
Efficient Set Intersection with Simulation-Based Security

Michael J. Freedman∗ Carmit Hazay† Kobbi Nissim‡ Benny Pinkas§

September 4, 2014

Abstract

We consider the problem of computing the intersection of private datasets of two parties, where the
datasets contain lists of elements taken from a large domain. This problem has many applications for
online collaboration. In this work we present protocols based on the use of homomorphic encryption and
different hashing schemes for both the semi-honest and malicious environments. The protocol for the
semi-honest environment is secure in the standard model, while the protocol for the malicious environ-
ment is secure in the random oracle model. Our protocols obtain linear communication and computation
overhead. We further implement different variants of our semi-honest protocol. Our experiments show
that the asymptotic overhead of the protocol is affected by different constants. (In particular, the degree
of the polynomials evaluated by the protocol matters less than the number of polynomials that are eval-
uated.) As a result, the protocol variant with the best asymptotic overhead is not necessarily preferable
for inputs of reasonable size.

1 Introduction

In the setting of secure two-party computation, two parties with private inputs wish to jointly compute some
function of their inputs while preserving certain security properties like privacy, correctness and more. The
standard way of defining security in this setting is via the so-called ideal/real model paradigm [Bea91, GL90,
MR91, Can00]. Here, an ideal model is first defined where an uncorrupted trusted party is used to compute
the function for the parties. Then, a real protocol is said to be secure if no adversary can do more harm
in a real protocol execution than in an ideal one (where by definition no harm can be done). Starting with
the work of [Yao82, GMW87, CCD88, BGW88], it is by now well known that (in various settings, and
considering semi-honest and malicious adversaries) any polynomial-time computation can be generically
compiled into a secure function evaluation protocol with polynomial complexity. However, more often than
not, the resulting protocols are inefficient for practical uses and hence attention was given to constructing
efficient protocols for specific functions.

In this work we consider the basic two-party set intersection problem, where two parties P1 and P2 hold
input setsX,Y , respectively, and wish to computeX∩Y . The secure variant of this computation guarantees
that nothing beyond X ∩ Y leaks within the protocol execution. This problem has been widely studied due
∗Dept. of Computer Science, Princeton University. Email: mfreed@cs.princeton.edu.
†Faculty of Engineering, Bar-Ilan University. Email: hazay@biu.ac.il. Research partially supported by a grant from the

Israel Ministry of Science and Technology (grant No. 3-10883).
‡Dept. of Computer Science, Ben-Gurion University. Email: kobbi@cs.bgu.ac.il. Research partially supported by the

Israel Science Foundation (grant No. 860/06).
§Dept. of Computer Science, Bar Ilan University. Email: benny@pinkas.net. Research partially supported by the European

Unions 7th Framework Program (FP7/2007-2013) under grant agreement n. 609611 (PRACTICE), and by a grant from the Israel
Ministry of Science and Technology (grant No. 3-9094).

1

to its extensive usage in computations over databases, e.g., for data mining where the data is vertically
partitioned between parties (namely, each party has different attributes referring to the same subjects). One
could easily envision other potential applications for secure set intersection such as online recommendation
services, online dating services, medical databases, and many other applications.

We continue with a survey of the current state of affairs with respect to secure two-party computation of
set intersection.

1.1 Background and Related Work

Private equality tests (PET). The simplest non-trivial form of set intersection is where each of the two
datasets consists of a single element. A circuit computing this function has O(logN) gates (where N is
the domain size) and therefore can be securely evaluated with this overhead. Specialized protocols for this
function, denoted by private equality test (PET) or the socialist millionaires problem, were also suggested
in [FNW96, NP99, BST01, Lip03] with essentially the same overhead. We note that the solution in [BST01]
also provides fairness. A related problem is that of private authenticated key exchange (PAKE), in which
two parties agree on a secure key if both share the same password, taken from a small domain, see [KOY01]
and references within.

Private set intersection. The following intuitive “solution” is often suggested for private set intersection.
Assume the two parties agree on some cryptographic function H(·) such as a one-way hash function or a
pseudorandom function. Alice sends to Bob the results of applying H(·) to each element of her input set.
Bob then compares these values to the results of applying the function to the elements in his input set. If
Bob identifies that, for an input x of his, the value H(x) appears in the list of values sent by Alice, then x
must be in the intersection. This simple solution is unfortunately insecure. The reason is that given Alice’s
hashed values Bob can test whether an element x appears in her set by searching for H(x) in Alice’s hashed
set. In particular, when Alice’s set comes from a polynomial domain Bob can recover her entire input set.

Denoting by n the number of elements in each dataset and byN the domain size from which the elements
are picked, a trivial solution compares all combinations of items from the two datasets using n2 instantiations
of a PET protocol (that incurs O(logN) overhead). The computation of this comparison can be reduced
to O(n logN), while retaining the O(n2 logN) communication overhead [NP99]. A circuit with a smaller
asymptotic size can be constructed by sorting the inputs of the two parties using a sorting network and then
comparing every two adjacent items. The size of a sorting network is O(n log n) comparators, when using
the AKS sorting network [AKS83] (which has a large constant factor) or O(n log2 n) comparators when
using the Batcher sorting network [Bat68], whose overhead induces a more reasonable constant factor.
Since our circuit has to handle N bit long inputs, the size of the circuit would be O(n log n logN) when
using the AKS sorting network or O(n log2 n logN) when using the Batcher sorting network. The logN
factor can be somewhat reduced using Hashing.

These solutions can be implemented securely by applying Yao’s construction of garbled circuit [Yao82].
For the semi-honest setting this results in a protocol with communication complexity of the same order as
that of the circuit’s size times the security parameter [LP09]. Coping with malicious adversaries is more
challenging and requires additional tools for ensuring correctness such as cut-and-choose [LP12] or zero-
knowledge proofs [JS07, DPSZ12, DZ13], which inflate the communication/computation costs. In this work
we avoid both costly techniques.

The first concrete construction solving the set intersection problem securely had a cost of O(n) expo-
nentiations [HFH99, EGS03]. However, these constructions were only analyzed in the random oracle model
against semi-honest parties and did not provide a full proof with simulation based security. In [FNP04],
Freedman et al. studied set intersection in the standard model and presented a construction for the semi-

2

honest setting, utilizing oblivious polynomial evaluation and balanced allocation hash functions. Their pro-
tocol exhibits linear communication and O(n log log n) computation overhead (counting modular exponen-
tiations). In addition to their semi-honest protocol Freedman et al. presented variants of the above protocol
for the case where one of the parties is malicious and the other is semi-honest. The protocol for a malicious
P1 and a semi-honest P2 utilizes a cut-and-choose strategy and therefore the communication/computation
costs are enhanced by a statistical security parameter.

Kissner and Song [KS05] used polynomials to represent multi-sets. Letting the roots of QX(·) and
QY (·) coincide with elements of the multi-sets X and Y . They observed that if r(·), s(·) are polynomials
chosen at random then the roots of r(·) · QX(·) + s(·) · QY (·) coincide with high probability with the
multi-set X ∩Y . Their result is a set intersection protocol for the semi-honest case, where the parties use an
additively homomorphic encryption scheme to perform the polynomial multiplication, introducing quadratic
computation costs in the set sizes. For the security of the protocol, it is crucial that no party should be able
to decrypt on its own. Hence, the secret key must be shared and joint decryption must be deployed. For
malicious parties [KS05] introduced generic zero-knowledge proofs for proving adherence to the prescribed
protocol (e.g., zero-knowledge proofs of knowledge for the multiplication of the encrypted Qx(·) with a
randomly selected r(·)). The costs of these proofs as well as those of setting the shared key for the Paillier
scheme are not specified explicitly and can be relatively high. An improved protocol for the malicious
setting using more efficient zero-knowledge proofs was presented in [CJS10].

Another tool that can be used for computing set intersection is secure implementation of oblivious pseu-
dorandom function evaluation (OPRF). Namely, having one party hold the keys to a PRF fk() while enabling
the other party, who has an input x, to compute fk(x) without learning anything else. The idea of using this
tool for set intersection was first described in [FIPR05]. In [HL08] Hazay and Lindell presented two OPRF
based protocols for set intersection, one achieving security in the presence of malicious adversaries with
one-sided simulatability, whereas the other is secure in the presence of covert adversaries [AL07]. Hav-
ing P1, P2 hold sets of sizes m1,m2 respectively, both protocols in [HL08] are constant round and incur
communication of O(m1 logN + m2) group elements and computation of O(m1 logN + m2) modular
exponentiations. We note that the protocols in [HL08] can be made secure in the malicious setup by intro-
ducing a secure key selection step for the oblivious PRF and by adding zero-knowledge proofs of knowledge
to show correctness at each step. Namely, for proving that the same PRF key is used by party P1 for all PRF
evaluations and to enable the extraction of the preimages (as a pseudorandom function is not necessarily
invertible). While this would preserve the complexity of these protocols asymptotically (in m1,m2), intro-
ducing such proofs would probably make this protocol impractical since there is no efficient known way to
design such proofs.

Jarecki and Liu [JL09] generalized the technique of [HL08] and presented a very efficient protocol for
computing a pseudorandom function with a committed key (informally, this means that the same key is used
in all invocations), and showed that it yields an efficient set intersection protocol. The main restriction of
this construction is that the input domain size of the PRF must be polynomial in the security parameter
(since the proof of security for the set intersection protocol makes use of the ability to exhaustively search
over the input domain). Their protocol is secure in the CRS model with a safe RSA modulus placed in
the CRS, and relies on the Decisional q-Diffie-Hellman Inversion assumption. In a followup work [JL10],
Jarecki and Liu presented a protocol for set intersection that is secure against malicious adversaries under the
interactive One-More Gap Diffie-Hellman assumption in the random oracle model. Their protocol computes
an adaptive variant of set intersection for which a receiver is allowed to make adaptive queries, each time
revealing whether an item yi belongs to a set X . On the other hand, their protocol takes only one round of
interaction and its total computational cost is under 3(|X| + |Y |) exponentiations (which is better than our
protocol presented here).

Dachman-Soled et al. [DSMRY09] presented a protocol for set intersection in the presence of malicious

3

adversaries without restricting the domain. Their construction uses polynomial evaluation and secret sharing
of the inputs. They avoid generic zero-knowledge by utilizing the fact that Shamir’s secret sharing implies
Reed Solomon code. Their protocol incurs communication of O(nk2 log2 n + kn) group elements and
O(n2k log n+ nk2 log2 n) exponentiations where k is the security parameter.

Finally, Hazay and Nissim [HN10] investigated protocols in the malicious setting for constructing effi-
cient secure two-party protocols for set intersection and set union. They designed constant-round protocols
that exhibit linear communication and a (practically) linear number of exponentiations with simulation based
security. More explicitly, they get that for setsX,Y ⊆ {0, 1}logN ofm1,m2 elements respectively, the costs
are of sendingO(m1+m2 logN) group elements, and the computation ofO(m1+m2(log logm1+logN))
modular exponentiations. In the heart of these constructions is a technique based on a combination of a per-
fectly hiding commitment and an oblivious pseudorandom function evaluation protocol with the aim to
replace the random oracle used in [FNP04]. Their work does not consider Cuckoo hashing but our ideas can
be applied to their construction as well.

Other variants of the problem were also investigated. Ateniese et al. [ACT11] discussed size-hiding
set intersection, where one of the parties can hide the size of its set. Camenisch and Zavrucha [CZ09]
investigated the problem of set intersection inputs that are certified by a third party.

Disjointness and set intersection. Much attention has been given to bounding the communication com-
plexity of the disjointness function, defined as

DISJ(A,B) = 1 if A ∩B = φ.

It is known [KS92, Raz90] that if A,B can be arbitrary subsets of [n] then the randomized communication
complexity of the disjointness function is Θ(n). An immediate implication is that computing the intersection
of two sets |X| = |Y | = n (over a large enough domain) requires Ω(n) communication. This follows by
a reduction from DISJ(·, ·) to set intersection over domain of size N ≥ 3n.1 Let Z = {z1, . . . , z3n}
be a subset of the domain and let φ be a one-to-one mapping from [n] to {z1, . . . , zn}. Given a subset
A ⊆ [n] let X̂ = {φ(a) : a ∈ A} and set X = X̂ ∪ {zn+1, . . . , z2n−|X̂|}. Similarly, Given B ⊆ [n] let

Ŷ = {φ(b) : b ∈ B} and set Y = Ŷ ∪ {z2n+1, . . . , z3n−|Ŷ |}. Note that |X ∩ Y | = |X̂ ∩ Ŷ | = |A ∩ B|
and hence DISJ(A,B) = 1 iff X ∩ Y = ∅. We thus obtain a lower bound of Ω(n) on the communication
needed for computing the intersection even without taking privacy and security into consideration.

Set intersection and oblivious transfer. The bit oblivious transfer functionality is defined as

((b0, b1), σ) 7→ (λ, bσ),

where (b0, b1) ∈ {0, 1} × {0, 1} is the sender’s input, σ is the receiver’s input bit and λ denotes the empty
string (meaning that the sender has no output). A simple reduction from oblivious transfer (OT) to set
intersection shows that implementing set intersection implies implementing oblivious transfer. Given its
input (b0, b1) the sender generates a set of two strings X = {0|b0, 1|b1}. The receiver generates the set
Y = {σ|0, σ|1}. The parties run the set intersection protocol on X,Y where at the end the receiver learns
X ∩ Y = {σ|bσ}. By the results of Impagliazzo and Rudich [IR89] it follows that there is no black-box
reduction of oblivious transfer to one-way functions, and therefore the same holds with regards to reductions
of set intersection to one-way functions. Indeed, our set intersection protocols use a stronger primitive – an
additively homomorphic encryption scheme.

1The reduction is to a domain of size 3n in order to ensure that the inputs to the set intersection problem are always of size
Θ(n). This simplifies the description of the result that is proved by the reduction.

4

1.2 Our Contributions

This paper is an extended and improved version of [FNP04]. We present secure protocols for set intersection
in the presence of semi-honest and malicious adversaries with linear costs (with respect to the sets sizes).
Our results include the following,

1.2.1 Protocols for Computing Set Intersection

These protocols employ a homomorphic encryption scheme, and in particular the Paillier or ElGamal en-
cryption schemes: (i) a protocol with security against semi-honest adversaries (cf. Section 3.1); and (ii) a
protocol in the random oracle model with security against malicious adversaries (cf. Section 5). Our proto-
cols have simulation based security (unlike the protocols in [FNP04]), assuming the hardness of DDH/DCR
problems. Moreover, they introduce linear (or nearly linear) computation and communication overheads
with small constant factors, where the analysis depends on the type of the hash scheme we use. The most
efficient result is achieved using a new protocol based on Cuckoo hashing. We further analyze efficiency
based on simple hashing and balanced allocation schemes. Our analysis is presented in details in Section 3.2.

The semi-honest setting. The high-level description of our semi-honest protocol follows by having party
P1 generate a polynomialQ(·) of degreem1, with roots set to them1 elements ofX , and send the encrypted
coefficients to P2 (using a homomorphic encryption). Then, for each element y ∈ Y , P2 replies with the
encryption of r ·Q(y) + y for a random r. This immediately implies that for y ∈ X ∩ Y the result plaintext
would be y. Otherwise, the plaintext equals a random value that does not leak any information about y. Note
first that the communication complexity of this protocol is linear in m1 + m2, yet the work performed by
P2 is high, as each of the m2 oblivious polynomial evaluations includes performing O(m1) exponentiations
totaling in O(m1 ·m2) exponentiations.

To save on computational work we use hashing to map the items into different bins. In that case the items
mapped by P1 to a certain bin must only be compared to those mapped by P2 to the same bin. Thus the
number of comparisons can be reduced to be in the order of the number of P2’s inputs times the maximum
number of items mapped to a bin. In this work, we describe and compare modifications of the basic protocol
based on the following different hash schemes: simple hashing, balanced allocations, and Cuckoo hashing.
We also provide in Section 4 results of experiments with each of these schemes.

The malicious setting. Introducing security in the malicious setting raises new concerns. First, the basic
scheme introduced above is not secure any longer in the malicious setting since, for instance, a malicious P2

can compute the encryption of r ·Q(y) + y′ for distinct y and y′ (which implies the ciphertext is decrypted
to y′ if and only if y ∈ X). In addition, using hashing introduces new attacks since we must ensure that P1

computes the small polynomials correctly and that its input is well defined.
Our protocol for the malicious setting avoids the standard solutions that involve zero-knowledge proofs

or the cut-and-choose technique for demonstrating correct behavior. Instead, it enables party P1 to redo the
entire computation supposedly carried out by P2 on each element and verify that its outcome is consistent
with the messages received from P2. In the proof we show that the probability that P2 convinces P1 of a
correct behavior even though it is not the case, is negligible. This technique is implemented in the random
oracle model. Importantly, we do not rely on the programmability property of the random oracle which
weakens the security random oracle notion that we require. In particular, our simulator only need to observe
the adversary’s random oracle queries.

We note that using hash functions to reduce communication cost in the malicious setting introduces
new problems as the parties must prove that they used a correct mapping for each element without leaking

5

anything about it. Our solution also deals with this challenge, ensuring that each element is mapped to
the correct bin. A more subtle problem that we deal with that was overlooked in prior work, is that with
some homomorphic PKEs P1 may construct Q(·) such that the evaluation of r · Q(y) (and hence also of
r · Q(y) + y) is far from being random in the plaintext space even though Q(y) 6= 0 and r is chosen at
random. This attack can be carried out with respect to PKEs for which the plaintext space is not a cyclic
group of prime order, implying that r ·Q(y) may be a random element within a smaller subgroup.

Variants of set intersection. Finally, we present in Section 3.4 a protocol for computing the cardinality of
the intersection. This protocol uses our protocol for computing the set intersection as a main building block.
The computation/communication overheads do not change.

1.2.2 Experimental Results

We implement and test the different variants of the semi-honest protocol and analyze their overhead (cf.
Section 4). These experiments are new to this work and were not conducted in [FNP04]. Throughout
our experiments we gain some insights regarding the practicality of the cryptographic primitives we use in
our constructions and the relation between the asymptotic and actual overhead of the protocols. Somewhat
surprisingly, we get that the variant with the best asymptotic overhead is not necessarily preferable for inputs
of reasonable size. In particular, the degree of the polynomials evaluated by the protocol matters less than the
number of polynomials that are evaluated. More specifically, recalling that the random hashing construction
evaluates a single polynomial of degree O(logm1), whereas the balanced allocations construction evaluates
two polynomials of degreeO(log logm1) and the Cuckoo hashing construction evaluates three polynomials:
two linear polynomials and a polynomial of degree 2. Asymptotically, the performance of the constructions
based on balanced allocations and Cuckoo hashing is preferable, but since these two constructions use more
polynomials than the first construction, their overhead is higher than that of random hashing for the input
sizes that we tested.

1.2.3 A Roadmap

In Section 2 we present definitions and tools that are useful for our constructions. In Section 3 we present
our first construction for the semi-honest setting and generalizations for two related problems. In Section 4
we present our performance evaluation, and in Section 5 we describe our protocol for the malicious setting
and its proof.

2 Definitions and Tools

Basic notations. The security parameter is denoted by k and, although not explicitly specified, input
lengths are always assumed to be bounded by some polynomial in k. A probabilistic machine is said to
run in polynomial-time (PPT) if it runs in time that is polynomial in the security parameter k. A function
µ(k) is called negligible in k (negligible for short) if for every polynomial p(·) there exists a value k0 =
k0(p) such that µ(k) < 1

p(k) for all k > k0; i.e., µ(k) = k−ω(1). Let X = {X(k, a)}k∈N,a∈{0,1}∗ and
Y = {Y (k, a)}k∈N,a∈{0,1}∗ be distribution ensembles (over strings of length polynomial in k). We say

that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for every polynomial non-uniform

distinguisher D there exists a negligible µ(·) such that∣∣∣Pr[D(X(k, a)) = 1]− Pr[D(Y (k, a)) = 1]
∣∣∣ < µ(k)

for every k ∈ N and a ∈ {0, 1}∗.

6

2.1 Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation and refer to [Gol04, Chapter 7]
for more details and motivating discussions.

Two-party computation. A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality and
denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs
(x, y), the output-vector is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings where P1

receives f1(x, y) and P2 receives f2(x, y). We use the notation (x, y) 7→ (f1(x, y), f2(x, y)) to describe a
functionality. For example, the Oblivious Transfer functionality is written ((x0, x1), σ) 7→ (λ, xσ), where
(x0, x1) is the first party’s input, σ is the second party’s input, and λ denotes the empty string (meaning that
the first party has no output). A special case for a two-party functionality is that of zero-knowledge proof
of knowledge for a relationRZK. This relation can be defined by the inputs (x, (x,w)) that are mapped into
(1, λ) ifRZK(x,w) = 1, or into (⊥, λ) otherwise.

Security of protocols. We prove the security of our protocols in the settings of semi-honest and malicious
computationally bounded adversaries. Loosely speaking, the adversary in the semi-honest setting is assumed
to act according to its prescribed actions in the protocol, whereas in the malicious setting it may arbitrarily
deviate from the specified protocol. Security is analyzed by comparing what an adversary can do in a real
protocol execution to what it can do in an ideal scenario. In the ideal scenario, the computation involves
an incorruptible trusted third party to whom the parties send their inputs. The trusted party computes the
functionality on the inputs and returns to each party its respective output. Informally, the protocol is secure
if any adversary interacting in the real protocol (i.e., where no trusted third party exists) can do no more
harm than what it could do in the ideal scenario. There are technical issues that arise, such as that it may be
impossible to achieve fairness or guaranteed output delivery. E.g., it is possible for the an adversarial party
to prevent an honest party from receiving outputs.

2.1.1 The Semi-Honest Setting

In this model the adversary controls one of the parties and follows the protocol specification. However, it
may try to learn more information than allowed by looking at the transcript of messages that it received and
its internal state. The following definition is according to [Gol04].

Let f = (f1, f2) be a two-party functionality and let π be a two-party protocol for computing f . The
view of the first party in an execution of π on inputs (x, y) is

Viewπ,1(x, y) = (x, r1,m1, . . . ,mt),

where r1 is the content of the first party’s internal random tape, and mi represents the ith message that it
received. The output of the first party in an execution of π on (x, y) is denoted Outputπ,1(x, y) and can
be computed from Viewπ,1(x, y). Similarly, Viewπ,2(x, y)(y, r2,m1, . . . ,mt) where r2 is second party’s
randomness and mi is the ith message it received. The output of the second party can be computed from her
view and is denoted Outputπ,2(x, y).

Definition 2.1 Let f and π be as above. Protocol π is said to securely compute f in the presence of semi-
honest adversaries if there exist probabilistic polynomial-time algorithms S1 and S2 such that

(S1(x, f1(k, x, y)), f2(k, x, y))k∈N,x,y∈{0,1}∗
c≡ {(Viewπ,1(k, x, y),Outputπ,2(k, x, y))}k∈N,x,y∈{0,1}∗

7

(f1(k, x, y),S2(y, f2(k, x, y)))k∈N,x,y∈{0,1}∗
c≡ {(Outputπ,1(k, x, y), (Viewπ,2(k, x, y)))}k∈N,x,y∈{0,1}∗

where k is the security parameter.

2.1.2 The Malicious Setting

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we
do not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties would receive their outputs from the trusted party
or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be a non-uniform
probabilistic polynomial-time machine, and let I ⊂ [2] be the set of corrupted parties (either P1 is corrupted
or P2 is corrupted or neither). Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and
security parameter k, denoted Idealf,A(z),I(k, x, y), is defined as the output pair of the honest party and the
adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z to A and security parameter k, denoted Realπ,A(z),I(k, x, y),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition 2.2 Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A
for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every I ⊂ [2],{

Idealf,S(z),I(k, x, y)
}
k∈IN,x,y,z∈{0,1}∗

c≡
{

Realπ,A(z),I(k, x, y)
}
k∈IN,x,y,z∈{0,1}∗

where k is the security parameter.

The f -hybrid model. In our constructions we will use secure two-party protocols as sub-protocols. A
standard way of abstracting out the details of the sub-protocols, is to work in a “hybrid model” where
the two parties interact with each other (as in the real model) and also use trusted help (as in the ideal
model). Specifically, an execution of a protocol π that uses a sub-protocol for securely computing some
functionality f is modeled as if the parties run π and issue “ideal calls” to a trusted party for computing f
instead of invoking the protocol for f . In these calls to f the parties send inputs to the trusted party, which,
upon receiving the inputs from the parties, computes f and sends each party its corresponding output. After
receiving these outputs the protocol π continues.

8

We stress that we use the f -hybrid model in a sequential composition, i.e., the parties do not send
messages in π between the time that they send input to the trusted party and the time that they receive back
output. The trusted party may be used a number of times throughout the execution of π. Each time is
independent in the sense that the trusted party does not maintain any state between these calls. We call the
regular messages of π that are sent amongst the parties standard messages and the messages that are sent
between parties and the trusted party ideal messages.

Let f be a functionality and let π be a two-party protocol that uses ideal calls to a trusted party computing
f . Let A be a non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties.
Then, the f -hybrid execution of π on inputs (x, y), auxiliary input z toA and security parameter k, denoted
Hybridfπ,A(z),I(k, x, y), is defined as the output vector of the honest parties and the adversary A from the
hybrid execution of π with a trusted party computing f .

Let f and π be as above, and let ρ be a protocol. Consider the real protocol πρ that is defined as follows.
All standard messages of π are unchanged. When a party Pi is instructed to send an ideal message αi to
the trusted party, it begins a real execution of ρ with input αi instead. When this execution of ρ concludes
with output βi, party Pi continues with π as if βi was the output received by the trusted party (i.e. as if it
were running in the f -hybrid model). Then, the composition theorem of [Can00] states that if ρ securely
computes f , then the output distribution of a protocol π in a hybrid execution with f is computationally
indistinguishable from the output distribution of the real protocol πρ. Thus, it suffices to analyze the security
of π when using ideal calls to f ; security of the real protocol πρ is derived via this composition theorem.

2.2 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition 2.3 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G =
{Gk} if for all polynomial-sized circuits A = {Ak} there exists a negligible function negl such that∣∣∣Pr [A(G, q, g, gx, gy, gz) = 1]− Pr [A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(k),

where q is the order of G and the probabilities are taken over the choices of g and x, y, z ∈ Zq.

We require the DDH assumption to hold for prime order groups.

Definition 2.4 (DCR) We say that the decisional composite residuosity (DCR) problem is hard if for all
polynomial-sized circuits A = {Ak} there exists a negligible function negl such that∣∣∣Pr

[
A(N, z) = 1|z = yN mod N2

]
− Pr

[
A(A(N, z) = 1|z = (1 +N)r · yN mod N2

] ∣∣∣ ≤ negl(k),

where N is a random k-bit RSA composite, r is chosen at random in ZN , and the probabilities are taken
over the choices of N, y and r.

2.3 Public Key Encryption Schemes

We begin with the definitions of public key encryption and semantic security. We then specify the definition
of homomorphic encryption and two encryption schemes that meet this definition.

Definition 2.5 (PKE) We say that Π = (G,E,D) is a public key encryption scheme if G,E,D are
polynomial-time algorithms specified as follows:

9

• G, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a public key and sk is
a secret key. We denote this by (pk, sk)← G(1k).

• E, given the public key pk and a plaintext messagem, outputs a ciphertext c encryptingm. We denote
this by c← Epk(m); and when emphasizing the randomness r used for encryption, we denote this by
c← Epk(m; r).

• D, given the public key pk, secret key sk and a ciphertext c, outputs a plaintext message m s.t. there
exists randomness r for which c = Epk(m; r) (or ⊥ if no such message exists). We denote this by
m← Dpk,sk(c).

For a public key encryption scheme Π = (G,E,D) and a non-uniform adversary A = (A1,A2), we
consider the following Semantic security game:

(pk, sk)← G(1k).

(m0,m1, history)← A1(pk), s.t. |m0| = |m1|.
c← Epk(mb), where b←R {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by AdvΠ,A(n) the probability that A wins the semantic security game.

Definition 2.6 (Semantic security) A public key encryption scheme Π = (G,E,D) is semantically secure,
if for every polynomial non-uniform adversary A = (A1,A2) there exists a negligible function negl such
that AdvΠ,A(k) ≤ 1

2 + negl(k).

2.3.1 Building Blocks: Additively Homomorphic PKE

Intuitively, a public key encryption scheme is additively homomorphic if given two ciphertexts c1 = Epk(m1; r1)
and c2 = Epk(m2; r2) it is possible to efficiently compute Epk(m1 +m2; r) with independent r, and with-
out the knowledge of the secret decryption key. Clearly, this assumes that the plaintext message space is a
group; we actually assume that both the plaintext and ciphertext spaces are groups (with respective group
operations + and ·). We abuse notation and useEpk(m) to denote the random variable induced byEpk(m; r)
where r is chosen uniformly at random. We have the following formal definition,

Definition 2.7 (Homomorphic PKE) A public key encryption scheme (G,E,D) is homomorphic if for
all k and all (pk, sk) output by G(1k), it is possible to define groups M,C such that:

• The plaintext space is M, and all ciphertexts output by Epk(·) are elements of C.2

• For every m1,m2 ∈M it holds that

{pk, c1 = Epk(m1), c1 · Epk(m2)} ≡ {pk,Epk(m1), Epk(m1 +m2)} (1)

where the group operations are carried out in C and M, respectively and the randomness for the
distinct ciphertexts are independent.

Note that any such scheme supports a multiplication of a plaintext by a scalar, that can be achieved by
computing multiple additions. In particular, this homomorphic property allows oblivious evaluation of any
polynomial Q(x) =

∑
iQix

i, given its encrypted coefficients {Epk(Qi)}i.
2The plaintext and ciphertext spaces may depend on pk; we leave this implicit.

10

The Paillier PKE. An example of an encryption scheme that meets Definition 2.7 is the encryption scheme
of Paillier [Pai99]. In this scheme, the public key pk is an RSA composite N and the corresponding secret
key sk is φ(N). Then, given a message m ∈ ZN , the encryption procedure selects r ←R Z∗N (in practice
r ←R ZN) and computes Epk(m; r) = (1 +N)m · rN mod N2. Conversely, given a ciphertext c ∈ Z∗N2 ,
the decryption procedure computes

Dsk(c) =
[cφ(N) mod N2]− 1

N
· φ(N)−1 mod N.

This scheme is semantically secure, assuming hardness of the decisional composite residuosity problem.
Note that, the Paillier scheme is homomorphic with respect to addition modulo N , as Dsk[Epk(m1) ·
Epk(m2)] = m1 + m2 mod N . Furthermore, Dsk[(Epk(m))c mod N2] = cm mod N . Hence, given
encryptions {ci} of messages {mi} and pk one can compute an encryption of any linear combination∑

i αi ·mi mod N .

The ElGamal PKE. Another encryption scheme suitable for our needs is the ElGamal encryption [ElG85].
Namely, let G be a group generated by g of prime order q, in which the decisional Diffie-Hellman (DDH)
problem is hard. A public key is then a pair pk = 〈g, h〉 and the corresponding secret key is s = logg(h),
i.e. gs = h. Then, an encryption of a message m ∈ Zq is defined by Epk(m; r) = 〈gr, hr · gm〉 where r is
picked uniformly at random from Zq. The decryption algorithm follows by outputting c2/c

s
1, decrypting a

ciphertext 〈c1, c2〉. This scheme does not directly support the necessary homomorphic operations since the
decryption yields gm rather than m. Fortunately, the lack of “full” decryption is not an issue since P1 only
needs to distinguish between an encryption of a uniformly picked m and the case where m ∈ X (i.e., when
m is part of its input).

Our experiments, detailed in Section 4, show that the ElGamal PKE is much faster than the Paillier PKE
with comparable security, and therefore one might prefer using the ElGamal-based version of our protocols.

3 Secure Set Intersection in the Semi-Honest Setting

In this section we present in detail our construction for a protocol realizingF∩ in the presence of semi-honest
adversaries. The main tool used in our construction is oblivious polynomial evaluation, implemented based
on an additively homomorphic PKE. We consider the functionality of set intersection where each party’s
input consists of a set and the size of the other party’s input set (the reason for including the size of the other
party’s set in each party’s input is to model the fact that the protocol leaks the sizes of the input sets). More
formally,

Definition 3.1 Let X and Y be subsets of a predetermined domain,3 the functionality F∩ is:

((X,m2), (Y,m1)) 7→
{

(X ∩ Y, λ) if |X| = m1 and |Y | = m2,
(λ, λ) otherwise.

We continue with a high-level description of the basic semi-honest protocol as given in [FNP04]. We then
discuss techniques to improve the computational overhead (Section 3.2) and provide a formal description
of our protocol together with a detailed simulation based security proof (Section 3.3). In Section 3.4 we
consider two variants of the set intersection problem and discuss solutions for these problems.

3W.l.o.g., we assume X,Y ⊆ {0, 1}p(k) for some polynomial p(·) such that 2p(k) is super-polynomial in k.

11

3.1 A High Level Description

Recall that P1 has m1 elements and P2 has m2 elements. The basic protocol works as follows,

1. Party P1 chooses a pair of encryption/decryption keys (pk, sk) ← G(1k) for a homomorphic PKE
(G,E,D) and sends pk to P2.

2. P1 computes the coefficients of a polynomial Q(·) of degree m1, whose roots are set to be the m1

elements of X . P1 sends the encrypted coefficients of Q(·) to P2.

3. For each element y ∈ Y (in a random order), party P2 chooses r at random (from the appropriate
plaintext space M), and uses the homomorphic properties of the encryption scheme to compute an
encryption of r ·Q(y) + y. P2 sends the encrypted values to P1.

4. Upon receiving these encrypted values, P1 extractsX∩Y by decrypting each value and then checking
if the result is in X .

Security argument (informal). This argument is split into two parts. First note that if y ∈ X ∩ Y then
by the construction of the polynomial Q(·) we get that r · Q(y) + y = r · 0 + y = y. On the other hand,
if y /∈ X ∩ Y we require that the product r · Q(y) corresponds to a random value within the plaintext
group so that it reveals no information about y and (with high probability) is not in X .4 This requirement
is obtained almost immediately when using the ElGamal PKE since the plaintext space (excluding zero),
Z∗q , is a multiplicative group. Therefore, for any element m ∈ Z∗q the probability that r · Q(y) = m is
1/(q − 1) since r = m/Q(y), given that Q(y) 6= 0. This, however, is not immediately true when using the
Paillier PKE with plaintext space ZN since N is not a prime. Fortunately, the fraction of elements outside
the multilicative subgroup Z∗N is negligible in k (furthermore, finding an element in ZN \ Z∗N when the
secret key is unknown amounts to factoring N). We thus get that for any element y 6∈ X ∩Y the probability
that Q(y) /∈ Z∗N is negligible in k.

More generally, we formalize the requirements from the homomorphic PKE as follows:

Definition 3.2 We say that homomorphic PKE is good for plaintext space if the following holds:

1. The plaintext space M contains the input domain space {0, 1}p(k).

2. There exists a multiplicative group G for which all but a negligible fraction of M is in G. Specifically,
for any X,Y ⊆ {0, 1}p(k) the probability that Q(y) /∈ G for all y /∈ X ∩ Y is negligible, where the
probability is taken over the choice of the parameters for G.

Efficiency. The communication complexity of this simple scheme is linear in m1 and m2, as m1 + 1
ciphertexts are sent from P1 to P2 (these are the encrypted coefficients of Q(·)), and m2 encrypted values
are sent from P2 to P1 (i.e., Q(y) for every y ∈ Y). However, the work performed by P2 is relatively high
as each of the m2 oblivious polynomial evaluations includes performing O(m1) exponentiations, totaling in
O(m1 ·m2) exponentiations.

A first improvement in the computational overhead can be obtained by applying Horner’s rule to the
evaluation of Q(·). Any polynomial P (y) = α0 + α1y + α2y

2 + · · ·+ αm1y
m1 can be evaluated “from the

inside out” as follows,

α0 + y(α1 + y(α2 + y(α3 + · · · y(αm1−1 + yαm1) · · ·))).
4This construction can be considered a generalization of the oblivious transfer protocols of [NP01, AIR01, Lip03]. In those, a

chooser retrieving item i sends to the sender a predicate which is 0 if and only if i = j, where j ∈ [N].

12

This method of computation employs m1 multiplications by y, compared to the straightforward polynomial
computation method which multiplies the coefficients with the values y, y2, . . . , ym1 . The improvement is
significant when the length of y is much shorter than the length of a full exponent. Recall that with the
textbook algorithm for modular exponentiation the computational overhead is linear in the length of the ex-
ponent. The gain may be significant even when fine-tuned exponentiation algorithms such as Montgomery’s
method or Karatsuba’s technique are used.

For example, the length of the exponent is typically at least 1024 bits in the case of Paillier, and could be
as short as 160 bits in the case of ElGamal. There are many applications in which the input y can be rather
short, e.g., if y is a social security number then it can be encoded using only 30 bits. When the domain from
which the inputs y are taken is large standard hashing techniques can be used as long as collision probability
is negligible. Based on the birthday paradox it is sufficient to hash the values to strings of length about
2 max(logm1, logm2) bits. For the textbook exponentiation algorithm the improvement is by a factor of
k/2 max(logm1, logm2), where k is the length of the exponent. For m1,m2 ≈ 100, 000, this factor is
about 30 for Paillier with k = 1024 or about 5 for ElGamal with k = 160.

3.2 Using Hashing to Reduce the Computational Overhead

The main computational overhead of the basic protocol is the work of P2, which essentially has to dom1 ·m2

comparisons, in order to compare each of its inputs to each of the inputs of P1. This overhead can be reduced
using hashing, if both parties use the same hash scheme to map their respective items into different bins.
In that case, the items mapped by P1 to a certain bin must only be compared to those mapped by P2 to the
same bin. Thus the number of comparisons can be reduced to be in the order of the number of P2’s inputs
times the maximum number of items mapped to a bin. (Of course, care must be taken to ensure that the
result of the hashing does not reveal information about the inputs.) We describe and compare modifications
of the basic protocol based on the following different hash schemes: simple hashing, balanced allocations,
and Cuckoo hashing. We also provide in Section 4 results of experiments with each of these schemes.

Using simple hashing. Suppose that the items are hashed into one of B bins as follows. Let h be a
randomly chosen hash function mapping elements into bins numbered 1, . . . , B. It is well known that
if the hash function h maps m1 items to random bins, then, if m1 ≥ B logB, each bin contains with high

probability at mostM = m1
B +

√
m1 logB

B (see, e.g., [RS98, Wie07]). SettingB = m1/ logm1 and applying
the Chernoff bound shows that M = O(logm1) except with probability (m1)−s, where s is a constant that
depends on the exact value of M .5

In the protocol, the hash function h will be known to both parties. We would therefore like to hide from
each party how many of the inputs of the other party are mapped by h to each bin. Thus, the modified
protocol works by having P1 define a polynomial of degree M for each bin by fixing its mapped elements
to be the set of roots. In addition, P1 adds the root 0 sufficiently many times, so that the total degree of the
polynomial is M . That is, if h maps ` items to the bin, P1 first defines a polynomial whose roots are these
` items, and then multiplies it by xM−`. (We assume that 0 is not a valid input.) The process results in B
polynomials, all of degree M , with exactly m1 non-zero roots. Note that although only a few of the bins
have M items, we have to set all polynomials to this degree, and pay the associated overhead, in order to
hide the exact number of items that are mapped to every bin.

5By setting B = m1 log logm1/ logm1 we can make the error probability negligible in m1. However, any actual implemen-
tation will have to examine the exact value of B which results in a sufficiently small error probability for the input sizes that are
expected. As for theoretical analysis, the subsequent construction, based on balanced allocation hashing, presents a negligible error
probability.

13

Finally, P1 sends to P2 the encrypted coefficients of the polynomials, and the mapping h from elements
to bins. (For our purposes, it is sufficient that the mapping is selected pseudo-randomly, either jointly or by
either party.) For every y ∈ Y , P2 finds the bin into which y is mapped and evaluates the polynomial of
this bin. It proceeds as before and responds to P1 with the encryptions of rP (y) + y for all y. Note that
the communication complexity is not affected, as P1 sends BM = O(m1) items and p2 replies with m2

values. The main gain is that P2 now has to perform only m2M = m2O(logm1) exponentiations (rather
than m1m2 exponentiations if no hashing is used).

Using balanced allocations. To save on the computational work even more, we introduce a balanced allo-
cation scheme for randomly mapping elements into bins. Loosely speaking, we use the balanced allocation
scheme of [ABKU99] where elements are inserted into B bins as follows. Let h0, h1 be two randomly
chosen hash functions mapping elements into bins numbered 1, . . . , B. An element x is inserted into the
less occupied bin from {h0(x), h1(x)}, where ties are broken arbitrarily. If m1 elements are inserted, then,
except with negligible probability over the choice of the hash functions h0, h1, the maximum number of ele-
ments allocated to any single bin is at mostM = O(m1/B+log logB). (The exact probability is described
in a note below.) Setting B = m1

log logm1
we get that M = O(log logm1).6 Note that in this case the degree

of the polynomials, and the associated overhead, are much smaller than the logm1 degree that was set when
simple hashing was used.

Then, upon receiving the encrypted polynomials, party P2 obliviously evaluates, for each of its inputs
y, the encryption of r0 · Qh0(y)(y) + y and r1 · Qh1(y)(y) + y for each of the two bins h0(y), h1(y) in
which y can be allocated. (Note that here P2 must evaluate two polynomials for each of its inputs since
it has no way of knowing what is the right bin.) Finally, P1 decrypts both evaluations and performs the
same check as in the high-level description above, twice. Setting B = m1

log logm1
and M = O(log logm1),

we get that the communication complexity is not affected (neglecting constant factors), as P1 now sends
BM = O(m1) encrypted values and P2 replies with 2m2 encrypted values. There is, however, a reduction
in the work performed by P2, as each of the oblivious polynomial evaluations amounts to performingO(M)
exponentiations, and so P2 now performs only 2m2M = 2m2O(log logm1) exponentiations overall.

Finally, one may worry about the case that P1 is unlucky in its choice of hash functions such that more
than M items are mapped to some bin. The bound of [ABKU99] only guarantees that this happens with
probability o(1). However, Broder and Mitzenmacher [BM01] have shown that asymptotically, when we
map n items into n bins, the number of bins with i or more items falls approximately like 2−2.6i . Formally,
this means that if M = ω(log log n) then except with negligible probability no bin will be of size greater
than M . Practically, this means that a bound of M = 5 suffices with probability 1 − 10−35. The authors
also provide experimental results that confirm the asymptotic bound for the case of n = 32, 000.

Using Cuckoo hash. Cuckoo hash [PR04] is a multiple-choice hashing scheme with evictions. In its
simplest form, n items are mapped to 2(1 + ε)n bins (where ε is a small constant which affects the error
probability), using two hash functions h0, h1. When item x is inserted, then if either bin h0(x) or bin h1(x)
are free, x is mapped to the free bin. Otherwise, we put x in bin h0(x), evict the item x′ that is already in
that location, and try to move x′ to the location defined by the other hash function (i.e., if h0(x) = h0(x′)
then we try to move x′ to h1(x′)). If that location is occupied as well, we evict the item that is located there
and try to relocate it, and so on. A version of this algorithm described in [PR04] continues with this process,
until there is a series of O(log n) evictions, in which case it chooses new hash functions h0, h1 and tries

6A constant factor improvement is achieved using the Always Go Left scheme in [V0̈3] where h0 : {0, 1}∗ → [1, . . . , B
2

], h1 :
{0, 1}∗ → [B

2
+ 1, . . . , B]. In that scheme, an element x is inserted into the less occupied bin from {h0(x), h1(x)}; in case of a

tie x is inserted into h0(x).

14

to re-insert all items. It was shown in [PR04] that the expected time, i.e. the expected number of insertion
trials, needed by the scheme to insert all items is O(n).

The use of Cuckoo hash for our purposes is appealing, since at most a single item is mapped to every
bin. Therefore the number of comparisons can be reduced to be linear in the uninput size. A major obstacle,
though, is that there is a pretty high probability, of 1/n, that a specific input set of n elements cannot be
inserted in the table using a specific pair of hash functions h0, h1, and then a new pair of hash functions
must be chosen. Therefore P2, which knows the hash functions and knows that they were chosen at random
from the set of pairs of functions which do not cause an abort for P1’s input, can identify with probability
of about 1/n whether a certain potential input set of P1 cannot be the actual input of P1 in a specific run of
the protocol. This problem occurs even if P1 rearranges its input element in a random order.

One approach to reducing the effect of this problem is to use the “Cuckoo hashing with a stash” solution
of [KMW08]: In addition to the hash table, this solution keeps a small amount of additional memory, namely
a stash of s items. If the insertion algorithm encounters an infinite cycle of evictions, then an element in that
cycle is moved to the stash. When we look for an item x in the table, we search for it in locations h0(x)
and h1(x) as well as in the stash. It was shown in [KMW08] that, for any constant s, using a stash of size
s fails with probability O(n−s) (taken over the choice of the hash functions). Therefore, if we change the
algorithm so that it aborts if the original choice of hash functions results in more than s items being moved to
the stash, then the algorithm aborts with probability of at most O(n−s). Consequently, P2 can identify with
probability O(n−s) whether a specific potential input of P1 does not agree with the hash functions h0, h1.
This is a low (albeit not negligible) probability which we further characterize experimentally in Section 4
for various settings of hash table size (1 + ε), n and stash size s.

When the protocol is implemented using Cuckoo hash, then when P2 processes an input x it must
evaluate the polynomials of the two bins to which x might have been mapped (bins h0(x) and h1(x)),
as well as the polynomial representing the stash. The advantage is that the polynomials of the two bins are
linear and the polynomial representing the stash is of small degree. This should be compared to the balanced
allocation solution in which the polynomials representing the bins are of degree log logm1.

3.3 The Detailed Protocol

We are now ready to formally present our protocol. We describe the protocol based on balanced allocations,
since for that hashing scheme there is a negligibly small bound on the failure probability. We remind the
reader that our construction is secure with respect of both Paillier and ElGamal, and any homomorphic
PKE that meets Definition 3.2. We describe our construction using a general notation for the homomorphic
encryption scheme. In Section 4 we describe the results of experiments with each of the hashing schemes.

Protocol 1 (πSH
∩ - secure set intersection in the semi-honest model):

• Inputs: The input of P1 is m2 and a set X ⊆ {0, 1}p(k) containing m1 items; the input of P2 is m1 and a set
Y ⊆ {0, 1}p(k) containing m2 items (hence, both parties know m1 and m2). Recall from definition 3.2 that
{0, 1}p(k) is contained in the plaintext space of a homomorphic PKE with a good plaintext space.

• Auxiliary inputs: A security parameter 1k.

• Convention: Both parties check every received ciphertext for validity, and abort if an invalid ciphertext is
received.

• The protocol:

1. Key setup: P1 chooses (pk, sk)← G(1k) and sends pk to P2.

15

2. Setting the balanced allocation scheme: P1 computes the parametersB,M for the scheme and chooses
two randomly chosen hash functions h0, h1 : {0, 1}p(k) → [B].7 It sends B,M, h0, h1 to P2.

3. Creating polynomials for the set X: For every x ∈ X , P1 maps x into the less occupied bin from
{h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote the set of elements mapped into bin i and let

Qi(x)
def
=
∑M
j=0Qi,j ·xj denote a polynomial with the set of roots Bi (if Bi = ∅ then P1 setsQi(x) = 1).

If |Bi| < M then P1 multiplies Qi(·) by xM−|Bi|.
P1 encrypts the coefficients of the polynomials, setting qi,j = Epk(Qi,j ; ri,j). It sends the encrypted
coefficients to P2.

4. Substituting in the polynomials: Let y1, . . . , ym2
be a random ordering of the elements of set Y . P2

does the following for all α ∈ {1, . . . ,m2}:

– It sets ĥ0 = h0(yα), ĥ1 = h1(yα) (these values denote the bin number). Then it chooses random
plaintexts r0, r1 in the domain of Epk() and uses the homomorphic properties of the encryption
scheme to evaluate e0α = Epk(r0 · Qĥ0

(yα) + yα), and e1α = Epk(r1 · Qĥ1
(yα) + yα). Finally, it

sends e0α, e
1
α to P1.

5. Computing the intersection: For each received e0α, e
1
α party P1 checks if for some x ∈ X , x = Dsk(e0α)

or x = Dsk(e1α). In this case P1 records x as part of its output.

Correctness. We first note that when both parties follow the protocol P1 outputs X ∩ Y with probabil-
ity negligibly close to 1: (i) For elements x ∈ X ∩ Y there exists yα ∈ Y that zeros at least one of the
polynomials Qh0(yα)(·), Qh1(yα)(·). Hence, getting the messages sent for yα, P1 records yα. (ii) For ele-
ments x ∈ X \ Y , P1 records x only if either x = Dsk(e

0
α) or x = Dsk(e

1
α) which, occurs with negligible

probability due to the randomness of r0 and r1 and the requirement that the homomorphic PKE is good for
plaintext space.

Theorem 3.3 Assume that (G,E,D) is a semantically secure homomorphic PKE that is good for plaintext
space (cf. Definition 3.2). Then Protocol 1 securely computes F∩ in the presence of semi-honest adversaries
(cf. Definition 2.1).

Proof: We consider two corruption cases.

Simulating the view of party P1. The simulation is based on the fact that messages received by P1 are
encryptions either of elements of the intersection set or are random elements of the message space of the
encryption scheme. We construct a simulator S as follows:

1. S is given X , m2, X ∩ Y and 1k and sets m1 = |X|.

2. S receives from P1 its public key pk.

3. S receives from P1 the parameters B,M and the seeds for the two chosen hash functions h0, h1 :
{0, 1}p(k) → [B] used in the balanced allocation scheme.

4. S receives from P1 the encrypted polynomials {qi,j}i∈{1,...,B},j∈{0,...,M}.

5. S completesX∩Y to sizem2 by adding random elements from {0, 1}p(k). Let Ỹ denote this recorded
set.

6. S now plays the role of the honest P2 for the rest of the execution, using Ỹ as the input for P2.
7Any implementation of a hashing scheme must replace the idealized random hash function (that is used for the analysis) with

an actual construction of a hash function that works well in practice. See,. e.g., [PT12] and related work.

16

7. S outputs the view of P1.

We claim that the joint distributions of P1’s view and P2’s output are statistically close in the real and
simulated executions. The potential difference between these executions is in Step 5 of the simulation,
where S plays the role of the honest P2 with Ỹ instead of Y . The difference is that the random elements in
Ỹ ′ = Ỹ \ (Y ∩X) are used in the simulated execution where members of Y ′ = Y \X = Y \ (Y ∩X) are
used in the real execution.

Let y ∈ Y ′ (respectively, ỹ ∈ Ỹ ′) be elements considered in the real (respectively, simulated) execution.
Then P1 receives the encryptions e0 = Epk(r0 · Qh0(y)(y) + y), and e1 = Epk(r1 · Qh1(y)(y) + y) in
the real execution, and the encryptions ẽ0 = Epk(r̃0 · Qh0(ỹ)(ỹ) + ỹ), and ẽ1 = Epk(r̃1 · Qh1(ỹ)(ỹ) + ỹ)
in the simulated execution. Note first that due to the requirement that the input domain size is super-
polynomial in k, the probability that elements from Ỹ are in X as well is negligible in k. Moreover,
Qh0(y)(y), Qh1(y)(y), Qh0(ỹ)(ỹ), Qh1(ỹ)(ỹ) ∈ G with overwhelming probability (for G ⊆ M multiplicative
group as specified in Definition 3.2). We thus get that all the encrypted plaintexts sent to P1 (by both P2 and
S) are uniformly distributed in G and therefore P1 cannot distinguish between the two cases since they are
identical with overwhelming probability.

Simulating the view of party P2. The simulation is based on the fact that as P2 only receives encrypted
values it cannot detect whether these are encryption of values sent in the real protocol or encryptions of
arbitrary messages sent by the simulator. Construct a simulator S as follows:

1. S is given Y , m1, X ∩ Y and 1k and invokes P2 on these inputs. S sets m2 = |Y |.

2. S chooses (pk, sk)← G(1k) and sends pk to P2.

3. S computes the parameters B,M for the balanced allocation scheme and chooses random seeds for
the hash functions h0, h1. These are then sent to P2.

4. S sends to P2, BM encryptions of the value 0, under the key pk (i.e., encryptions of the coefficients
of B polynomials which are identically equal to 0). Each encryption is done with fresh randomness.

5. S completes the execution and outputs whatever P2 does.

In the following we define a sequence of hybrid games and denote by the random variable H`(k,X, Y)
(for a fixed k) the joint output of P2 and P1 in hybrid game H`.

Game H0: The simulated execution.

Game H1: The simulator S1 acts identically to S except that in Step 2 of the simulation S1 does not get to
know the secret key sk. The random variables H0(k,X, Y) and H1(k,X, Y) are identical as S ignores sk.

Game H2: In this game there is no trusted party and no honest P1. Instead, the simulator S2 is given as input
P1’s real input X . S2 works exactly like S1 except that instead of sending encryptions of zero polynomials
it computes the polynomials as in the real execution using the set X .

We prove that the random variables H1(k,X, Y) and H2(k,X, Y) are computationally indistinguish-
able via a reduction to the security of (G,E,D).8 Assume, for contradiction, the existence of a distinguisher
circuit D for the distribution induced by games H1(k,X, Y) and H2(k,X, Y) and choose hash functions
h0, h1 that maximize D’s distinguishing advantage. Construct a distinguisher circuit DE that distinguishes

8We consider an extension of the semantic security game (cf. Definition 2.6), where a distinguisher DE is given a public key
pk, outputs two vectors of plaintexts m0,m1, and receives back a vector of ciphertexts c comprised of the encryptions of mb under
Epk, where b←R {0, 1}. DE then outputs a bit b′ and we say that it distinguishes successfully in this game if b′ = b.

17

Encrypt Decrypt HAdd
Paillier 3742 273 4
El Gamal 266 155 2

Table 1: Average speed (µs) of public-key operations with a 1024-bit El Gamal modulus and a 2048-bit
Paillier modulus.

between the encryptions of two sets of messages: (i) coefficients of zero-polynomials as constructed in
game H1, and (ii) coefficients of polynomials corresponding to X and hash functions h0, h1 as constructed
in game H2. DE receives a public key pk and vector of encryptions c under pk and works exactly like S2

except that it uses the public key given to it as input in the semantic security game, instead of generating it
by itself, and forwards to P2 the vector of encryptions c instead of the encrypted polynomials. Note that the
output distribution generated by DE is either identical to H1(k,X, Y) or to H2(k,X, Y) (conditioned on
our choice of h0, h1), and hence the existence of D contradicts the indistinguishability of ciphertexts of the
encryption scheme (G,E,D).

Game H3: The simulator S3 acts identically to S2 except that S3 is given sk. The random variables
H2(k,X, Y) and H3(k,X, Y) are identical as S2 and S3 do not use sk.

Note that game H3 is identical to the real execution with respect to the adversary’s view.

3.4 Computing Set Intersection Cardinality

In a protocol for computing the cardinality of the set intersection, P1 learns |X ∩ Y | but not the actual
elements of this set. In order to compute this functionality, P2 needs only slightly change his behavior from
that in Protocol 1. That is, instead of computing the encryptions of r0 ·Qĥ0(yα) + yα and r1 ·Qĥ1(yα) + yα,
P2 now only encodes r0 ·Qĥ0(yα) and r1 ·Qĥ1(yα). Then, in Step 5 of the protocol, P1 counts the number
of ciphertexts received from P2 that are decrypted to zero, and locally outputs this number. The proof of
security for this protocol trivially follows from that of Protocol 1.

4 Performance Evaluation

In order to give concrete performance numbers to our protocol, we provide in this section performance
benchmarks for an implementation of the private matching protocol described in Section 3.1. As described
below, the benchmarks show the advantage of the hashing-based approaches over the basic approach which
uses no hashing. On the other hand, the performance benefit of using the solutions based on balanced
allocations and on Cuckoo hashing, over that of a single hash function, does not become noticeable until the
input sets are pretty large, due to additional factors which affect the overhead.

Our implementation uses the cryptographic libraries that are part of the SFS toolkit [Maz01] (although
we wrote the implementation of the Paillier cryptosystem), which in turn uses the GNU Multi-Precision
library 4.3.0 [GMP09] for large arithmetic operations. Performance benchmarks were performed on a Sun
X2200 M2 server running Fedora core 12 in 64-bit mode, using a single core of an AMD Opteron 2376
processor (2.3 GHz).

Table 1 shows the performance of the encryption schemes of Paillier [Pai99] in a fast decryption mode,
as described in Section 6 of [Pai99], and ElGamal, using the variant described in Section 2.3.1. (Recall that
in that variant of ElGamal we encrypt values in the exponent, to support the homomorphic addition property.
This makes decryption harder, but that issue is irrelevant to our protocol since we only need to check whether
the decrypted plaintext is equal to 0.) We used key and modulus sizes that offered comparable security: a
1024-bit value forN in the Paillier cryptosystem (and thus a 2048-bit modulus forN2), and a 160-bit key and

18

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with 100 elements

0
1
2
3
4
5

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with 10 000 elements

0
1
2
3
4
5
6
7
8

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with 1 000 000 elements

0
1
2
3
4
5
6
7
8

Figure 1: In Cuckoo hashing, fraction of randomized trials that exceed a given stash size, for varying hash
table sizes 2 · (1 + ε) ·n. Solid vertical line at 0.02 corresponds to the ε used in set intersection experiments.

10-3
10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

C
lie

nt
 p

re
pa

re
 ti

m
e

(s
ec

on
ds

)

Input set size

No Hashing
Basic Hashing
Balanced Hashing
Cuckoo Hashing

10-3
10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

S
er

ve
r

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

Input set size

No Hashing
Basic Hashing

Balanced Hashing
Cuckoo Hashing 10-3

10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

C
lie

nt
 r

ec
ov

er
y

tim
e

(s
ec

on
ds

)

Input set size

No Hashing
Basic Hashing
Balanced Hashing
Cuckoo Hashing

Figure 2: Computational set intersection performance for P1’s setup and precomputation (left), P2’s evalu-
ation (center), and P1’s corresponding recovery of the intersection (right).

1024-bit prime modulus for ElGamal. The numbers correspond to the mean value (in microseconds) of 100
runs across five different keys. The column HAdd corresponds to the cost of performing a homomorphic
addition of plaintexts, which is akin to modular multiplication. Due to its superior performance, we use
ElGamal to instantiate our set intersection protocol in this section’s subsequent benchmarks. We also note
that the ElGamal encryption can be implemented even more efficiently based on elliptic curve cryptography.

For the Cuckoo hash construction, we need to instantiate the protocol with appropriate parameters for
the stash size s and table size 2 · (1 + ε) · n. As stated earlier, it was shown in [KMW08] that using a stash
of size of size s fails with probability O(n−s); here, we also characterize this probability experimentally.
Figure 1 shows the fraction of randomized trials (out of a total of 100,000 trials) for which the stash was
not large enough to prevent cycles, for varying choices of ε and s. We evaluate input sizes n = 10i for
i= 1 . . . 6, of which three sizes are shown in the figure. In our set intersection experiments, we instantiate
the Cuckoo hashing version with ε = 0.02 (shown by the solid vertical line in the figure) and a stash size
of 2. With this configuration, n = 1000 has the highest fraction of failed constructions at ∼0.55%, while
inputs that were very small or large had a much lower rate of failure (n = 10 has ∼0.005%, n = 106 has
none). We conclude that these chosen parameters are adequate to balance safety and performance across
various values of n, although an implementation might choose to vary both parameters as a function of n, in
order to better tune this tradeoff to a particular setting. As we will see next, however, this still will not result
in any real benefit compared to the simpler hashing strategies.

Recall that the set intersection protocol consists of three main stages: (1) P1’s setup to construct an
encrypted polynomial. The overhead of this step is O(m1) exponentiations in the basic protocol, and
O(BM) = O(m1) exponentiations in each of the hashing-based constructions, where B is the number
of bins, and m1 is the size of P1’s input. (2) P2’s evaluation of this polynomial on its inputs. This step takes
O(m1m2) exponentiations in the basic method, O(m2 logm1) exponentiations in the random hash method,

19

Construction Stage 1 Stage 2 Stage 3
P1’s setup P2’s evaluation decryption by P1

Random hash 10 936 52 334 2 153
Balanced allocations 7 833 68 336 4 692
Cuckoo hash 8 503 86 193 6 375

Table 2: Speed (msec) of each of the hashing-based solutions, for m1 = m2 = n = 10000, computed
as the average of 10 runs. The random hash construction required a single evaluation of a polynomial of
degree 26. The balanced allocations construction evaluated two polynomials of degree 6. The Cuckoo hash
construction evaluated two linear polynomials and a degree two polynomial (representing a stash of size 2).

O(m2 log logm1) exponentiations in the balanced allocations construction, and only O(m2) exponentia-
tions in the Cuckoo hash construction. (3) P1’s subsequent recovery of the intersection. This step requires
O(m2) decryptions in each of the methods.

Measured performance trends. First, let us analyze the high-level performance trends of our various set
intersection constructions. Figure 2 shows the performance of the set intersection protocol for these three
stages in log-log scale, where both client and server have the same input set size ranging from 10 to 1
million elements. The figure demonstrates the poor performance implications of using a single polynomial
constructed across all of P1’s input (i.e., “No Hashing”), as compared to the hashing-based schemes. The
latter’s performance is almost linear in n.

Explaining asymptotic performance. We now explain the measured performance trends of the three
hashing-based approaches, as it differs from their asymptotic computational overhead. To simplify the no-
tation, we consider the case of m1 = m2 = n. Recall that asymptotically, the computation overhead
of the constructions based on random hashing, balanced allocations, and Cuckoo hashing, is O(n log n),
O(n log log n), and O(n), respectively, where the bulk of the computation is done in Step 2. Our experi-
ments, however, show the opposite: The run time of the random hashing based approach, in Stages 2 and 3,
is better than that of the balanced allocations scheme, which is in turn better than the run time of the Cuckoo
hashing approach. In order to explain these results, we must examine the constants that affect the overhead.

Table 2 details the run times for the case of n = 10000. We ran experiments for values of n up to
n = 100000, where we parameterized the experiments based on the results from initial experiments to
find values which do not result in the hash functions overflowing the capacity of the bins. The results for
n = 10000 are representative of the results in the range we examined. The random hash scheme used
B = n/ log n = 753 bins, each of size 26. The balanced allocation scheme used B = n/ log logn = 2680
bins, each of size 6. The Cuckoo hashing scheme used 2 · 1.02 ·n = 20400 bins, each with a single element,
and a stash of size 2.

In Stage 1, P1 constructs a polynomial for each bin in the hash table (corresponding to polynomials of
degree 26, 6, or 1, respectively for each scheme). The task of P1 is to encrypt each of the coefficients of
the polynomials and therefore the overhead per polynomial is linear in the degree. An analysis based on the
number of polynomials used in every experiment and their degrees, shows that the overhead per polynomial
of degree d is about 0.55d msec.

Let us now focus on the overhead of Stage 2, which consists of the evaluation of the polynomials by P2

and consumes the bulk of the overhead. Recall that P2 must compute expressions of the formEpk(r ·P (y)+
y). The overhead of computing these expressions includes a component that is linear in the degree of P ,
and some constant overhead, which does not depend on the degree and is caused by multiplying P (y) by r

20

Figure 3: The ratio of the runtimes of Step 2 in the randomized hashing and balanced allocations construc-
tions, for n = 100, . . . , 100000.

and adding y. The random hash based construction requires computing n polynomials of a relatively high
degree (26 when n = 10000). The balanced allocations experiment requires computing 2n polynomials of
a lower degree (degree 6 when n = 10000), whereas the Cuckoo hash experiment has 2n evaluations of
linear polynomials and n evaluations of polynomials of degree 2 (corresponding to the stash).

Linear regression based on the experiment results shows that the evaluation time of a polynomial of
degree d is about 2.8 + 0.1d ms. Namely, that it has a large additive constant, which is comparable to
increasing the degree by 28. This large additive constant is mostly due to the combined effect of Horner’s
rule and of the short length of value y used as input to the polynomials (which is only 5 bytes long).
The Horner’s rule based implementation uses homomorphic multiplications by y, that are implemented as
exponentiations with a short, 5 bytes long exponent, whereas the multiplication by r (that is done once per
polynomial) is implemented as a full exponentiation. Therefore the effect of that single exponentiation is
quite dominant.

As a result, for n = 10000 the runtime of Step 2 in our implementation for the random hash experiment,
which evaluates a single polynomial of degree 26, is about (2.8+2.6)·n = 5.4n. The runtime of the balanced
allocations experiment, which evaluates two polynomials of degree 6, is about 2 · (2.8 + .6) ·n = 6.8n. The
runtime of the Cuckoo hashing experiment, which evaluates for each input two linear polynomials and one
polynomial of degree 2, is (2 · (2.8 + .1) + (2.8 + .2)) · n = 8.8n. The balanced allocations construction is
therefore slower than the random hashing construction, and the run time of the Cuckoo hashing construction
is slower than that of the balanced allocations construction.

When n increases, the degrees of the polynomials of the randomized hashing and balanced allocations
constructions increase, and dominate the constant additive factor. As a result, the runtime should approach
its asymptotic behavior, where the Cuckoo hashing construction is favorable, followed by the balanced
allocations construction. To verify that this phenomenon indeed takes place, we charted that ratio of the
runtimes of the randomized hashing construction and the balanced allocations construction for different
values of n ranging from n = 100 to n = 100000. This ratio is decreasing and is almost 1 when n = 100000,
and we assume that it will become smaller than 1 for larger values of n. See Figure 3.

As for Stage 3, note that in the three constructions P2 sends back n, 2n, and 3n encryptions, respectively.
P1 must decrypt all these encryptions, and its actual run time in this stage is indeed linear in the number of
decryptions that it must perform.

We note that the running time might be further optimized by increasing the sizes of the tables, and by that

21

reducing the size of the bins. This will increase the overhead of Stages 1 and 3, as well the communication
overhead, but should decrease the overhead of Stage 2.

To summarize our observations about the actual runtime, we found that the running time of evaluating
each polynomial is linear in the degree, but it also has a constant factor which increases the degree by about
28. As a result, each additional polynomial that is evaluated has a considerable effect. The random hashing
construction evaluates a single polynomial of degree O(log n), whereas the balanced allocations construc-
tion evaluates two polynomials of degreeO(log log n), and the Cuckoo hashing construction evaluates three
polynomials: two linear polynomials and a polynomial of degree 2. Asymptotically, the performance of the
constructions based on balanced allocations and Cuckoo hashing is preferable, but since these two construc-
tions use more polynomials than the first construction, their overhead is higher than that of random hashing
for the input sizes that we tested.

5 Security in the Presence of Malicious Adversaries

We now modify the secure set intersection protocol to accommodate malicious adversaries. We present in
detail a protocol that is based on a balanced allocation scheme. A similar transformation can be applied to
the protocol based on Cuckoo hashing. The overhead of the resulting protocol is of the same order as that
of the corresponding semi-honest protocol. Considering our construction for semi-honest parties a number
of problems need to be taken care of:

1. P1 can construct polynomials that would enable it to learn the value of elements that are not in the
intersection. For instance, by setting the polynomial Qi to be identically zero P1 learns all elements
{y ∈ Y : h0(y) = i or h1(y) = i}. We solve this problem by presenting a zero-knowledge protocol
for verifying that

∑
i∈{1,...,B} deg(Qi) = m1, and Qi(·) 6≡ 0 for all i ∈ {1, . . . , B} (Section 5.1).

2. A more subtle problem that was overlooked in prior work is that with some homomorphic encryption
PKEs, P1 may construct Q(·) such that the evaluation of r ·Q(y) (and hence also of r ·Q(y) + y) is
far from being random in M, even though Q(y) 6= 0 and r is chosen at random. This attack can be
carried out with respect to encryption schemes for which the plaintext space is not a cyclic group of
prime order. Therefore in this case, r ·Q(y) may be a random element within a smaller subgroup.

For a concrete example consider the Paillier encryption scheme and note that since P1 knows both
the public and secret keys (pk = N, sk = φ(N)), it can construct a polynomial Q(·) such that
Q(y) 6∈ Z∗N for some specific value(s) of y of its interest.9 This implies that r · Q(y) 6∈ Z∗N , and so
is very far from being random in ZN , hence fails to hide y. This problem does not exists when using
ElGamal.

We are aware of two ways to address this problem: The first solution would be to have P1 generate
the polynomials after it learns pk but before it learns sk. That is, the parties first run a secure protocol
for a mutual generation of the public key in which the secret key is shared between them. Then P1

generates its polynomials and finally, P2 reveals its share so that P1 will be able to learn the secret
key. For the Paillier encryption scheme we get that coming up with a polynomial Q(·) and y such that
Q(y) 6∈ Z∗N amounts to factoring the product N . The public key generation can be computed using
the efficient protocol of Hazay et al. [HMRT12] that is proven with simulation based security in the
malicious setting. To the best of our knowledge, this is the only non-generic protocol that guarantees
simulation based security in the two-party setting. We further note that generating such a public key
for the ElGamal scheme is easier following the underlying ideas of Diffie and Hellman [DH76].

9Learning sk allows P1 to efficiently decrypt messages it receives from P2. Otherwise P1 and P2 would have to engage in a
protocol for a joint decryption.

22

Another solution by [LL07] would be to have P2 encrypt some padding of the payload value added
to the polynomial evaluation. This corresponds to a randomized encoding in order to compensate the
loss of entropy. Looking ahead, this implies that P2 first encodes s and then adds it to the encrypted
polynomial evaluation. This yields an encryption to an element in Z∗N that is statistically close to a
random element in this group, where the statistical difference depends on the encoding parameters.
For simplicity we employ the former solution in our protocol below.

3. A malicious P1 may choose the hash functions adversarially, e.g., so that an overflow is caused con-
ditioned on P2 having certain input set. This issue can be overcome by having the two parties choose
the hash functions jointly so that as long as one of them is honest the result is a randomly chosen hash
function. There exist well known efficient protocols for joint coin tossing, secure against malicious
adversaries. We therefore reduce the task of choosing the hash function to joint coin tossing. It is
known in advance that the hash function will be applied to some n values, and we wish to ensure that
the hash function that is chosen would be close to uniform on the set of n inputs to which it will be
applied. A straightforward method of defining this function is by choosing at random the coefficients
of an (n− 1) degree polynomial. However, this function has the drawback that each evaluation of the
polynomial takes O(n) time. A result of [PP08] describes a function defined by O(n log n) random
bits (actually O(n log |V |) bits, where |V | is the size of the range of function), where the function can
be computed in O(1) time, and has the property that for any set S of n items the function is uniform
on S except with probability that can be bounded by an arbitrarily small polynomial in n. A very
recent construction for the case of a Cuckoo hash with a stash, shows that the hash functions used
can be defined by only 2n1/2 log n + O(s log n) bits, where s is the size of the stash, which is also
O(1) [ADW12]. The run time of the resulting hash function was further improved in [DW03, Woe06],
although it still requires the same number of random bits.

4. Lastly, while party P2 is supposed to send m2 pairs of encryptions resulting from substituting a value
y (known to P2) in the (encrypted) polynomials Qh0(y) and Qh1(y), it may deviate from its prescribed
computation. Thus, its input to the protocol may be ill defined.

The standard solution to this problem involves the usage of zero-knowledge proofs for demonstrating
correct behavior by P2. The cost of such a proof for each y ∈ Y would be proportional to the size
of X since P2 cannot disclose the identity of y’s bin. Therefore, the overall cost would be quadratic
in the size of X . Instead, we introduce a technique that enables P1 to redo the entire computation
supposedly carried out by P2 on any value y supposedly in the intersection and verify that its outcome
is consistent with the messages received from P2. This is where we incorporate the usage of a random
oracleH in our protocol.

We first describe how to use this technique in the case where P2 evaluates a single polynomial first
(the “No Hashing” case), and then extend it for the hashing based protocols.

For each y ∈ Y in P2’s input set it chooses a random element s and computes the encryption of
r·Q(y)+s, where the randomness used for this computation is taken fromH(s). Clearly, ifQ(y) = 0,
then P1 learns s, and can easily verify whether there exists x ∈ X such that together with s yields
exactly the same encryption. The security argument shows that this is true only for elements in the
intersection set. In particular, when P2 deviates from the prescribed computation, P1 records an
incorrect output with only a negligible probability.

When using a balanced allocation scheme (or Cuckoo hashing), P2 needs to evaluate more than one
polynomial on the same value y. Furthermore, when y is in the intersection exactly one of these
polynomials evaluates to zero. To force P2 to act according to the protocol we let P2 repeat the
above computation twice so that it ends up sending two encryptions for r0 · Qh0(y)(y) + s1 and

23

r1 · Qh1(y)(y) + s0. By learning sb ∈ {s0, s1}, P1 is able to extract s1−b and hence verify P2’s
computation. Loosely speaking, by applying the random oracle on sb the adversary learns r1−b and
thus is able to extract s1−b from the plaintext that is combined with s1−b. This method is different
than the one applied in [HN10] that uses a single value of s for both bins, where the randomness is
extracted from the outcome of a PRF evaluated on s. Specifically, in [HN10] P2 commits to each
y and the payload value s first. Later, P2 uses s to generate the randomness used to evaluate the
corresponding polynomial with y.

5.1 Properties of Homomorphic PKE

In this section we consider the properties of the homomorphic PKE that we need for proving the security of
our protocol. We demonstrate that these properties hold for both Paillier and ElGamal PKEs.

1. Given a random pk (but not sk), it is infeasible to come up with a message m 6= 0 such that m 6∈ G,
for G ⊆ M a multiplicative group for which only a negligible fraction of M is not in G (as specified
in Definition 3.2). For Paillier G denotes Z∗N , whereas for ElGamal G denotes Z∗q .

2. There exists a polynomial-time algorithm that on input (pk, c) outputs 1 iff c is valid, i.e., in the range
ofEpk(·; ·). For Paillier one only needs to check that c ∈ Z∗N2 . For ElGamal one can use the subgroup
of quadratic residues modulo q′ = 2q + 1.

3. There exists a protocol πKEY for securely computing the key generation functionality FKEY in the
presence of malicious adversary, where FKEY is defined by

(1k, 1k) 7→
(

(pk, sk1), (pk, sk2)
)
, (2)

where (pk, sk) ← G(1k), sk1 and sk2 are random shares of sk that do not leak any information
about the secret key, and (efficient) reconstruction of sk is with respect to the specific PKE via a
secure two-party protocol. We also require that given sk, a simulator can efficiently compute shares
sk1, sk2 such that the distribution over these shares when output by the protocol and by a simulator is
computationally indistinguishable.

For Paillier one can use the protocol of [HMRT12] for which its efficiency is dominated by the number
of trial divisions for testing the candidates composites. This protocol ensures an improved analysis
based on the analysis from [BF01] for which a random number of length 1024 is a prime with probabil-
ity 1/44, condition that it passed a trial division with some threshold parameter B. Thus the expected
number of attempts is 1936. For ElGamal, the key setup protocol by Diffie and Hellman [DH76] (that
can be made secure for the malicious setting) can be used here.

4. There exists an efficient computational zero-knowledge proof of knowledge πMULT for proving the
multiplication of two plaintexts. The relationRMULT is formalized as follows,

RMULT =

{(
(pk, (ea, eb, ec))

) ∣∣∣∃(a, ra, b, rb, rc) s.t ea = Epk(a; ra) ∧ eb = Epk(b; rb)
∧ ec = Epk(ab; rc)

}
.

A constant-round zero-knowledge proof for LMULT with 15 exponentiations can be found in [DJ01].10

10The original construction of [DJ01] is presented in the honest verifier setting. Deriving a statistical zero-knowledge proof can
be achieved by instantiating Pedersen’s commitment scheme [Ped91] with the technique of Goldreich and Kahan [GK96]. The
analysis of 15 exponentiations already takes into account this adjustment.

24

5. There exists an efficient computational zero-knowledge proof πNZ for proving that some ciphertext
encrypts a non-zero plaintext. Formally,

LNZ = {(pk, ea) | e = Epk(a; ra) for some a 6= 0, ra} .

A simple reduction to πMULT is as follows. The prover chooses random b, rb, rc, sets eb = Epk(b; rb),
ec = Epk(ab; rc) and proves that ((pk, (ea, eb, ec)), (a, ra, b, rb, rc)) ∈ RMULT. If the proof is ac-
cepted, then the prover sends ab, rc, and the verifier accepts if ec = Epk(ab; rc) and ab 6= 0.

6. There exists an efficient computational zero-knowledge proof πZERO for proving that some ciphertext
encrypts the zero plaintext. Formally,

LZERO = {(pk, ea) | e = Epk(0; ra) for some ra} .

A constant-round zero-knowledge proof for LZERO with 13 exponentiations for ElGamal can be found
in [CP92] and with 8 exponentiations for Paillier [DJ01].11

5.2 Zero-Knowledge Proof of Knowledge forRPOLY

In addition to the above, we will need a zero-knowledge proof of knowledge for proving the correctness of
the polynomials sent by P1. We recall that in the set intersection protocol presented below, P1 generates B
polynomials {Qi(·)}i∈{1,...,B} representing its input set X and sends their encryptions to P2. We present an
efficient zero-knowledge proof of knowledge πPOLY that is used for checking these encrypted polynomials.12

The basic idea of our proof is to count the number of non-zero coefficients and compare this result with
m−B (we subtractB since there areB bins and the number of roots of a polynomialQi(·) is upper bounded
by degQi(·) − 1). To prove this, the prover sends an encryption Zi,j of 1 for every 0 ≤ j ≤ deg(Qi(·)),
and 0 otherwise. It then proves that it computed these encryptions correctly by proving that Zi,j is indeed an
encryption of a value within {0, 1}, and thatQi,j ·(1−Zi,j) = 0 for all j ∈ {0, . . . ,M}. However, a problem
arises ifQi(·) has zero coefficients. In this case the prover can convince the verifier that

∑
i deg(Qi(·)) = m

even if it is actually larger (as we only count the non-zero elements). To solve this problem we add an
additional check that the set Zi,0, Zi,1, . . . , Zi,M is monotonically non-increasing, which guarantees that ∀i,
and j ≥ deg(Qi(·)), the event in which Zi,j = 0 and Zi,j+1 = 1 does not happen. The proof is concluded
by having the parties sum up these values using homomorphic addition, and having the prover prove that
the result is an encryption of m − B. We note that the attack in which P1 encrypts the zero polynomials is
prevented by assuming that the coefficient of the highest degree equals 1.

Formally, the relation is defined by,

RPOLY =
{(
{qi,j}i,j ,m, pk

)
,
(
{Qi,j , ri,j}i,j

)∣∣∣ ∀i, j qi,j = Epk(Qi,j ; ri,j) ∧∑
i deg(Qi(·)) = m ∧ ∀i, Qi(·) 6≡ 0

}
where Qi(x) =

∑M
j=0Qi,j · xj , and i ∈ {1, . . . , B}, j ∈ {0, . . . ,M}. A protocol for RPOLY, as well as

a complete proof, can be found in [HN10]. For the sake of completeness, we give a slightly modified
description of their protocol.

Protocol 2 (zero-knowledge proof of knowledge πPOLY forRPOLY):
Joint statement: A collection of B sets, each set is of M + 1 encryptions
{qi,j}i∈{1,...,B},j∈{0,...,M}, a public key pk and an integer m.

11See previous footnote.
12We will use the convention that the degree of a polynomial Qi(·) can be chosen to be any integer j′ such that Qi,j = 0 for all

j ≥ j′, hence equality with m can always be achieved.

25

• Auxiliary inputs for the prover: A collection of B sets, each set is of M + 1 values

{Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M} such that the conditions inRPOLY are met.

• Convention: Both parties check every received ciphertext for validity, and abort if an invalid ciphertext is
received. Unless written differently, i ∈ {1, . . . , B} and j ∈ {0, . . . ,M}.

• The protocol:

1. For every i let Qi(x) =
∑M
j=0Qi,j · xj =

∑M
j=0Dsk(qi,j) · xj , and recall that by our convention (cf.

Footnote 12),
∑
i deg(Qi(·)) = m. Let Zi,j = 1 for 0 ≤ j ≤ deg(Qi(·)), and otherwise Zi,j = 0 (i.e.,

Zi,0 = 1, Zi,1, . . . , Zi,M is monotonically non-increasing, and
∑
j∈{0,...,M} Zi,j = deg(Qi(·)) + 1).

2. The prover P computes zi,j = Epk(Zi,j ; r̃i,j) and sends {zi,j}i,j to the verifier V .
∀i, P performs the following:

(a) For each zi,j encrypting a value Zi,j it proves that Zi,j · (1−Zi,j) = 0 (and hence Zi,j ∈ {0, 1}).13

Let mi,j = Epk(0; r̂i,j). Then P proves that(
(pk, zi,j , z

′
i,j ,mi,j), (Zi,j , r̃i,j , 1 − Zi,j , r̃

′
i,j , r̂i,j)

)
∈ RMULT and that mi,j is an encryption of

zero by decrypting mi,j .
(b) P proves that Zi,0, Zi,1, . . . , Zi,M is monotonically non-increasing, i.e., that Zi,j = 0 and Zi,j+1 =

1 does not happen for any value of j ∈ {deg(Qi(·)), . . . ,M − 1}. For that, P and V compute an
encryption of 2Zi,j +Zi,j+1 − 1 (note that both parties can compute this encryption) and P proves
in zero-knowledge that (pk,Epk(2Zi,j + Zi,j+1 − 1)) ∈ LNZ.

(c) P completes the proof that the valuesZi,j were constructed correctly by proving (similarly to Step 2a
above) that Qi,j · (1− Zi,j) = 0 for all j ∈ {0, . . . ,M}.

3. Finally, to prove that the sum of degrees of the polynomials {Qi(·)}i equals m, both parties compute an
encryption t of T =

∑
i,j Zi,j −B, and P proves that (pk, t/Epk(m)) ∈ LZERO.

4. V verifies all the zero-knowledge proofs and decryptions. If any of the verifications fails, V outputs 0,
otherwise, it outputs 1.

Note that Protocol πPOLY runs in a constant number of rounds because each of the zero-knowledge proofs
can be implemented in constant rounds and can be invoked in parallel. The parties compute and exchange
O(BM) = O(m) encryptions and executeO(BM) = O(m) zero-knowledge proofs (forRMULT,LNZ,LZERO).
Overall, these amount to performing O(m) exponentiations and exchanging O(m) group elements.

Proposition 5.1 Assume that πMULT, πZERO and πNZ are as described above and that (G,E,D) is homo-
morphic PKE that is good for plaintext space (cf. Definition 3.2). Then Protocol 2 is a computational
zero-knowledge proof of knowledge forRPOLY with perfect completeness.

A complete proof can be found in [HN10]. Intuitively, the zero-knowledge property follows from the fact
that all the sub-protocols are zero-knowledge as well. Knowledge extraction follows from the fact that
πMULT is a proof of knowledge proof, so that the plaintexts and randomness can be extracted in Step 2c.
Finally, soundness follows from soundness of sub-protocols, ensuring that the degree of the polynomial
cannot exceed M .

13The proof can be easily computed since both parties can compute an encryption z′ of 1−Zi,j , where P can recover randomness
r̃′i,j that is consistent with this encryption. We also assume that P and V agree on an encryption of 1, for which both know the
randomness.

26

5.3 Secure Set Intersection in the Random Oracle Model

We are now ready to present a formal description of our protocol in a setting where the parties are malicious
and have oracle access to a random function H : G→ M‖M‖R, i.e., the outcome is split into three values:
(1) The first value is used to mask the encrypted polynomial evaluation (for the message space specified for
either Paillier or ElGamal), (2) the second value is used to mask the input to the polynomial, (3) and the
third value is used to encrypt the values s0, s1 (to rerandomize the ciphertext encrypting the outcome of the
polynomial evaluation), forR denoting the randomness space from which the random coins for the specified
PKE are sampled from. A high-level description is presented in Figure 4.

P1(X,m2) P2(Y = {yα}α∈{1...m2},m1)

1k −→
(pk, sk1)←− πKEY

←− 1k

−→ (pk, sk2)

1k −→
(h0, h1)←− πCOIN−TOSS

←− 1k

−→ (h0, h1)

Epk (Q1(·)) . . . Epk (QB(·))
-

Q1(·) . . . QB(·) −→ πPOLY

←− Epk (Q1(·)) . . . Epk (QB(·))
−→ 0/1

Verify sk = sk1 + sk2 � sk2

For all α ∈ {1 . . .m2}, j ∈ {0, 1} :
sα0 , s

α
1 ←R M,

H(sαj)→ rj‖r̃j‖r̂j
qj

def
= Qhj(yα)(yα)

�

eαj = Epk
(
rj · qj + sα1−j ; r̂j

)
,

tα = r̃j ⊕ yα

For all α ∈ {1 . . .m2}, j ∈ {0, 1} :
s′j = Dsk(ẽα),
H(s′j)→ r′j‖r̃′j‖r̂′j

Check if ∃ x ∈ X j ∈ {0, 1} s.t. :
tαj = r̃j ⊕ x, and
ẽα0 , e

α
1 , consistent with

r′1, r
′
2, s
′
0, s
′
1, r̂
′
0, r̂
′
1.

Figure 4: A high-level diagram of πRO
∩ (random oracle model).

Protocol 3 (πRO
∩ – secure set intersection in the random oracle model):

• Inputs: The input of P1 is m2 and a set X ⊆ {0, 1}p(k) containing m1 items; the input of P2 is m1 and a set
Y ⊆ {0, 1}p(k) containing m2 items (hence, both parties know m1 and m2).

• Auxiliary inputs: A security parameter 1k.

• Convention: Both parties check every received ciphertext for validity, and abort if an invalid ciphertext is
received.

• The protocol:

27

1. Key setup: P1 and P2 run an execution of πKEY for generating pk and random shares sk1, sk2 of sk.
Let (pk, sk1) and (pk, sk2) denote the respective outputs of P1 and P2 from this execution.

2. Setting the balanced allocation scheme: P1 computes the parameters B,M for the scheme and the
parties run a coin tossing protocol in order to choose the seeds for two randomly chosen hash functions
h0, h1 : {0, 1}p(k) → [B]. It sends B,M, h0, h1 to P2. P2 checks that the parameters B,M and the
seeds h0, h1 were computed correctly, and aborts otherwise.

3. Creating polynomials for the set X: For every x ∈ X , P1 maps x into the less occupied bin from
{h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote the set of elements mapped into bin i and let

Qi(x)
def
=
∑M
j=0Qi,j ·xj denote a polynomial with the set of roots Bi (if Bi = ∅ then P1 setsQi(x) = 1).

If |Bi| < M then P1 sets the M + 1− |Bi| highest-degree coefficients of Qi(·) to zero.
P1 encrypts the coefficients of the polynomials, setting qi,j = Epk(Qi,j ; ri,j). It sends the encrypted
coefficients to P2.

4. Checking the polynomials: P1 and P2 engage in an execution of πPOLY for which P1 enters pk and the
sets {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}, and P2 enters the sets {qi,j}i∈{1,...,B},j∈{0,...,M}. If the outcome is
not 1 then P2 aborts.

5. Key setup completion: P2 sends his share of the private key sk2, as well as the randomness used for
generating this share, to P1. P1 reconstructs sk from the shares sk1, sk2 and checks that the result is a
valid private-key that corresponds to pk, and that P2 sent the correct share. If it is not, it aborts.

6. Substituting in the polynomials: Let y1, . . . , ym2
be a random ordering of the elements of set Y . P2

does the following for all α ∈ {1, . . . ,m2}:

(a) It sets ĥ0 = h0(yα), ĥ1 = h1(yα) (these values denote the bin number). Then it chooses sα0 , s
α
1 ←R

M and parsesH(sαj) to obtain random strings rj , r̃j , r̂j of appropriate lengths for their usage below,
for all j ∈ {0, 1} (i.e., rj , r̃j , r̂j = H(sαj)).

(b) P2 uses the homomorphic properties of the encryption scheme to evaluate Epk(r0 · Qĥ0
(yα)) and

Epk(r1 ·Qĥ1
(yα)). It then applies an homomorphic operation on these ciphertexts and Epk(sα1 ; r̂0)

and Epk(sα0 ; r̂1), respectively. This results in eα0 = Epk(r0 · Qĥ0
(yα) + sα1) and eα1 = Epk(r1 ·

Qĥ1
(yα) + sα0).

Finally, P2 sends eα0 , e
α
1 together with tα0 = r̃0 ⊕ yα, tα1 = r̃1 ⊕ yα to P1.

7. Computing the intersection: P1 checks that P2 sent m2 tuples and aborts otherwise. For each received
eα0 , e

α
1 , t

α
0 , t

α
1 party P1 computes s′0 = Dsk(eα1) and s′1 = Dsk(eα0), and sets r′j , r̃

′
j , r̂
′
j = H(s′j) for all j.

If tαj = r̃′j⊕x for some x ∈ X and j ∈ {0, 1}, then P1 records sxj = s′j and sx1−j = s′1−j−r′j ·Qhj(x)(x).
P1 uses these recorded values and x in order to recompute the set eα0 , e

α
1 , t

α
0 , t

α
1 . If its outcome agrees

with P2’s messages it records x.
Namely, P1 recomputes eαj and tαj using P2’s procedure in Step 6, but with sx0 , s

x
1 in the role of sα0 , s

α
1 .

Correctness. Notice first that if both parties are honest, then P1 outputsX ∩Y with probability negligibly
close to 1: (i) For elements x ∈ X∩Y there exists a yα that zeros at least one of the polynomialsQh0(yα)(·),
Qh1(yα)(·), say w.l.o.g. the first polynomial. Hence, getting the messages sent for yα, P1 recovers s′1 = sα1
immediately. Moreover, since it already knows yα from tα1 , and r1 from H(sα1), it can recover sα0 as well
by simply computing sα0 = s′0 − r1 ·Qh1(yα)(yα), and verify that the recomputed encryptions eα0 , e

α
1 , t

α
0 , t

α
1

agree with P2’s messages. Consequently, P1 records x in its output. (ii) For elements x ∈ X \Y , P1 records
x only if for some yα and j the values r′j , r̃

′
j , r̂
′
j = H(s′j) are such that tαj = r̃′j ⊕ x and furthermore, the

conditions on eα0 , e
α
1 , t

α
0 , t

α
1 are met. As proven below, this occurs with only a negligible probability.

Theorem 5.1 Assume that πKEY and πPOLY are as described above, that (G,E,D) is a semantically secure
homomorphic PKE that is good for plaintext space (cf. Definition 3.2), and thatH is a random oracle. Then
Protocol 3 securely computes F∩ in the presence of malicious adversaries in the random oracle model.

28

Proof: We separately prove security in the case that P1 is corrupted and the case that P2 is corrupted.
Our proof is in a hybrid model where a trusted party computes the ideal functionalities FKEY and the zero-
knowledge proof of knowledgeRPOLY.

P1 is corrupted. Intuitively, all a corrupted P1 can do in protocol πRO
∩ is to try and construct the poly-

nomials Qi(·) such that it gains information about P2’s input Y . There are two provisions in the protocol
against such an attempt: (i) The application of πPOLY ensures that as long as all the homomorphic operations
are within elements of G (as specified in Definition 3.2), P1 should fail; and (ii) Letting P1 learn sk only
after it constructs the polynomials ensures that this would indeed be the case. The following proof makes
this intuition formal. Let A denote an adversary controlling P1. Construct a simulator S for A as follows:

Convention: During the entire execution S evaluates queries to the random oracle H. Such queries
are made by A or by S during its simulation of P2. To evaluate H(s), S first checks if it has already
recorded a pair (s, r), in which case H(s) evaluates to the value r. Otherwise, S chooses a random
string r of the appropriate length, records (s, r) and evaluatesH(s) to r.

1. S is given X , m2 and 1k and invokes A on these inputs. S sets m1 = |X|.

2. S receives from A its input 1k for the ideal functionality FKEY and computes (pk, sk) ← G(1k).
Next, S computes random shares sk1, sk2 such that the reconstruction with these shares yields sk,
and sends (pk, sk1) to A, emulating the response of a trusted party for FKEY.

3. Upon engaging in a coin tossing protocol with A, S receives from A the parameters B,M and the
seeds for the two random chosen hash functions h0, h1 : {0, 1}p(k) → [B] used in the balanced
allocation scheme. If the parameters B,M or h0, h1 were not computed correctly, S sends ⊥ to the
trusted party for F∩ and aborts.

4. S receives from A the encrypted polynomials {qi,j}i∈{1,...,B},j∈{0,...,M}.

5. S receives from A its input {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M} and pk for the ideal computation RPOLY.
If the conditions ofRPOLY for outputting (λ, 1) are not met then S sends⊥ to the trusted party for F∩
and aborts.

6. S sends sk2 to A.

7. S sets X̃ = ∪Bi=1{x : Qi(x) = 0 ∧ (h0(x) = i ∨ h1(x) = i)} (note that for Paillier, S would know
the factorization p and q of the public key N , so that it can factor Qi(·) over the fields Zq and Zp,
recovering the roots over ZN using the Chinese Reminder Theorem), and completes X̃ to size m1

by adding random elements from {0, 1}p(k). S sends X̃ to the trusted party for F∩ and receives as
answer a set Z = X̃ ∩ Y . S sets Ỹ to Z and completes Ỹ to the size m2 by adding random elements
from {0, 1}p(k).

8. S plays the role of the honest P2 for the rest of the execution, using Ỹ as the input for P2, with the
exception that S itself evaluates queries toH as described above.

9. S outputs whatever A does.

We claim that A’s output distributions in the hybrid and the simulated executions are statistically close.
The potential difference between these executions is in Step 7 of the simulation, where S plays the role of
the honest P2 with Ỹ instead of Y . Ignoring the case where Y ∩ X̃ 6= Y ∩ X (which happens with only
a negligible probability), the difference is that members of Ỹ ′ = Ỹ \ (Y ∩ X) are used in the simulated

29

execution where members of Y ′ = Y \ X = Y \ (Y ∩ X) are used in the hybrid execution. Let y ∈ Y ′
(y ∈ Ỹ ′) be the αth element considered in the hybrid (simulated) execution, then A receives four values:
eα0 , e

α
1 , t

α
0 , t

α
1 . Note first that unless A recovers either sα0 or sα1 the plaintexts encrypted under eα0 , e

α
1 are

statistically close to random messages. Similarly, the strings tα0 and tα1 are statistically close to uniformly
selected strings in M. Hence, it suffices to show that sα0 , s

α
1 cannot be recovered, unless with negligible

probability.
Recall that eαj = Epk(rj · Qhj(y)(y) + sα1−j ; r̂j). Then if Qh0(y)(y), Qh1(y)(y) ∈ G, except with

negligible probability, rj is uniformly distributed in G and we get that rj ·Qhj(y)(y) is uniformly distributed
in G. Therefore the probability of guessing sα1−j is negligible in the order of G. Moreover, the probability
that Qh0(y)(y) 6∈ G or Qh1(y)(y) 6∈ G is negligible both in the hybrid and in the simulated executions by
Item 1 in Section 5.1. This concludes the proof.

P2 is corrupted. Intuitively, we should prevent a corrupted P2 from learning about P1’s input, and from
making P1 output a wrong output. The latter concern is dealt with using a technique we mentioned above,
i.e., by having P1 recover P2’s randomness fromH(s) and verify that P2’s messages that result in an element
supposedly in the intersection are in accordance with what a honest P2 would have sent.

Getting to the formal proof, letA denote an adversary controlling P2, and construct a simulator S forA
as follows:

Convention: During the entire execution S evaluates queries to the random oracle H. Such queries
are made by A or by S during its simulation of P1. To evaluate H(s), S first checks if it has already
recorded a pair (s, r), in which case H(s) evaluates to the value r. Otherwise, S chooses a random
string r of the appropriate length, records (s, r) and evaluatesH(s) to r.

1. S is given Y , m1 and 1k and invokes A on these inputs. S sets m2 = |Y |.

2. S receives fromA its input 1k for the ideal functionalityFKEY and computes (pk, sk)← G(1k). Next
S chooses random shares such that the reconstruction with these shares yields sk, and sends (pk, sk2)
to A, emulating the response of a trusted party for FKEY.

3. Upon engaging in a coin tossing protocol with A, S computes the parameters B,M for the balanced
allocation scheme and the seeds for the hash functions h0, h1. These are then sent to A.

4. S sends to A, BM encryptions of the value 0, under the key pk (i.e., encryptions of B zero-
polynomials). Each encryption is done with fresh randomness.

5. S emulates the ideal computation of RPOLY. It receives from A a set of BM coefficients and pk. If
A’s input is the exact set of encryptions that it received from S in the previous step, and pk then S
returns 1, otherwise it returns 0.

6. S receives from A its private-key share. If A does not send sk2, S aborts, sending ⊥ to the trusted
party for F∩.

7. In caseA sends more thanm2 tuples in Step 6 of the protocol S aborts, sending⊥ to the trusted party.

8. For every eα0 , e
α
1 , t

α
0 , t

α
1 received from A in the simulation of Step 6 of the protocol, every j ∈ {0, 1}

and every pairs (s0, r0), (s1, r1) recorded by S as part of its evaluation of the random oracle H, S
performs the following: (i) it parses rj as r′j‖r̃j‖r̂j and sets yj = tαj ⊕ r̃j . (ii) For all j ∈ {0, 1} it
checks if eα0 , e

α
1 , t

α
0 , t

α
1 are consistent with what P2 should have sent on yα = yj given sα1−j = s1−j

and r′j , r̃j , r̂j . That is, S recomputes these encryptions using s, r and yα as the honest P2 would in

30

the real execution, and checks whether the result equals eα0 , e
α
1 , t

α
0 , t

α
1 . If the check succeeds S locally

records the value yα.

Naively implementing the above algorithm, the computational complexity of the simulator is quadratic
in the number of queries. It is possible to reduce this cost into a linear overhead by additional encoding
a common payload in the ciphertexts. Namely, the input to the random oracle would be the si’s
concatenated with additional string that is in common for both s0 and s1.

9. S sets Ỹ to the set of values recorded in the previous step, and completes Ỹ to the size m2 by adding
random elements from {0, 1}p(k).

10. S sends Ỹ to the trusted party and outputs whenever A does.

In the following we define a sequence of hybrid games and denote by the random variable HA(z)
` (k,X, Y)

(for a fixed k) the joint output of A and P1 in hybrid game H`.

Game H0: The simulated execution.

Game H1: The simulator S1 acts identically to S except that it does not get to know sk. The random
variables HA(z)

0 (k,X, Y) and H
A(z)
1 (k,X, Y) are identical as S and S1 do not use sk.

Game H2: In this game there is no trusted party and no honest P1. Instead, the simulator S2 is given as input
P1’s real inputX . S2 works exactly like S1, except that instead of sending zero polynomials, it computes the
polynomials as in the hybrid execution using the set X . In addition, S2 does not send Ỹ to the trusted party,
but uses X to compute and output X ∩ Ỹ . The random variables HA(z)

1 (k,X, Y) and H
A(z)
2 (k,X, Y) are

computationally indistinguishable via a reduction to the security of (G,E,D). Assume, for contradiction,
the existence of a distinguisher circuitD for HA(z)

1 (k,X, Y) and H
A(z)
2 (k,X, Y) and choose hash functions

h0, h1 that maximize D’s distinguishing advantage. Construct a distinguisher circuit DE that distinguishes
between the encryptions of two sets of messages: (i) coefficients of zero-polynomials as constructed in
game H1, and (ii) coefficients of polynomials corresponding to X and hash functions h0, h1 as constructed
in game H2. DE receives a public key pk and a vector of encryptions c under pk and works exactly like
S2 except that it uses the public key given to it as input instead of the public key it generated within FKEY,
and forwards to A the vector of encryptions c instead of the encrypted polynomials. Note that the output
distribution generated by DE is either identical to H

A(z)
1 (k,X, Y) or to H

A(z)
2 (k,X, Y) (conditioned on

our choice of h0, h1), and hence the existence of D contradicts the indistinguishability of ciphertexts of the
encryption scheme (G,E,D).

Game H3: The simulator S3 acts identically to S2 except that S3 is given sk. The random variables
H
A(z)
2 (k,X, Y) and H

A(z)
3 (k,X, Y) are identical as S2 and S3 do not use sk.

Game H4: In this game S4 acts identically to S3 except that S4 performs in Step 6 of the protocol the same
check as in the hybrid execution, i.e., first decrypt and then recompute. To conclude the proof, we show that
the random variables HA(z)

3 (k,X, Y) and H
A(z)
4 (k,X, Y) are statistically close. Neglecting the event that

new elements added to Ỹ are in X as well and ignoring this set, observe first that if an element yα satisfies
the conditions for being included in the output in Game H3, it also satisfies the conditions for being included
in the output in Game H4. Namely, if S3 outputs an element yα then it must be that yα ∈ X , and either eα0
or eα1 encrypts sαj , and hence S4 would have outputted it.

Consider now the reverse direction. Let bad denote the event where there exists an element x ∈ X such
that S4 decided to output, but should not have been outputted by S3. We show that Pr[bad] is negligible.
Note that for bad to occur it must be that for some j, one of eα0 , e

α
1 is decrypted into sαj such that for some

x ∈ X the values eα0 , e
α
1 , t

α
0 , t

α
1 are consistent with setting y = x and the randomness obtained from H(sα0)

31

and H(sα1) and this occurs only with negligible probability due to the fact that the output by H is truly
random.

Game H5: The hybrid execution. The random variables HA(z)
4 (k,X, Y) and H

A(z)
5 (k,X, Y) are identical

as the only difference between the executions is that in H4 the outcome of the random oracle is chosen upon
request, whereas in H5 it is chosen before the execution. In both cases the outcome of the execution does
not depend on entries of the random oracle which are not accessed.

Efficiency. Protocol πRO
∩ runs in a constant number of rounds, because all the zero-knowledge proofs

can be implemented in constant rounds, and also the implementations of πKEY and πPOLY are constant
round. Implementation of πKEY depends on the homomorphic PKE that is used. For ElGamal the key setup
of [DH76] can be used here with additional zero-knowledge proofs of knowledge for proving a knowledge of
discrete logarithm. The overhead induced by this protocol is relatively small since each such zero-knowledge
proof of knowledge requires 9 exponentiations. A protocol for Paillier requires an increased overhead since
its costs depend on the number of attempts to successfully generate a pair of primes which takes an expected
number of 1936 trials, where for each trial the number of exponentiations for generating and testing the
composite is constant [BF01]. Clearly, ElGamal gives better efficiency with a shorter security parameter
(i.e., 160 bits compared to 1024/2048).

The overhead induced by protocol πPOLY is O(BM) which amounts to performing O(m1) exponentia-
tions and exchanging O(m1) group elements. In the last two steps of the protocol P2 substitutes m2 values
in the encrypted polynomials and sends the results of the substitution to P1. Neglecting the costs of invoking
the random oracle H, this amounts to performing O(m2M) = O(m2 log logm1) modular exponentiations
and communicating O(m2) group elements. We get that the overall communication costs are of sending
O(m1 +m2) group elements, and the computation costs are of performingO(m1 +m2 log logm1) modular
exponentiations.

References
[ABKU99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM Journal on

Computing, 29(1):180–200, 1999.

[ACM88] Proc. Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, 2–4 May 1988.

[ACT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters: Size-hiding private set
intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, Public
Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 156–173. Springer, 2011.

[ADW12] Martin Aumller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash families suffice
for cuckoo hashing with a stash. 2012.

[AIR01] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In
Advances in Cryptology—EUROCRYPT 2001, Innsbruck, Austria, May 2001.

[AKS83] Miklós Ajtai, János Kolmós, and Endre Szemerédi. An O(n log n) sorting network. In STOC, pages
1–9, 1983.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for real-
istic adversaries. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science,
pages 137–156. Springer, 2007.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Con-
ference, pages 307–314, 32(1968).

[Bea91] Donald Beaver. Foundations of secure interactive computing. CRYPTO, 576:377–391, 1991.

32

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared rsa keys. J. ACM, 48(4):702–722,
2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In ACM [ACM88], pages 1–10.

[BM01] Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash functions to improve ip lookups.
In IEEE INFOCOM 2001. 20th Ann. Joint Conference of the IEEE Computer and Communications
Societies. Proceedings, 2001.

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient solution to the socialist
millionaires’ problem. Discrete Applied Mathematics, 111(1-2):23–036, 2001.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ex-
tended abstract). In ACM [ACM88], pages 11–19.

[CJS10] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-preserving set intersection
with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512, 2010.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO, pages 89–105,
1992.

[CZ09] Jan Camenisch and Gregory M. Zaverucha. Private intersection of certified sets. In Roger Dingle-
dine and Philippe Golle, editors, Financial Cryptography, volume 5628 of Lecture Notes in Computer
Science, pages 108–127. Springer, 2009.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, November 1976.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In 4th International Workshop on Practice and Theory in Public Key
Cryptosystems (PKC 2001), pages 13–15, Cheju Island, Korea, February 2001.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private set in-
tersection. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors,
ACNS, volume 5536 of Lecture Notes in Computer Science, pages 125–142, 2009.

[DW03] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash functions. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 629–638, 2003.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using
preprocessing. In TCC, pages 621–641, 2013.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proc. 22nd ACM Symposium on Principles of Database Systems
(PODS 2003), pages 211–222, San Diego, CA, June 2003.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivi-
ous pseudorandom functions. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 303–324. Springer, 2005.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology—EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer-Verlag, 2–6 May 2004.

33

[FNW96] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it. Communica-
tions of the ACM, 39(5):77–85, 1996.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems for
NP. Journal of Cryptology, 9(3):167–189, 1996.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral
majority. CRYPTO, 537:77–93, 1990.

[GMP09] GMP. GNU Multiple Precision Arithmetic Library. gmplib.org, 2009.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Proc. Nineteenth Annual ACM Symposium on Theory of
Computing, pages 218–229, New York City, 25–27 May 1987.

[Gol04] Oded Goldreich. Foundations of cryptography: Basic applications. Cambridge Univ Pr, 2004.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust in electronic com-
munities. In Proc. ACM Conference on Electronic Commerce, pages 78–86, Denver, Colorado, Novem-
ber 1999.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In TCC, pages 155–175, 2008.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient rsa key generation and
threshold paillier in the two-party setting. In CT-RSA, pages 313–331, 2012.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries. In
Public Key Cryptography, pages 312–331, 2010.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 44–61, Seattle, Washington, May
1989.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection. TCC, 5444:577–594, 2009.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. SCN, 6280:418–435,
2010.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs.
EUROCRYPT, 4515:97–114, 2007.

[KMW08] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo hashing with a
stash. In Proceedings of the 16th annual European symposium on Algorithms, pages 611–622. Springer,
2008.

[KOY01] Efficient password-authenticated key exchange using human-memorable passwords. In Advances in
Cryptology - EUROCRYPT 2001, Innsbruck, Austria, May 6-10, 2001, pages 475–494, 2001.

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set inter-
section. SIAM J. Discrete Mathematics, 5(4):545–557, 1992.

[KS05] Lea Kissner and Dawn Song. Private and threshold set-intersection. In Proceedings of CRYPTO ’05,
August 2005.

[Lip03] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In Advances in
Cryptology—ASIACRYPT 2003, pages 416–433, Taipei, Taiwan, November 2003.

[LL07] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of secrets and its applications.
In ACNS, pages 207–225, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

34

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
J. Cryptology, 25(4):680–722, 2012.

[Maz01] David Mazières. A toolkit for user-level file systems. In USENIX Technical Conference, June 2001.

[MR91] Silvio Micali and Phillip Rogaway. Privacy preserving data mining. Unpublished manuscript, 576:392–
404, 1991.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proc. 31st Annual ACM
Symposium on Theory of Computing, pages 245–254, Atlanta, Georgia, May 1999.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SIAM Symposium on Discrete
Algorithms (SODA), pages 448–457, Washington, D.C., January 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances
in Cryptology—EUROCRYPT ’99, pages 223–238, Prague, Czech Republic, May 1999.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
J. Feigenbaum, editor, Advances in Cryptology—CRYPTO ’91, volume 576 of LNCS, pages 129–140.
Springer-Verlag, 1992, 11–15 August 1991.

[PP08] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM J. Comput.,
38(1):85–96, 2008.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[PT12] Mihai Patrascu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM, 59(3):14, 2012.

[Raz90] Alexander A. Razborov. Application of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10(1):81–93, 1990.

[RS98] Martin Raab and Angelika Steger. Balls into Bins - A Simple and Tight Analysis. Randomization and
Approximation Techniques in Computer Science, pages 159–170, 1998.

[V0̈3] Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM (JACM), 50:568–589,
July 2003.

[Wie07] Udi Wieder. Balanced allocations with heterogenous bins. In Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures, page 193. ACM, 2007.

[Woe06] Philipp Woelfel. Asymmetric balanced allocation with simple hash functions. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA ’06, pages 424–433, 2006.

[Yao82] Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations of
Computer Science, pages 160–164, Chicago, Illinois, 3–5 November 1982. IEEE.

35

