Keyword Search and Oblivious
Pseudo-Random Functions

Mike Freedman
NYU

Yuval Ishai, Benny Pinkas, Omer Reingold

Background: Oblivious Transfer

- Oblivious Transfer (OT) [R], 1-out-of-N [EGL]:

— Input:
. J o
I

e Client:;

— Output:
« Server:

- Client:
- Privacy:

« Server learns nothing about |
« Client learns nothing about x; for i # |

— Well-studied, good solutions: O(n) overhead

Background: Private Information Retrieval (PIR)

- Private Information Retrieval (PIR) [CGKS,KO]
— Client hides which element retrieved
— Client can learn more than a single x;
— 0(N) communication, O(N) computation

- Symmetric Private Information Retrieval (SPIR) [GIKM,NP]
- PIR in which client learns only x;
- Hence, privacy for both client and server
— “OT with sublinear communication”

Motivation: Sometimes, OT Is not enough

- Bob (“Application Service Provider”)
— Advises merchants on credit card fraud
— Keeps list of fraudulent card numbers

. Alice (“Merchant”)
— Recelved a credit card, wants to check if fraudulent
— Wants to hide credit-card details from Bob, vice-versa

« Use OT?
— Table of 1016= 233 entries, 1 if fraudulent, O otherwise?

Keyword Search (KS): definition

e Input:
— Server: database X={ (x,p;)},1=<1sN
- X; IS a keyword (e.g. number of a corrupt card)

- p; Is the payload (e.g. why card is corrupt)

— Client: search word w (e.g. credit card number)

» Output: Server: (%P (P2 - (XnPa)
— Server: nothing Client: W _fl

— Client:

D i X =W Client output; _
I - I

- otherwise nothing

Keyword Search from data structures? [KO,CGN]

- Take any efficient query-able data structure
- Hash table, search tree, trie, etc.

- Replace direct query with OT / PIR

- Achieves client privacy

We're done?

Keyword Search from hashing + OT [KO]

[Capd [0epd [[[o [[[[[Opw)]

- Use hash function H to map (x;,p;) to bin H(x))
. Client uses OT to read bin H(w)

- Multiple per bin: no server privacy. client gets > 1 elt
- One per bin, N bins: no server privacy: H leaks info
- One per bin, >> N bins: not efficient

Keyword Search

- Variants
— Multiple queries
— Adaptive gueries
— Allowing setup
— Malicious parties

. Prior Work

— OT + Hashing = KS without server privacy [KO]
- Add server privacy using trie and many rounds [CGN]

— Adaptive KS [OK]

- But, setup with linear communication, RO model,
one-more-RSA-inversion assumption

Keyword Search: Results

. Specific protocols for KS
— One-time KS based on OPE (homomorphic encryption)
— First 1-round KS with sublinear communication

- Adaptive KS by generic reduction
— Semi-private KS + oblivious PRFs

- New notions and constructions of OPRFs
— Fully-adaptive (DDH- or factoring-specific)
— T-time adaptive (black-box use of OT)

Keyword Search based on

Oblivious Evaluation of
Polynomials

Specific KS protocols using polynomials

. Tool: Oblivious Polynomial Evaluation (OPE) [NP]

W P(x) = Zax!
i

P(w)

— Privacy: Server: nothing about w. Client: nothing but P(w)

1-round KS protocol using polynomials

- OPE implementation based on homomorphic encryption
- Given E(x), E(y), can compute E(x+Yy), E(c-X), w/o secret key

. Server defines on input X={(x;,p;)},
- Z(x) =r-P(Xx)+ Q(X),with fresh random r [x;

Voo

Ifx.7X: 0 + p|OX
If x, L1 X: rand

. Client/server run OPE of Z(w), overhead O(N)
- Csends: E(w), Ew?), ..., EwY), PK
— Sreturns: E(r-2pw'+ 2gw') = E(r-P(w) + Q(w)) = E(Z(w))

Reducing the overhead using hashing...

public hash function H
iIndependent of X

L bins

Fresh random r for
Z(x) = 1-P) + Q)

. Client sends input for L OPE’s of degree m
- Server has E(Z,(w)), ... ,.E(Z,(w))
Client uses PIR to obtain OPE output from bin H(w)

Comm: O(m =log N) + PIR overhead (polylog N)
Comp: O(N) server, O(m =log N) client

What about malicious parties?

- Efficient 1 round protocol for non-adaptive KS
— Only consider privacy: server need not commit or know DB

— Similar relaxation used before In like contexts (PIR, OT)

- Privacy against a malicious server?

— Server only sees client’s interaction in an OT / PIR protocol

« Malicious clients?
— Message in OPE might not correspond to polynomial values
— Can enforce correct behavior with about same overhead

— 1 OPE of degree-m polynomials — m OPEs of linear poly’s

Keyword Search based on

Oblivious Evaluation of
Pseudo-Random Functions

Semi-Private Keyword Search

- Goal: Obtain KS from semi-private KS + OPRF

- Semi-Private Keyword Search (PERKY [CGN])
— Provides privacy for client but not for server
— Similar privacy to that of PIR

- Examples
— Send database to client: O(N) communication
— Hash-based solutions + PIR to obtain bin
— Use any fancy data structure + PIR to query

Oblivious Evaluation of Pseudo-Random Functions

- Pseudo-Random Function: F, :{0,1}" - {0,1}"

— Keyed by k (chooses a specific instantiation of F)

— Without k, the output of F, cannot be distinguished from
that of a random function

- Oblivious evaluation of a PRF (OPRF)

X g K
L
Fi(x)
— Client: PRF output, nothing about k

— Server: Nothing

KS from Semi-Private KS + OPRF

S chooses k, 0 (. pi) DX,

defining F,(-) Let X | P « Fy(X)
Let | (x, p)| < (X, P /P

key, payload masked by PRF

. Client
— Uses OPRF to compute X|p"— F.(w)
— Uses semi-private KS to obtain |(x;, p;)| where

— If entry in database, recovers Pi= |pi| /P

KS from Semi-Private KS + OPRF

S chooses k, 0 (. pi) DX,

defining F,(-) Let X’ | pi < Fi(X)

Let |(x;, p;)

— (X, pi L/ pY)

key, payload masked by PRF

.« Security

— Preserved even if client obtains all pseudo-database...

— Requires that client can’t determine output of OPRF other

than at inputs from legitimate queries

Weaker OPRF definition suffices for KS

- Strong OPRF: Secure 2PC of PRF functionality

— No info leaked about key k for arbitrary f ., other than what
follows from legitimate queries

— Same OPRF on multiple inputs w/o losing server privacy

- Relaxed OPRF: No info about outputs of random f |,
other than what follows from legitimate queries

— Does not preclude learning partial info about k
— Query set size bounded by t for t-time OPRFs

— Indistinguishability: Outputs on ungueried inputs cannot be
distinguished from outputs of random function

Other results: constructions of OPRF

- OPRF based on non-black-box OT [Y,GMW]

- OPRF based on specific assumptions [NP]
- E.g., based on DDH or factoring
— Fully adaptive
— Quite efficient

« OPRF based on black-box OT
— Uses relaxed definition of OPRF
— Good for up to t adaptive queries

OPRF based on DDH [“scaled up” NP]

- The Naor-Reingold PRF:
- Keyk=[a, ..., a]

— Input X = X; X5 X5 ... X,

F () =0 (xa?)

— Pseudorandom based on DDH

- OPRF based on PRF + OT
- Server: [aq, ...,a], [rq, ..., 1]
— Client: X=Xy X5 X5 ... X,
- LOT's: 1, ifx,=0, ar otherwise

1/r ol (r)---(amrm) . X &
(g7) =g " =F (%)

Relaxed OPRF based on OT

- Server key: L x 2t matrix do o

 Client input: x ={Xx, X5, ... , X, }

%
I

- Client gets L keys using OT,2

. Aftert calls, learnstt keys

- Map inputs to locations in L-dimensions using a
(t+2)-wise independent, secret mapping h

. Client first obliviously computes h(x), then F(h(x))
- Learnst of 2t keys in L dimensions
. Probability that other value uses these keys is (1/2)-

Conclusions

- Keyword search is an important tool

- We show:
— Efficient constructions based on OPE
— Generic reduction to OPRF + semi-private KS
- Fully-adaptive based on DDH
- Black-box reduction via OT, yet only good for t invoc’s

- Open problem:
— Black-box reduction to OT good for poly invoc’s?

Thanks....

