Zen and the Art of Network
Architecture

Zen and the Art of Motorcycle Maintenance
by
Robert Pirsig

* Rejected by 121 publishers (World Record)

* Classic v Romantic Perspectives
— Rational vs Mystic
— Analytical vs Intuitive
— Science vs Art

Classic View

(vvvvvvr T. a/ g Lﬂ \

Romantic View

Quality

* Unifies Classic and Romantic Perspectives
 Whole is greater than the sum of the parts
 More about potential than measurable value

Buddhism’s First Noble Truth

Life is Suffering

s’ LY
WG9
o 34

A
g Exploring Networks
of the Future

ABOUT GENI GET INVOLVED NEWS & EVENTS

| GEC AND OTHER EVENTS

Duality — Networking vs Distributed Systems

The Middle Way

* |nvolves Both Analysis and Intuition

« Balances Requirements’
— Not about optimizing any one dimension

e Seeks Unifying Abstractions
— Accommodates both this and that

"GENI Design Principles. GDD-06-08. August 2006.
ldentifies 11 requirements (dimensions) and offers
“rules” on resolving 7 inter-requirement tensions.

Path to Enlightenment

Path to Enlightenment

A Change the Market

Commercial Adoption Marl.<et
Reality
Customer

Pilot Demonstrations _
Reality

Traffic & User

Deployment Studies
Reality

Maturity

lod Lab : Implementation
Controlled Lab Experiments Reality

Analysis

Time

PlanetLab & CoBlitz

A Change the Market ?

Sold to

Commercial Adoption
Telcos

Deployed in Telco

Pilot Demonstrations
(served real events)

Ran on PlanetLab

Deployment Studies
(many iterations)

Maturity

Controlled Lab Experiments Micro Benchmarks

Simulated

Algorithms
>

Analysis

2002 Time 2014

Change the Market

* Operator CDNs...

— Now incentives for CDN Interconnection (CDNI)

* Virtualized Commodity Servers at the Edge...
— Enables Network Function Virtualization (NFV)
— Dovetails with (but distinct from) SDN

Commodity Servers in the Net

Cloud Regional
Data Centers

NFV Proof-of-Concept
— with BT, Intel & HP —

Mgmt | B-RAS| B-RAS| B-RAS| | B-RAS CDN
VM VM | VM | VM VM VM

! Core ¢ Core ¢ Core ¢ Core | ! Core ¢ Cores |
4x10GE I /
106E ll ! i ‘.JG”” l 106E l
_ J

Path to Enlightenment

e See Reality Clearly — Assumptions hide the truth
* Experience-Based — Users reveal hidden assumptions

* Operationalize — The New Bar!
— Deploy & Operate > Implement > Thought Experiment

Entropy

* A Measure of Engineering’s Effect on Architecture
— Natural part of the process

 Design Principles”
— Acknowledge the dynamic nature of systems

* How Architecture Manifests
— Represents the “fixed point” of an architecture

"Peterson and Roscoe. PlanetLab Design Principles.
Operating Systems Review, 40(1):11-16, January 2006.

ldentifies 13 design invariants to guide evolution.

Manifestation of an Architecture

e Circa 1981 (ASCII renderings of protocol headers)

0 1 2 3
0123456789012 3456789012345678901
totmtmtetetatetetetetatatetatetetetetatatatatatatatatatatatatatat
'Version| IHL |Type of Service| Total Length .
PR RE TN W ST SN TN S A WA N T WK Y S S YN N T WA WA T WU VAN S S WA TN W N W |
Identification 'Flags| Fragment Offset
T TNT TN W ST S TR SN W WA AT NN WK YU S SN Y S N WY WA T WA YU S WA WA YN W W W |
| Time to Live | Protocol : Header Checksum :
totmtmtetatatetetetetatatetatetetetetatatatatatatatatatatatatatat
Source Address :
T TNT TN W ST S T N W W WA AT NN WK YU S WA YUY A ST WG WA T WU YUN S WA WA YUY W W W |
Destination Address :
T TNT TN W ST S YU N W W WA AT NN WA WA S WA YN A T WG WA T WU YUN WU WA WU YUY W W W |

Options : Padding .
T TNT TN W ST S TN W W W ST NN VW YU S WA YN A ST WG WA T WU TG S WA WA YUY WAl N W |

Manifestation of an Architecture

* Circa 2013 (Django Object Class Definition)

class Slice(PICoreBase):

tenant_id = models.CharField(max_length=200, help_text="Keystone tenant id")

name = models.CharField(unique=True, help_text="The Name of the Slice",
max_length=80)

enabled = models.BooleanField(default=True, help_text="Status for this Slice")

omf_friendly = models.BooleanField()

description=models.TextField(blank=True,help_text="High level description of the
slice and expected activities", max_length=1024)

slice_url = models.URLField(blank=True, max_length=512)

site = models.ForeignKey(Site, related_name='slices', help_text="The Site this Node
belongs too”)

tags = generic.GenericRelation(Tag)

serviceClass = models.ForeignKey(ServiceClass, related_name = "slices", null=True,
default=ServiceClass.get_default)

creator = models.ForeignKey(User, related _name='slices’, blank=True, null=True)

Lessons

Part Analysis, Part Intuition
— Whole is greater than the sum of its parts

Unifying Abstractions
— Duality is an opportunity

Balance Requirements

— Not about optimizing a single dimension
Experience (Reality) Driven

— Deploy It, Operationalize It, Use It
Dynamicity (Evolution) is the Norm

— Define Principles and Invariants

This slide intentionally left blank

Putting Lessons to Action

* Software Defined Networking (SDN)

— Separating the Control and Data Planes

 Network Function Virtualization (NFV)
— Data plane functions running in VMs on commodity servers

* Scalable Cloud Applications and Services (Apps)
— Applications running on top of the network

Or... Finding the middle way for Open Networking Lab
(ON.Lab) and the PlanetLab Consortium (PLC)

Distinctions without a Difference

Three implementation points for “network functions”
— SDN, NFV, Apps

Blurring the SDN/Application Line

— |s a proxy that cuts-through uninteresting flows a Controller?

— |s a scalable Controller that uses a NoSQL DB an App?
— Is a CDN that manages a caching hierarchy a Controller?

Blurring the NFV/Application Line

— |s a proxy an example of NFV or is it an application?

Blurring the NFV/SDN Line
— Is a firewall in the data plane or the control plane?

Topology

Virtual Toplogy
% (Big Switch)

Network Virtualization Layer —
— Topology Isolation
— Address Space Isolation
— Semantic Isolation

Physical Topology

Topology Optimizations

Cut-Through 6

~ /- ~ /-

tn-Line
—~ /- ﬁ ~ /-

Scaling Functions

Cloud Regional Edge End-Users
Data Centers PoPs Sites

1
T T T T T
f\ f\
{ ':' ".."
\ 'l| '...
..‘ l|‘ Il“
' \ s / \ |

2
J
)
]
|

Interesting question: How to partition functions into DC and edge “subroutines”?

Refactoring the Space

 Model all “network functions” as scalable services
— Application vs Controller vs NFV distinction is arbitrary

* Use SDN to bootstrap a virtualization layer that...
— |solates virtual networks from each other

— Maps virtual topology to physical topology
* Maintains this mapping in the presence of failures, etc.
* Tunnels vs OpenFlow is an implementation choice
e Supports a cut-through optimization (service hint)

* NFV reduces to an implementation choice
— Put function “in line” at the edge when appropriate

Xaa$S — Everything-as-a-Service

e Service as a Unifying Abstraction
— Unifies across resources (Compute, Network, Storage)
— Unifies across the network (DC, WAN, Access)
— Unifies across service levels (laaS, PaaS, SaaS)

* XOS — Xaa$S Operating System
— Defines service as a first class object
— Supports managing services, not servers
— Supports seamless service extensions to XOS
— Integrates service orchestration with resource provisioning
— Supports both service isolation and service composition

Service Abstraction

Provides a well-defined function
Exports a programmatic (REST) interface
Available network-wide (location independent)

Scalable, elastic, and resilient
— Scales with the number of users (self-balancing)
— Seamlessly grows/shrinks based on demand
— Built out of unreliable components (self-healing)

Runs in a set of VMs connected by one or more VNs
Build new services by composing with existing services

— Some are building blocks (NoSQL DB), some are user-facing
(Facebook), and some are both (DropBox)

Examples of Service Composition

* CoBlitz: Operator CDN (Now Akamai Aura)
— HyperCache (HPC)
— Request Router (RR)
— Intercept Service (IS)

* Syndicate: Scalable Storage Service

— Durability of Cloud Storage (S3, DropBox, Google Drive, Box)
— Scalability of a CDN (HPC, RR)
— Coherence of a Local FS (NoSQL DB — Google App Eng)

* Third: Scalable Monitoring & Analytics Service
— Distributed data collection, analysis, and archiving
— Leverages Storm, Cassandra, RabbitMQ and ZooKeeper

Syndicate

Metadata

Service
(NoSQL DB)

Data Sets

Service Isolation/Composition

.\

Q_ clnts

e.g., Content Acquisition” T

Network
\m/—

Scalable Service “F”

. Big Switch (Virtual Net)

0OSaas
(Syndicate)

XOS

XO0S
(REST API + Data Model + Controller)

CaasS NEEN WYEEN
(Nova) (Quantum) (Keystone)

Cloud Management System (CMS)

Libvirt

Libvirt /

Node /

XOS Data Model

e Service runs in one or more Slices
— Extend data model with service-specific objects
— Define “shim” so programs can access service from VMs

* Slice is a resource container
— Set of VM + Set of VNs
— Constraint-based VM placement
— VMs added and deleted over time
— VNs provide service isolation and composition

* Each VN is...
— A big switch that fully connects all VMs in Slice
— Private or Public (routable)
— Closed or Open (available for multiple slices to join)

Operationalizing OpenStack

Policies, Configurations and Workflows
that Codify Operational Practices and
Usage Models

OpenStack Components and Mechanisms
(Nova, Quantum, Keystone, Glance...)

“Understanding and Resolving Conflicts on PlanetLab.
November 2008. Unpublished Note.

OpenCloud Pilot — Hardware

Cloud Regional Edge End-Users
Data Centers PoPs Sites

ViCCl Internet?2 PlanetLab
(5 SDN-Capable (SDN-Capable (500+ Sites, many
Data Centers) Backbone + ViNI) with campus SDN)

OpenCloud Pilot — Software

Dashboard

REST API Effectively Defines XOS
— Codifies Operational Experience
Data Model — Explicit Support for XaaS

Quantum Keystone Nova
OpenCloud CMS

Libvirt Libvirt

Node Node

Status

* Near-term Development
— Initial prototype of OpenCloud (XOS) running in the lab
— Will deploy on operational system this fall
— Deployment will include exemplar services
— Integrating generalized Network Virtualization is next

* Longer term research questions
— What are the right abstractions to support XaaS?
— How do XaaS and Software Routers “meet in the middle”?

— How is functionality best split between DC and the edge?
— What is the performance impact of service composition?

Conclusions

| am indebted to many people, including...

Tom Anderson
Scott Baker
Andy Bavier
Sapan Bhatia
Mic Bowman
Brent Chun
David Culler
Bruce Davie
Jim Dolce
Serge Fdida
Marc Fiuczynski

John Hartman
Mike Hluchyj
Santosh Krishnan
David Lowenthal
Tony Mack

Rick McGeer
Nick McKeown
Steve Muir

Aki Nakao

Jude Nelson
Vivek Pai

KyoungSoo Park
Thierry Parmentelat
Guru Parulkar
Marcin Pilarski
Patrick Richardson
Timothy Roscoe
Scott Shenker
Stephen Soltesz
David Tennenhouse
Siobhan Tully
Michal Wawrzoniak

