribution p ofQ, r∗ and p constitute
an ME. In particular, we show that for each user i, r∗ solves
the Multilateral Peer Optimization problem under p.

This is done in three steps. First, we show that if r∗ is
Pareto efficient, then Q corresponds to a reversible Markov
chain. This implies that if π is an invariant distribution of
Q with all components strictly positive, then γ∗ij = πi/πj
whenever r∗ij > 0, and as a result r∗ solves the Multilateral
Peer Optimization problem of user i given prices π if user
i is restricted to trade with users in Ni(r∗) (Step 1). We
then show that if user i is restricted to trade with users
in the same communicating class under prices π, then r∗

is an optimal solution of the Multilateral Peer Optimization
problem (Step 2). Step 2 completes the proof if Q consists
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of one communicating class. Finally, we show that if there
are multiple communicating classes, there exists an invariant
distribution p (derived as a convex combination of the invariant
distributions corresponding to the communicating classes)
such that r∗ is an optimal solution of the Multilateral Peer
Optimization problem of each user (Step 3). We show each
of these steps by demonstrating that if the desired conclusion
of the step does not hold, then there exists a rate vector r
that Pareto improves r∗—violating the assumption that r∗ is
Pareto efficient.

Before beginning the proof, we derive a simple condition
that allows us to test whether a new rate vector improves user
i’s utility. Suppose r∗ solves the Bilateral Peer Optimization
problem of user i under γ∗. Let (x∗if , f ∈ Ti) and y∗i be the
corresponding download and upload rates for user i. Consider
a rate allocation r where (xif , f ∈ Ti) and yi are the
corresponding download and upload rates for user i. Fix a
file f ∈ Ti, and assume that xig = x∗ig for all files g 6= f .
If xif − x∗if and yi − y∗i are sufficiently small, we can use
Taylor’s approximation to conclude that user i is strictly better
off under r if

(xif − x∗if )
∂vi(x

∗
i , y
∗
i )

∂xif
+ (yi − y∗i )

∂vi(x
∗
i , y
∗
i )

∂yi
> 0. (1)

Let γ∗ig = max{γ∗ij : g ∈ Sj}. If user i is getting file g
from peer j at the BE, it must be that γ∗ij = γ∗ig . Substituting
xif in the other constraints of the Bilateral Peer Optimiza-
tion problem of user i (given in Figure 1), we conclude
that yi =

∑
g∈Ti

xig/γ
∗
ig . Thus, user i wishes to maximize

vi(xi,
∑
g∈Ti

xig/γ
∗
ig). The first order optimality conditions

(which are necessary and sufficient, since the objective is
concave) and the fact that γ∗ij = γ∗ig r

∗
jig > 0 yield that

∂vi(x
∗
ig, g ∈ Ti)
∂xif

+
1

γ∗ij

∂vi(x
∗
i , y
∗
i )

∂yi
= 0 (2)

whenever r∗jif > 0. (Here we use the fact that vi(xi, yi) →
−∞ as yi → Bi to ignore the constraint yi ≤ Bi.) Combining
(2) with (1), we see that user i strictly prefers r to r∗ if

xif − x∗if
yi − y∗i

> γ∗ij , (3)

assuming that xif − x∗if and yi − y∗i are sufficiently small.
Thus if r∗jif > 0, and we increase the download rate of file f
to user i as well as the total upload rate of user i such that
the previous condition holds, then user i is strictly better off.
Step 1. If r∗ is Pareto efficient, then Q is reversible. Further,
if π � 0 is an invariant distribution of Q, then r∗ solves the
Multilateral Optimization Problem of user i given prices π
if user i is restricted to trade only with the users in Ni(r∗).
Let π be a strictly positive invariant distribution of Q, i.e.,
π � 0 and π ·Q = 0. If Q is reversible, then the detailed
balance equations hold for every i, j ∈ U , i.e., πir∗ij = πjr

∗
ji.

We note that if r∗ij = 0, then it must be that r∗ji = 0, so
the detailed balance equation trivially holds for i and j. On
the other hand, the budget constraint of the Bilateral Peer
Optimization problem of user i implies that γ∗kir

∗
ki = r∗ik.

We conclude that Q is reversible if and only if γ∗ij = πi/πj
whenever r∗ij > 0.

We show that Pareto efficiency of r∗ implies reversibility
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Fig. 6. Pareto improvements when the BE allocation does not correspond
to an ME allocation for Steps 1, 2, and 3 of the proof of Proposition 4
respectively. A pair of users that trade at the BE is connected with a solid
line. Dotted arrows show the rates that increase for the Pareto improvement:
user i increases his upload rate and the rate he sends to user i− 1 by ai. In
the third figure (Step 3) there are two communicating classes — each class
is included in a dashed box.

of Q. Assume that Q is not reversible. Then πj/πi > γ∗ji for
some i, j with r∗ij > 0. Since π is an invariant distribution,
πQ = 0, and thus

∑
k(πk/πi)r

∗
ki =

∑
k r
∗
ik. On the other

hand, the budget constraint of the Bilateral Peer Optimization
problem of user i implies that γ∗kir

∗
ki = r∗ik. Summing over k

and substituting, we conclude that∑
k

γ∗kir
∗
ki =

∑
k

pk
pi
r∗ki.

If πj/πi > γ∗ji for some i, j with r∗ij > 0, the previous
equation implies that there exists some user k such that
πj+1/πk > γ∗j+1,k and r∗j+1,k > 0. Without loss of gen-
erality, we relabel i to be j + 1, and k to be j + 2. Then
πj+1/πj+2 > γ∗j+1,j+2. Applying this reasoning recursively,
we can find a sequence of users 1, 2, ...,K,K + 1 such that
1 ≡ K + 1 and πk/πk+1 > γ∗k,k+1 for all k.

We show how the utility of each user in D = {1, 2, ...,K}
can increase while the rate allocation to users outside D
remains the same. In particular, we increase r∗k,k−1 and y∗k
by ak for all k ∈ D, as illustrated in the first part of Figure 6
(for K = 3). We note that users’ upload capacity constraints
do not bind (i.e., remain inactive) at the BE, a consequence of
the assumption that vi(xi, yi) → ∞ as yi → Bi. Therefore,
it is feasible to slightly increase the upload rates of all users.
Applying (3), user k is better off if

ak+1

ak
> γ∗k,k+1.

Since πk/πk+1 > γ∗k,k+1, it follows that
∏
k γ
∗
k,k+1 < 1.

Then, it is possible to make all users in the set D better off
by, e.g., choosing δ and ε small enough, and setting a1 = δ;
ak+1 = γ∗k,k+1 ·ak + ε, for all k ∈ S.

We conclude that if r∗ is the rate allocation of a BE and is
Pareto efficient, then Q is reversible. Further, if π � 0 is an
invariant distribution of Q, then γ∗ij = πi/πj whenever r∗ij >
0. This means that r∗ solves the Multilateral Peer Optimization
problem of user i given prices π if he is restricted to trade
with peers in Ni(r∗). The remainder of the proof shows that
there exists an invariant distribution p such that r∗ is optimal
for the Multilateral Peer Optimization problem under p.
Step 2. Assume r∗ is Pareto efficient, and let π � 0 be an
invariant distribution of Q. Then r∗ solves the Multilateral
Optimization Problem of user i given prices π if user i is
restricted to trade only with the users in the same communi-
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cating class. Let π � 0 be an invariant distribution of Q, and
consider the Multilateral Peer Optimization problems when
prices are given by π. Suppose that r∗ is not optimal for the
Multilateral Peer Optimization problem of some user i. Then
by Step 1 there must exist a user j such that r∗ji = r∗ij = 0
with which i wants to exchange under π.

In this step we consider the case that i and j are in the
same communicating class. Then there exists a sequence of
users between i and j such that each two consecutive users
trade at the BE. Without loss of generality we relabel user i by
K, user j by 1, and the users in the sequence by 2, 3, ...,K−1.
Then, r∗j,j−1 > 0 for j = 2, 3, ...,K. We show that there is
a Pareto improvement, where the utilities of all users in the
set S = {1, 2, ...,K} strictly increase, while utilities of users
outside S remain the same.

Let aj be the amount by which we increase rate r∗j,j−1 for
j = 2, ...,K. We assume that all users in the set increase
this rate by increasing their upload rates. In particular, user
j increases his upload rate by aj , and the download rate he
receives from user j + 1 increases by aj+1. This is illustrated
for K = 3 in the second part of Figure 6. Applying (3), user
j 6= K is better off if aj+1/aj > γ∗j,j+1 ≡ πj/πj+1 (the
last part follows from the reversibility of Q). To conclude this
step, we show that user K is better off if a1/aK > πK/π1.
Then, as in Step 1, it is possible to find ai for i ∈ S, such
that all users in S are better off.

Now consider user K. Let f ∈ TK be a file that user K
wants to get from user 1 under prices π; then clearly f ∈ S1.
There are two cases to consider, depending on whether user
K downloads file f at the BE.

1) r∗jKf > 0 for some j. Then, by (3), we conclude that
user K is better off if a1/aK > γ∗Kj . Moreover, since K
prefers to get f from 1 under π it must be that πK/π1 >
πK/πj = γ∗Kj (where the last equality follows by the
reversibility of Q). Thus, user K is strictly better off if
a1/aK > πK/π1.

2)
∑
j r
∗
jKf = 0, i.e., K does not download file f at rate

allocation r∗. The Multilateral Peer Optimization prob-
lem of user K implies that yK = (1/πL)

∑
g∈Ti

πgxKg ,
where πg is the minimum price at which K can get
file g (and so πf = π1). Substituting this in the
objective, we conclude that peer K wishes to maximize
vK(xK , (1/πL)

∑
g∈Ti

πgxKg). The marginal of this
function with respect to xKf must be strictly positive
at x∗K under π, because user K is strictly better off
downloading a positive amount of f from user 1 than
not downloading f at all. Thus:

∂vK(x∗Kg, g ∈ TK)

∂xKf
>

π1
πK

∂vK(x∗K , y
∗
K)

∂yK
.

Combining this with (1) we conclude that user K is
better off if a1/aK > πK/π1.

In either case, user K is better off if a1/aK > πK/π1. This
concludes the proof of this step.
Step 3. If r∗ is Pareto efficient, there exists an invariant
distribution π � 0 such that r∗ solves the Multilateral Peer
Optimization problem of every user i given prices π.

To complete the proof, we extend the result of Step 2 across
communicating classes. Let πc be the invariant distribution of
the rate matrix Q restricted to communicating class c. We

show that there exist coefficients ρc > 0 such that r∗ solves
the Multilateral Peer Optimization problem of each user under
p ≡

∑
c ρcπc.

We start by deriving conditions that the coefficients ρc
must satisfy to ensure optimality. Consider two communicating
classes c and c′. If (∪i∈cTi)∩ (∪j∈c′Sj) 6= ∅, then some users
from class c are interested in files that are possessed by users
in class c′. To ensure that r∗ is optimal for the Multilateral
Peer Optimization problems of these users, the ratio ρc′/ρc
should be sufficiently large. Let ξc′,c be the smallest possible
ratio ρc′/ρc such that no users from class c would download
files from class c′ if the prices were ρcπc + ρc′πc′ .

Suppose that there do not exist coefficients ρc such that r∗

is an optimal solution of the Multilateral Peer Optimization
problem of each peer. Then, there exists a directed cycle of
classes such that (1) (∪i∈cTi) ∩ (∪j∈c′Sj) 6= ∅ for each two
consecutive classes in the cycle, and (2) the product of ξc′,c
along the cycle is strictly greater than 1. This implies the
existence of a vector ρ such that ρc′/ρc < ξc′,c for every pair
of consecutive classes along the directed cycle. In particular,
when prices are p ≡

∑
c ρcπc, for each pair of consecutive

classes along the cycle c and c′, there is a user nc in class c
that wants to trade with user mc′ from class c′. We construct
a set S that includes users nc,mc as well as the users between
them, i.e., users ic1, ..., icl such that nc ≡ ic1, mc ≡ icl and
r∗icj ,ic,j+1

> 0. We relabel users in S by {1, 2, ...,K} such
that if i and i+ 1 are in different communicating classes (say
c and c′) then i = nc and i + 1 = mc′ , i.e., user i wants to
trade with user i+ 1.

We demonstrate a Pareto improvement where user i ∈ S
increases his upload rate and the rate he sends to user
i − 1 by ai. In Figure 6 we illustrate an example with two
communicating classes. We demonstrate that it is possible to
reallocate rates in a way that strictly increases the utilities of
all users in S and does not change the utilities of users outside
S. From (3) we see that a user j 6= nc can be made better
off if aj+1/aj > pj/pj+1. A user j ≡ nc for some j can be
made better off if aj+1/aj > pj/pj+1 (this can be shown by
applying the same argument we used for user K in Step 2).
As in Steps 1 and 2, since the product of all left hand sides is
equal to 1 while the product of all right hand sides is strictly
less than 1, it is possible to find a vector a that satisfies all
these inequalities. This concludes the proof.

Proof of Proposition 5:

We first show the result when |Ti| = |Si| = 1 for all peers.
Let

θ(K, s) ≡
K∑
i=1

K∑
j=1,j 6=i

(ij)−s. (4)

The probability that Sk = {i} and Tk = {j} is equal to

(ij)−s

θ(K, s)
≡ pij .

Peer k cannot trade bilaterally if there exists no peer k′ such
that Sk′ = Tk and Tk′ = Sk. The event Sk′ = Tk and Tk′ =
Sk occurs with probability (1−pji)N−1 (since there are N−1
peers to choose from). Since (Sk, Tk) is chosen independently
for each peer k, the expected percentage of users that cannot
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trade bilaterally when there are K files and N users satisfies:

ρBE(K,N, s) =

K∑
i=1

K∑
j=1,j 6=i

(ij)−s

θ(K, s)

(
1− (ij)−s

θ(K, s)

)N−1
.

(5)
We first assume that K 6→ ∞ as N → ∞. Then

ρBE(K,N, s) is the sum of a finite number of terms, each
of which approaches 0 as N →∞. Thus, ρBE(K,N, s)→ 0
as N →∞.

Now assume that K →∞ as N →∞ and let

θ(s) ≡
∑

i 6=j:i,j∈{1,2,...}

(ij)−s.

We observe that θ(K, s) ↑ θ(s) as K →∞. Since s > 1, θ(s)
is finite. We have:

ρBE(K,N, s) ≤

1

θ(K, s)

K∑
i=1

K∑
j=1,j 6=i

(ij)−s
(

1− (ij)−s

θ(s)

)N−1
.

Let

BN ≡
K∑
i=1

K∑
j=1,j 6=i

(ij)−s
(

1− (ij)−s

θ(s)

)N−1
.

Since θ(s) is finite and θ(K, s) < θ(s), it suffices to show
that BN → 0 as N →∞. We observe that for any fixed K,

BN <
∑

i 6=j:i·j≤K

(
1− (ij)−s

θ(s)

)N−1
+

∑
i 6=j:i·j>K

(ij)−s.

The first term approaches zero as N → ∞; the second term
does not depend on N , and approaches zero as K → ∞.
Thus, first taking the limit as N → ∞, then taking the limit
as K →∞, the result follows.

We have shown the result for the case that |Si| =
|Ti| = 1 for all peers i. When peers desire or possess more
files, the chance of bilateral exchange increases, so again
ρBE(K,N, s)→ 0 as N →∞.

The following result is used in the proof of Proposition 6.

Lemma 1 If y ∈ [0, 1) and N > 0, then

(1− y)N ≤ 1

1 +N · y
.

Proof of Lemma 1: Let

f(y) ≡ (1− y)−N − (1 +Ny).

It suffices to show that f(y) ≥ 0 for y ∈ [0, 1]. We observe
that f(0) = 0 and

f ′(y) = N
(
(1− y)−N−1 − 1

)
≥ 0,

for y ∈ [0, 1). This completes the proof.
Proof of Proposition 6: We follow the same notation as

in the proof of Proposition 5; in particular, we define θ(K, s)
as in (4) and conclude that ρBE is given by (5).

We observe that

θ(K, s) ≤

(
K∑
i=1

i−s

)2

=

(
1 +

K∑
i=2

i−s

)2

≤

(
1 +

∫ K

i=1

i−s

)2

≤ K2(1−s)

(1− s)2
;

θ(K, s) ≥

(
K∑
i=1

i−s

)
·

(
K∑
i=2

i−s

)

≥

(∫ K

1

x−sdx

)
·

(∫ K

2

x−sdx

)

=
K2(1−s)

(1− s)2

(
1− 1 + 21−s

K2(1−s)

)
.

Thus,

K2(1−s)

(1− s)2

(
1− 1 + 21−s

K1−s

)
≤ θ(K, s) ≤ K2(1−s)

(1− s)2
. (6)

We first show (i). Let AK(δ) ≡
{
dδKe
K , dδKe+1

K , ..., 1
}

. We
have:

ρBE(K,N, s) ≥
K∑
i=1

K∑
j=2

(ij)−s

θ(K, s)

(
1− (ij)−s

θ(K, s)

)N−1
≥ (1− s)2

K2

∑
u,v∈AK(δ)

(uv)−s
(

1− (uv)−sK−2s

θ(K, s)

)N−1

≥ (1− s)2

K2

(
1− (δK)−2s

θ(K, s)

)N−1 ∑
u,v∈AK(δ)

(uv)−s. (7)

In the previous inequalities we set u = i/K, v = j/K and
use the upper bound in (6).

Define:
γ(δ,K, s) ≡ 1− (δK)−2s

θ(K, s)
.

Using the lower bound in (6) and the fact that K/
√
N →∞

as N → ∞, we have γ(δ,K, s)N−1 → 1 as N → ∞. Also
observe that since the cardinality of AK(δ) is at least (1−δ)K,
we have:

1

K2

∑
u,v∈AK(δ)

(uv)−s ≥ (1− δ)2.

It follows from (7) that:

lim inf
N→∞

ρBE(K,N, s) ≥ (1− s)2(1− δ)2.

Since δ > 0 was arbitrary, the result follows.
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We next show (ii). By Lemma 1,

ρBE(K,N, s) ≤
K∑
i=1

K∑
j=1

(ij)−s

θ(K, s)

(
1− (ij)−s

θ(K, s)

)N−1
≤

K∑
i=1

K∑
j=1

(ij)−s

θ(K, s)

1

1 + (ij)−s(N − 1)/θ(K, s)
=

K∑
i=1

K∑
j=1

1

(ij)sθ(K, s) + (N − 1)
≤

≤ K2

N
→ 0 as N →∞.

We now show (iii). We observe that a user cannot trade
multilaterally if he has a file that no user wants. Thus,

ρME(K,N, s) ≥
K∑
i=1

i−s∑K
j=1 j

−s

(
1− (ij)−s∑K

j=1 j
−s

)N−1
A similar argument to the argument used in (i) shows that

lim inf
N→∞

ρME(K,N, s) ≥ 1− s.

Finally, we show (iv). Our proof exploits a connection to
classical Erdös-Rényi random graphs. Throughout we assume
without loss of generality that N ≤ K(K − 1). Let G(K,N)
denote a graph drawn uniformly at random from the

(
K(K−1)

N

)
possible directed graphs on K nodes with N edges. We let
H(K,N,p) denote a random multigraph on K nodes with
N edges, where each edge is independently placed from f
to g with probability pfg . Typically, p will be a probability
distribution. However, in the subsequent analysis it is conve-
nient if we allow the possibility q(p) =

∑
f,g pfg < 1. If

q(p) < 1, then we assume that each edge is not placed at all
with probability 1− q(p).

Now consider a random system with N peers and K files,
where each peer desires and has one file. For each peer i, draw
an edge from f to g if peer i wants file f and has file g. This
is exactly the random multigraph H(K,N,p) described in the
preceding paragraph, with:

pfg =
(fg)−s

θ(K, s)
, (8)

where θ(K, s) is defined as in (4).

Further, observe that if H(K,N,p) is strongly connected,
then all peers can trade multilaterally. This follows because if
a peer i has f and wants g, then there is an edge from f to
g in H(K,N,p). If H(K,N,p) is strongly connected, then
there must exist a path from g to f as well. This path identifies
a collection of peers that, together with peer i, form a cycle;
thus peer i can trade multilaterally. It suffices to show that with
probability approaching 1 as N →∞, H(K,N,p) is strongly
connected. (Convergence in probability implies convergence in
expectation, as ρME is bounded.)

It is known that if N/(K logK)→∞, then P(G(K,N) is
connected)→ 1 as N →∞ [31], where we use “connected”

to mean strongly connected.14 In Lemma 2, we use this
threshold to establish the same threshold for a special class
of H(K,N,p) multigraphs, where pfg = α/(K(K − 1)) for
all f, g, with 0 < α ≤ 1.

To complete the proof, fix s such that 0 ≤ s < 1, and
observe that from (6) we have for fixed f and g:

(fg)−s

θ(K, s)
≥ (1− s)2(f/K)−s(g/K)−s

K2

≥ (1− s)2

K(K − 1)
.

Let pfg = (fg)−s/θ(K, s), and let rfg = (1 − s)2/(K(K −
1)). It follows that:

P(H(K,N,p) is connected) ≥ P(H(K,N, r) is connected).

Since the right hand side approaches 1 as N →∞ by Lemma
2, we conclude that the left hand side approaches 1 as well.
Thus the probability that all peers can trade multilaterally
approaches 1.

The following lemma uses the same definitions as the
preceding proof.

Lemma 2 Suppose N/(K logK) → ∞ as N → ∞, and
pfg = α/(K(K − 1)) for all f, g, where 0 < α ≤ 1. Then
P(H(K,N,p) is connected)→ 1 as N →∞.

Proof: The random multigraph H(K,N,p) differs in two
ways from the random graph G(K,N). First, we may sample
the same edge twice (this is why H(K,N,p) is a multigraph).
Second, with probability 1−α, a given edge may not be placed
at all. Informally, neither of these effects change the order
scaling of the number of edges needed to ensure connectivity.
We now formally justify this intuition.

Where clear from context, to compress notation we let H
and G denote H(K,N,p) and G(K,N) respectively. Let
Γ(H) denote the simple graph obtained from H by replacing
any multiedges by a single edge. Observe that conditional on
Γ(H) having N ′ edges, Γ(H) has the same distribution as
G(K,N ′). Thus it suffices to show that almost surely, the
number of edges N ′ in Γ(H) satisfies N ′/(K logK)→∞.

Since N/(K logK) → ∞, we can choose a sequence
M(N) such that N/M → ∞ and M/(K logK) →
∞. (For example, for each k choose Nk such that
N/(K(N) logK(N)) ≥ k2 for all N ≥ Nk. For N such
that Nk ≤ N < Nk+1, let M(N) = N/k.) Since M/N → 0
and N ≤ K(K − 1), it follows that M/(K(K − 1)) → 0 as
K →∞. It suffices to show that P(Γ(H) contains at least M
edges)→ 1 as N →∞.

Consider the following procedure for sampling with replace-
ment from K(K − 1) items. Each time we draw an item, we
record its number with probability α; with probability 1−α we
discard the observation. If we have recorded n distinct items,
the time until we record the next distinct item is geometric
with parameter α − αn/(K(K − 1)). Let T (K) denote the

14This result is analogous to the same result for undirected Erdös-Rényi
random graphs, and can be proven using similar counting arguments for
threshold behavior of those graphs; see, e.g., [20, 19].)
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time until we observe M distinct items; then:

E[T (K)] =

1 +
1

α− α/(K(K − 1))
+ · · ·+ 1

α− α(M − 1)/(K(K − 1))
≤

M

α− αM/(K(K − 1))
.

Since M/(K(K − 1))→ 0 as K →∞, we conclude:

lim
N→∞

E[T (K)]

M
≤ 1

α
.

Using Markov’s inequality:

P(T (K) > N) ≤ E[T (K)]

N
=

E[T (K)]

M
· M
N
→ 0

as N → ∞. In other words, if we sample N items with
replacement from a bin of K(K−1) items as described above,
then we obtain M distinct items with probability approaching
1 as N → ∞. It follows that P(Γ(H) contains at least M
edges)→ 1 as N →∞, as required.

Proposition 7 Assume s = 0, i.e., file popularity is uniform.
Moreover, assume |Si| = σ and |Ti| = τ for all i ∈ U . As
N →∞:

(i) If K/
√
N →∞, then ρBE(K,N, 0)→ 1.

(ii) If K/
√
N → 0, then ρBE(K,N, 0)→ 0.

(iii) If K/N →∞, then ρME(K,N, 0)→ 1.
(iv) If K logK/N → 0, then ρME(K,N, 0)→ 0.

Proof: We first observe that the performance of both
bilateral and multilateral exchange improves as τ and σ
increase, since the set of possible trades expands. Since we
have established (ii) and (iv) for the case σ = τ = 1 in
Proposition 6, the results trivially follow for general τ and σ.

We now establish (i). Suppose a user i has a set of files Si =
{f1, . . . , fσ}, and wants files Ti = {g1, . . . , gτ}. We focus on
one file that user i wants, e.g., g = g1. The probability another
user j has g is equal to

(
K−1
σ−1

)
/
(
K
σ

)
= σ/K. Conditional on

user j having g, the probability user j wants at least one file
user i has is 1−

(
K−σ−1

τ

)
/
(
K−1
τ

)
, since the second term is the

probability that none of the τ files user j wants are any of the
files that user i has, conditional on user j wanting g. Define
the probability that user i can obtain g bilaterally through trade
with user j as:

λ(K) ≡ σ

K

(
1−

(
K−σ−1

τ

)(
K−1
τ

) ) .
It follows from a union bound that the probability that user i
can obtain at least one of the τ files in Ti bilaterally through
trade with user j is upper bounded by τ · λ(K). Thus,

(1− τ · λ(K))N−1 ≤ ρBE(K,N, 0). (9)

Note that:(
K−σ−1

τ

)(
K−1
τ

) =

(
1− σ

K − 1

)
· · ·
(

1− σ

K − τ

)
. (10)

It is straightforward to check that if 0 ≤ x1, . . . , xτ ≤ 1, then:

1−
∑
k

xk ≤ (1− x1) · · · (1− xτ ) (11)

We use this inequality, the lower bound from (9) and the fact
that

∑τ
k=1 1/(K − k) ≤ τ

K−τ to conclude that

ρBE(K,N, 0) ≥
(

1− τ2σ2

K(K − τ)

)N−1
, (12)

and (i) follows.

The scaling behavior shown in (12) is essentially tight, as
we now show. User i cannot trade with another user j if either
user j does not have a single file that user i wants, or if user
j does not want a single file that user i has. This probability
is:

P(Si ∩ Tj = ∅ or Sj ∩ Ti = ∅|Si, Ti) (13)

=

(
K−σ
τ

)(
K
τ

) +

(
K−τ
σ

)(
K
σ

) − P(Si ∩ Tj = ∅ and Sj ∩ Ti = ∅|Si, Ti)

(14)

= 2

(
K−σ
τ

)(
K
τ

) − ∑τ
m=0

(
τ
m

)(
K−σ−τ
τ−m

)(
K−2τ+m

σ

)(
K
τ

)(
K−τ
σ

) (15)

≤ 2

(
K−σ
τ

)(
K
τ

) − (K−στ )(
K−2τ
σ

)(
K
τ

)(
K−τ
σ

) . (16)

The second equality is derived as follows. Let m = |Ti∩Tj |. If
Si∩Tj = ∅ and Sj∩Ti = ∅, then the files in Tj must be drawn
outside of Si, and the files in Sj must be drawn outside of
Ti∪Tj . The summation captures exactly these constraints. For
the last inequality follows we use the fact that

(
K−2τ+m

σ

)
≥(

K−2τ
σ

)
, and Vandermonde’s convolution, which implies that:

τ∑
m=0

(
τ

m

)(
K − σ − τ
τ −m

)
=

(
K − σ
τ

)
.

To conclude the proof we observe the following inequalities:(
K−σ
τ

)(
K
τ

) ≤ (1− σ

K

)τ
;(

K−2τ
σ

)(
K−τ
σ

) ≥ (1− τ

K − τ − σ

)σ
.

We further use the fact that 1 − nx ≤ (1 − x)n ≤ 1 − nx +
n2x2/2 to conclude that:

ρBE(K,N, 0) ≤
((

1− στ

K
+

1

2

σ2τ2

K2

)(
1 +

στ

K − σ − τ

))N
.

If we now multiply through and again use the fact that 1+x ≤
ex, we conclude that:

ρBE(K,N, 0) ≤ c2 exp

(
− (σ2τ2/2− σ2τ − στ2)N

K2
+ o

(
1

K2

))
,

as required.

We now turn our attention to (iii). As in the proof of Propo-
sition 6 (iii), we observe that a user cannot trade multilaterally
if he has a file that no user wants. Since files are chosen
uniformly, a user desires a given file with probability τ/K.
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Thus,

ρME(K,N, 0) ≥
(

1− τ

K

)N−1
,

which implies that if K/N →∞, then ρME(K,N, 0)→ 1.

Proposition 8 If s = 0, and N2/(K3 logK) → ∞ as K →
∞, then the probability that every peer can trade along a
triangle approaches 1 as N →∞.

Proof: When s = 0, file popularity is uniform. We define
G(K,N) and H(K,N,p) as in the proof of Part (iii) of
Proposition 6, with pfg = 1/(K(K − 1)). As observed there,
we note that if we draw an edge from file f to file g if peer i
wants f and has g, then the resulting random multigraph has
exactly the same distribution as H(K,N,p). In this proof,
we argue that every edge of H(K,N,p) is part of a directed
triangle with probability approaching 1 as N → ∞. Using
an argument similar to Lemma 2, it suffices to show that this
result holds for G(K,N).

Rather than reasoning about G(K,N), we consider an
alternative random graph model where edges are present with
a fixed probability r. Formally, let F (K, r) be a random
graph on K nodes where each edge is present with probability
r = r(K), and edges are i.i.d. (Thus the probability a given
graph with N edges is realized is rN (1− r)K(K−1)−N .) We
say that F (K, r) has Property T if there exists a two hop
directed path between every pair of nodes f and g. We first
show that if r2K/ logK → ∞ as K → ∞, then P (F (K, r)
has Property T)→ 1 as K →∞. We then use an asymptotic
equivalence property to show that the same result holds for
G(K,N).

Given a pair of nodes f and g, there are K − 2 possible
two hop paths from f to g, and each exists with probability
r2. Thus the probability there is no two hop path from f to g
is (1− r2)K−2, and using a union bound:

P(F (K, r) does not have property T) ≤
K(K − 1)(1− r2)K−2 ≤

exp

(
−r2(K − 2)

(
1− 2 logK

r2(K − 2)

))
→ 0 as K →∞,

Thus if r2K/ logK →∞, then P(F (K, r) has property T)→
1 as K →∞.

We now apply a standard asymptotic equivalence result for
the graphs F (K, r) and G(K,N); informally, such results
establish common asymptotic behavior of these models when
r ≈ N/(K(K − 1)). Formally, we first observe that Property
T is a monotone property: if a graph g on K nodes has
property T , then any graph on K nodes containing g has
Property T as well. Asymptotic equivalence only holds for
monotone properties. Consider any sequence r(N) satisfying
r(N) ≥ N/K(K − 1). The assumption of the proposition
ensures that r2K/ logK → ∞ as N → ∞, so for any such
sequence, P(F (K, r) has Property T) → 1 as N → ∞.
By Proposition 1.13 in [20], it follows that P(G(K,N) has
Property T)→ 1 as N →∞ as well. This immediately implies
that every edge in G(K,N) is part of a directed triangle with
probability 1 as N →∞, as required.
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