
1

Keyword Search and Oblivious
Pseudo-Random Functions

Mike Freedman
NYU

Yuval Ishai, Benny Pinkas, Omer Reingold

2

Background: Oblivious Transfer

• Oblivious Transfer (OT) [R], 1-out-of-N [EGL]:

– Input:
• Server: x1,x2,…,xn

• Client: 1 ≤ j ≤ n

– Output:
• Server: nothing
• Client: xj

– Privacy:
• Server learns nothing about j
• Client learns nothing about xi for i ≠ j

• 4

– Well-studied, good solutions: O(n) overhead

X1 …X2 X3 X4 Xn

Xj

j

3

Background: Private Information Retrieval (PIR)

• Private Information Retrieval (PIR) [CGKS,KO]

– Client hides which element retrieved

– Client can learn more than a single xj

– o(N) communication, O(N) computation

• Symmetric Private Information Retrieval (SPIR) [GIKM,NP]

– PIR in which client learns only xj

– Hence, privacy for both client and server

– “OT with sublinear communication”

4

Motivation: Sometimes, OT is not enough

• Bob (“Application Service Provider”)
– Advises merchants on credit card fraud
– Keeps list of fraudulent card numbers

• Alice (“Merchant”)
– Received a credit card, wants to check if fraudulent
– Wants to hide credit-card details from Bob, vice-versa

• Use OT?
– Table of 1016 ≈ 253 entries, 1 if fraudulent, 0 otherwise?

5

Keyword Search (KS): definition

• Input:
– Server: database X={ (xi,pi) } , 1 ≤ i ≤ N

• xi is a keyword (e.g. number of a corrupt card)

• pi is the payload (e.g. why card is corrupt)

– Client: search word w (e.g. credit card number)

• Output:
– Server: nothing
– Client:

• pi if ∃ i : xi = w

• otherwise nothing

Client output: (x j ,p j) iff w=x j

…(x1,p1) (xn,pn)(x2,p2)Server:

Client: w

6

• Take any efficient query-able data structure
– Hash table, search tree, trie, etc.

• Replace direct query with OT / PIR

• Achieves client privacy

We’re done?

Keyword Search from data structures? [KO,CGN]

7

Keyword Search from hashing + OT [KO]

• Use hash function H to map (xi,pi) to bin H(xi)

• Client uses OT to read bin H(w)

• Multiple per bin: no server privacy: client gets > 1 elt

• One per bin, N bins: no server privacy: H leaks info

• One per bin, >> N bins: not efficient

(xN,pN)…………………(x2,p2)(x1,p1)

…

8

Keyword Search

• Variants
– Multiple queries
– Adaptive queries
– Allowing setup
– Malicious parties

• Prior Work
– OT + Hashing = KS without server privacy [KO]

• Add server privacy using trie and many rounds [CGN]

– Adaptive KS [OK]
• But, setup with linear communication, RO model,

one-more-RSA-inversion assumption

9

Keyword Search: Results

• Specific protocols for KS
– One-time KS based on OPE (homomorphic encryption)
– First 1-round KS with sublinear communication

• Adaptive KS by generic reduction
– Semi-private KS + oblivious PRFs

• New notions and constructions of OPRFs
– Fully-adaptive (DDH- or factoring-specific)
– T-time adaptive (black-box use of OT)

10

Keyword Search based on
Oblivious Evaluation of

Polynomials

11

Specific KS protocols using polynomials

• Tool: Oblivious Polynomial Evaluation (OPE) [NP]

– Privacy: Server: nothing about w. Client: nothing but P(w)

P(w)

SC
P(x) = Σaixiw

12

1-round KS protocol using polynomials

• OPE implementation based on homomorphic encryption
– Given E(x), E(y), can compute E(x+y), E(c·x), w/o secret key

• Server defines on input X={(xi,pi)},
– Z(x) = r · P(x) + Q(x) , with fresh random r ∀ xi

If xi ∈ X : 0 + pi |0k

If xi ∉∉∉∉ X : rand

• Client/server run OPE of Z(w), overhead O(N)
– C sends: E(w), E(w2), …, E(wd), PK
– S returns: E(r·Σpi w i + Σqi w i) = E(r·P(w) + Q(w)) = E(Z(w))

13

Reducing the overhead using hashing…

(xN,pN)…………………(x2,p2)(x1,p1)

… L bins

m Z2Z1 Fresh random r for
Zj(x) = r · Pj(x) + Qj(x)

• Client sends input for L OPE’s of degree m
• Server has E(Z1(w)), … ,E(ZL(w))
• Client uses PIR to obtain OPE output from bin H(w)

• Comm: O(m = log N) + PIR overhead (polylog N)
• Comp: O(N) server, O(m = log N) client

public hash function Hm

independent of X

14

What about malicious parties?

• Efficient 1 round protocol for non-adaptive KS

– Only consider privacy: server need not commit or know DB

– Similar relaxation used before in like contexts (PIR, OT)

• Privacy against a malicious server?

– Server only sees client’s interaction in an OT / PIR protocol

• Malicious clients?

– Message in OPE might not correspond to polynomial values

– Can enforce correct behavior with about same overhead

– 1 OPE of degree-m polynomials → m OPEs of linear poly’s

15

Keyword Search based on
Oblivious Evaluation of

Pseudo-Random Functions

16

Semi-Private Keyword Search

• Goal: Obtain KS from semi-private KS + OPRF

• Semi-Private Keyword Search (PERKY [CGN])

– Provides privacy for client but not for server

– Similar privacy to that of PIR

• Examples

– Send database to client: O(N) communication

– Hash-based solutions + PIR to obtain bin

– Use any fancy data structure + PIR to query

17

Oblivious Evaluation of Pseudo-Random Functions

• Pseudo-Random Function: Fk : {0,1}n→ {0,1}n

– Keyed by k (chooses a specific instantiation of F)

– Without k, the output of Fk cannot be distinguished from
that of a random function

• Oblivious evaluation of a PRF (OPRF)

– Client: PRF output, nothing about k

– Server: Nothing

Fk(x)

SC
kx

18

KS from Semi-Private KS + OPRF

(xN,pN)…………………(x2,p2)(x1,p1)

(x’N,p’N)…………………(x’ 2,p’ 2)(x’ 1,p’ 1)

S chooses k,
defining Fk(·)

• Client

– Uses OPRF to compute x’ | p’ ← Fk(w)

– Uses semi-private KS to obtain (xi, pi) where xi = x’

– If entry in database, recovers pi = pi ⊕ p’

∀ (xi, pi) ∈ X,

Let x’i | p’i ← Fk(xi)
Let (xi, pi) ← (x’i , pi ⊕ p’i)

key, payload masked by PRF

19

KS from Semi-Private KS + OPRF

(xN,pN)…………………(x2,p2)(x1,p1)

(x’N,p’N)…………………(x’ 2,p’ 2)(x’ 1,p’ 1)

• Security

– Preserved even if client obtains all pseudo-database…

– Requires that client can’t determine output of OPRF other
than at inputs from legitimate queries

key, payload masked by PRF

∀ (xi, pi) ∈ X,

Let x’i | p’i ← Fk(xi)
Let (xi, pi) ← (x’i , pi ⊕ p’i)

S chooses k,
defining Fk(·)

20

Weaker OPRF definition suffices for KS

• Strong OPRF: Secure 2PC of PRF functionality

– No info leaked about key k for arbitrary f k, other than what
follows from legitimate queries

– Same OPRF on multiple inputs w/o losing server privacy

• Relaxed OPRF: No info about outputs of random f k,
other than what follows from legitimate queries

– Does not preclude learning partial info about k

– Query set size bounded by t for t-time OPRFs

– Indistinguishability: Outputs on unqueried inputs cannot be
distinguished from outputs of random function

21

Other results: constructions of OPRF

• OPRF based on non-black-box OT [Y,GMW]

• OPRF based on specific assumptions [NP]
– E.g., based on DDH or factoring
– Fully adaptive
– Quite efficient

• OPRF based on black-box OT
– Uses relaxed definition of OPRF
– Good for up to t adaptive queries

22

OPRF based on DDH [“scaled up” NP]

• The Naor-Reingold PRF:

– Key k = [a1, …, aL]

– Input x = x1 x2 x3 … xL

– Pseudorandom based on DDH

• OPRF based on PRF + OT

– Server: [a1, …, aL], [r1, …, rL]

– Client: x = x1 x2 x3 … xL

– L OT’s: ri if xi = 0, ai ri otherwise

)(^)(1∏= =ix ik agxF

r1 a1r1

r2 a2r2

rL aLrL

g^(1 / r1r2…rL)

OT1
2

OT1
2

OT1
2

x1=0

x2=1

xL=1

)(.../1 1 mrrg ∏ == iix a
g 1)(xFk=

))...((1 mmrar

23

Relaxed OPRF based on OT

• Server key: L x 2t matrix

• Client input: x = { x1, x2, … , xL }

• Client gets L keys using OT1
2t

• After t calls, learns t L keys

a0,0

aL,0

a0,2t

ixik gxF ,)(⊗=

• Map inputs to locations in L-dimensions using a
(t+2)-wise independent, secret mapping h

• Client first obliviously computes h(x), then F(h(x))
• Learns t of 2t keys in L dimensions
• Probability that other value uses these keys is (1/2)L

24

Conclusions

• Keyword search is an important tool

• We show:

– Efficient constructions based on OPE

– Generic reduction to OPRF + semi-private KS
• Fully-adaptive based on DDH

• Black-box reduction via OT, yet only good for t invoc’s

• Open problem:

– Black-box reduction to OT good for poly invoc’s?

25

Thanks….

