
FlexCore: Massively Parallel and Flexible Processing for
Large MIMO Access Points

Christopher Husmann1, Georgios Georgis1, Konstantinos Nikitopoulos1, and Kyle Jamieson2

15G Innovation Centre, Institute for Communication Systems, University of Surrey
2Princeton University and University College London

Abstract
Large MIMO base stations remain among wireless net-
work designers’ best tools for increasing wireless through-
put while serving many clients, but current system de-
signs, sacrifice throughput with simple linear MIMO de-
tection algorithms. Higher-performance detection tech-
niques are known, but remain off the table because these
systems parallelize their computation at the level of a
whole OFDM subcarrier, sufficing only for the less-
demanding linear detection approaches they opt for. This
paper presents FlexCore, the first computational archi-
tecture capable of parallelizing the detection of large
numbers of mutually-interfering information streams at
a granularity below individual OFDM subcarriers, in a
nearly-embarrassingly parallel manner while utilizing
any number of available processing elements. For 12
clients sending 64-QAM symbols to a 12-antenna base
station, our WARP testbed evaluation shows similar net-
work throughput to the state-of-the-art while using an
order of magnitude fewer processing elements. For the
same scenario, our combined WARP-GPU testbed eval-
uation demonstrates a 19× computational speedup, with
97% increased energy efficiency when compared with the
state of the art. Finally, for the same scenario, an FPGA-
based comparison between FlexCore and the state of the
art shows that FlexCore can achieve up to 96% better
energy efficiency, and can offer up to 32× the processing
throughput.

1 Introduction
One of the most important challenges in the design of next-
generation wireless communication systems is to meet
users’ ever-increasing demand for capacity and through-
put. Large Multiple Input-Multiple Output (MIMO) sys-
tems with spatial multiplexing are one of the most promis-
ing ways to satisfy this demand, and so feature in emerg-
ing cellular [1] and local-area [21, 22] networking stan-
dards. For example, in LTE-Advanced and 802.11ac, up
to eight antennas are supported at the access point (AP).

In a system employing spatial multiplexing, multiple
transmit antennas send parallel information streams con-
currently to multiple receive antennas. While the tech-
nique can be used both in the uplink and the downlink
of multi-user MIMO networks, here we focus on the up-
link case, where several users concurrently transmit to a
multi-antenna AP. The need for high throughput in the
uplink stems from the emergence of new applications
for wireless networks, such as video internet telephony,
wireless data backup, and Internet of Things devices, that
have shifted the ratio between uplink and downlink traffic
quantities towards the former.

However, simply having enough antennas at the AP
does not always suffice: to fully realize MIMO’s potential
throughput gains, the AP must effectively and efficiently
demultiplex mutually-interfering information streams as
they arrive. Current large MIMO AP designs such as
Argos [38], BigStation [54] and SAM [41], however, use
linear methods such as zero-forcing and minimum mean
squared error (MMSE). These methods have the advan-
tage of very low computational complexity, but suffer
when the MIMO channel is poorly-conditioned, as is of-
ten the case when the number of user antennas approaches
the number of antennas at the AP [32].

On the other hand, Sphere Decoder-based MIMO de-
tectors can boost throughput over linear methods signif-
icantly [8, 32], even in cases where the number of user
antennas approaches the number of AP antennas. The
cost of such methods, however, is their increased com-
putational complexity: compute requirements increase
exponentially with the number of antennas [19, 24], soon
becoming prohibitive. Indeed, processing complexity
is a significant issue for any advanced wireless commu-
nication system. While the clock speed of traditional
processors is plateauing [12], emerging hardware archi-
tectures including GPUs support hundreds of cores, pre-
senting an opportunity to parallelize the processing load,
along with the challenge of how to do so most efficiently.
BigStation [54] is an example of a system that handles the

processing load of a large MIMO system using multiple
commodity servers, exploiting parallelism down to the
OFDM subcarrier level. Since BigStation uses zero-forc-
ing methods to decode clients’ transmissions, this level
of parallelism suffices for the AP to be able to decode
multiple incoming transmissions and send acknowledge-
ment frames back to the client without letting the wireless
medium become idle for more than the amount of time
prescribed by the 802.11 standards [22]. The cost, how-
ever, is diminished wireless performance, due to linear
zero-forcing detection.

Antennas Throughput Complexity

2×2 45 Mbit/s 1.2 GFLOPS
4×4 100 13
6×6 162 105
8×8 223 837

Table 1— A summary comparison of the throughput
achieved and computational rate required for a Sphere
Decoder implementation [32].

Table 1 shows the number of floating point operations
per second that a single processing core must maintain to
perform optimal, maximum-likelihood, depth-first Sphere
decoding,1 as in [32], when processing OFDM symbols
at the same rate they arrive over the air, for typical Wi-Fi
system parameters.2 The table is parametrized on the size
of the MIMO system (number of clients times number
of AP antennas), highlighting the exponential increase in
floating point operations per second required to keep up
with linearly-increasing numbers of clients. By the time
a Sphere decoder reaches eight clients, it must meet a
rate on the order of 103 GFLOPS, saturating, for example,
Intel’s Skylake core i7 architecture, whose arithmetic sub-
system achieves an order of magnitude less computational
throughput [23]. Clearly, the answer to this performance
mismatch is to decompose and parallelize the problem,
and the aforementioned previous work has made progress
in this direction, dedicating one core to each OFDM sub-
carrier. But as the number of clients grows, because of
the mismatch between the exponential growth in required
computational rate and the much slower growth of the
frequency bandwidth Wi-Fi systems use in general, there
is a need for a new family of MIMO detectors that allows
parallelization below the subcarrier level using a small
number of parallel processing elements.

To meet the processing needs of large, high-performance
MIMO APs, we present FlexCore, an asymptotically-opti-
mal, massively-parallel detector for large MIMO systems.
FlexCore reclaims the wasted throughput of linear de-

1Simulated results for Rayleigh channel, 16-QAM and 13 dB SNR.
220 MHz frequency bandwidth, resulting in a number of OFDM

subcarriers Nc on the order of 50.

tection approaches, while at the same time parallelizing
processing below the subcarrier level, thus enabling it
to meet the tight latency requirements required for pack-
etized transmissions. In contrast to existing low-com-
plexity Sphere decoder architectures [4], FlexCore can
exploit any number of available processing elements and,
for however many are available, maximize throughput
by allocating processing elements only to the parts of
the decoding process most likely to increase wireless
throughput. Consequently, as additional processing el-
ements are provisioned, FlexCore continues to improve
throughput. By this design, FlexCore can avoid unnec-
essary computation, allocating only as many processing
elements as required to approach optimal (maximum-like-
lihood) MIMO wireless throughput performance. Flex-
Core’s computation proceeds in a nearly “embarrassingly”
parallel manner that makes parallelization efficient for a
broad set of implementation architectures, in particular
GPUs, even allowing parallelization across devices. To
achieve this, we present novel algorithms to:
1. Choose which parts of the Sphere decoder tree to ex-

plore, through a “pre-processing” step, and then,
2. efficiently allocate the chosen parts of the Sphere de-

coder tree to the available processing elements.
FlexCore’s pre-processing step is a low-overhead proce-

dure that takes place only when the transmission channel
significantly changes. It narrows down which parts of the
Sphere decoder tree the system needs to explore to de-
code the clients’ transmissions, i.e., find a solution to the
decoding problem. The pre-processing step identifies the
“most promising” candidate solutions in a probabilistic
manner, and occurs a priori, without knowing the signals
received from the clients themselves, but instead based
on the knowledge of the transmission channel and the
amount of background noise present. In this part of the
design, FlexCore introduces a new probabilistic model
to identify the most promising candidate solutions and
an indexing technique wherein the tree nodes are labeled
by position vectors. We also introduce a novel pre-pro-
cessing tree structure and tree search distinct from the
traditional Sphere decoder tree search. These new tech-
niques allow us to efficiently identify the most promising
candidate solutions.

FlexCore’s allocation step maps each of the chosen
paths in the Sphere decoder’s search tree to a single pro-
cessing element, spreading the load evenly. While this
previously required redundant calculations across paral-
lel tasks as well as multiple sorting operations, FlexCore
skips them by introducing a new node selection strategy.
Roadmap. The rest of this paper is structured as fol-
lows. We start with a primer of the Sphere decoder in §2,
followed by a description of its design in §3. In §4 we
present our implementation strategy on both GPUs and
FPGAs, highlighting FlexCore’s computational flexibility

s(2): +1 -1

 +1 -1+1

[+1,+1]T

 -1

[-1,+1]T [+1,-1]T [-1,-1]Ts:

 s(1):

Figure 1— Sphere decoding tree for two transmit anten-
nas, each sending a binary-modulated wireless signal.

across different platforms. Section 5 presents our algorith-
mic performance evaluation based on both over-the-air
experiments and trace-based simulations. In the same sec-
tion, separate GPU- and FPGA-based evaluations follow,
and the applicability of our FlexCore implementations to
LTE in terms of computation time is discussed. In §6 we
discuss relevant related work, before concluding in §7.

2 Primer: The Sphere Decoder
In order to put FlexCore’s high-level design into context,
we now introduce the basic principles of the Sphere de-
coder, then briefly describe the fixed complexity sphere
decoder (FCSD), an approximate Sphere decoder whose
design is amenable to parallelization.

When transmitting a symbol vector s in an OFDM-
MIMO system with Nt transmit and Nr receive antennas
(i.e., Nt ×Nr MIMO), with Nr ≥ Nt , the vector of data
arriving at the receive antennas on a particular OFDM
subcarrier is y = Hs+n, with H being the Nr×Nt MIMO
channel matrix. The Nt elements of the transmit vector
s belong to a complex constellation Q (e.g., 16-QAM)
consisting of |Q| elements. The vector n represents an
Nr-dimensional white Gaussian noise vector. The Sphere
decoder transforms the maximum-likelihood (ML) prob-
lem3 into an equivalent tree search [44]. In particular,
by a QR-decomposition of the MIMO channel matrix
(H = QR, where Q is an orthonormal and R an upper
triangular matrix), the ML problem can be transformed
into ŝ = argmins∈|Q|Nt ‖ȳ−Rs‖2, with ȳ = Q∗y. The cor-
responding tree has a height of Nt and a branching factor
of |Q|. As shown in Fig. 1 for a 2×2 MIMO system with
binary modulation, each level l of the tree corresponds
to the symbol transmitted from a certain antenna. Each
node in a certain level l is associated with a partial symbol
vector sl = [s(Nt − l) , . . . ,s(Nt)]

T containing all possibly-
transmitted symbols from senders down to and including
this level, and is characterized by its partial Euclidean
distance [44]

c(sl) =

[
y(l)−

Nt

∑
p=l

R(k, p) · s(p)

]2

+ c(sl+1), (1)

with R(k, p) being the element of R at the kth column and
the pth row, and c(sNt+1)=0. The ML problem then trans-

3In other words, the problem of finding the most likely set of symbols
the transmitting antennas sent.

forms into finding the tree leaf node with the minimum
c(s1); the corresponding tree path s1 is the ML estimate.
Many approaches explore the Sphere decoding tree in a
depth-first order via which, in contrast to breadth-first
approaches, they can guarantee ML performance, and
they can adjust their complexity to the channel condi-
tion [8, 14, 32]. However, depth-first tree search is strictly
sequential, making parallelization extremely difficult: a
naive parallel evaluation of all Euclidean distances in or-
der to minimize processing latency would be impractical.
For example, for an 8×8 MIMO with 64-QAM modula-
tion, this approach would require performing 2.8×1014

Euclidean distance calculations in parallel.
Fixed Complexity Sphere Decoder. The Fixed Com-
plexity Sphere Decoder (FCSD) [4] is an approximate
Sphere decoder algorithm: instead of examining (and
pruning) all possible Sphere decoder leaf nodes (i.e., all
possible solutions), the FCSD visits only a predefined set
of them. Specifically, the FCSD visits all nodes at the
top L levels of the tree, while for the remaining Nt −L
levels, only visits the child node with the smallest partial
Euclidean distance (i.e., the branching factor is reduced to
one). Since the FCSD visits a predefined set of leaf nodes,
it can visit all these in parallel, returning the leaf node
with the minimum partial distance as its final answer.

There are however, three important drawbacks to the
FCSD’s approach. First, the required number of parallel
processes has to be a power of the order of the QAM
constellation, so the FCSD cannot efficiently adjust to
the number of the available processing elements. Second,
the visited tree paths are not necessarily the ones that are
the most likely to constitute the correct solution, which
means that much of the available processing power is not
efficiently allocated. Finally, the FCSD cannot differen-
tiate between favorable channel conditions, where even
linear approaches would give near-ML performance, and
unfavorable channel conditions, where linear approaches
are not efficient. In the next section, we describe Flex-
Core’s techniques to address this problem by visiting just
the most promising tree paths, maximizing throughput
for a given number of processing elements and exploiting
any number of available processing elements, not just
numbers that are a power of the constellation size.

3 Design
As shown in Fig. 2, FlexCore’s architecture consists of
two major components: the pre-processing module which
identifies the most promising tree paths as a function of
the MIMO channel and the background noise power, and
the parallel detection module that actually allocates tree
paths to processing elements when the AP decodes an in-
coming signal. Since FlexCore evaluates the most promis-
ing paths by accounting for the transmission channel and
background noise, it needs to re-execute pre-processing

...

Processing Element 1

Processing Element 2

Finding the position vectors (p) of
the NPE most promising tree paths

p(1) p(2) p(NPE)

Pre-processing

R

Parallel Detection

Processing Element NPE

...

s1
(NPE)

c(s1
(NPE)) F

in
d

th
e

pa
th

 w
it

h
 th

e
m

in
im

um
 c

(s
1)

ss1
(2)

c(s1
(2))

s1
(1)

c(s1
(1))

y,R
_

^

Figure 2— Block Diagram of FlexCore.

only when the transmission channel changes, similarly to
the QR decomposition that is required for Sphere decod-
ing. However, as we show below, the delay introduced
by pre-processing is insignificant compared to that of the
QR decomposition.

3.1 Pre-processing module

FlexCore’s pre-processing uses the notion of a position
vector p, which uniquely describes all the possible tree
paths relative to the (unknown) received signal. The po-
sition vector is of equal size to the Sphere decoder tree
height: each of its elements p(l) takes an integer value
ranging from 1 to |Q| that describes the position of the
corresponding node at the lth level of the Sphere decoder
tree as a function of its index, when sorting the nodes in
ascending Euclidean distance order.

0

 1 2

 1 2 3 4

 4 3

...

...

...

 4 1 2 3

...

...

...

p=[3,1,2]

l=3

l=2

l=1

Relative to the
received observable

 position vector

Figure 3— Sorted search for tree for 3 transmit antennas
and 4-QAM modulation. The path with the the position
vector p = [3,1,2] is highlighted (green, dashed).

Independent channel example. To illustrate the basic
principle behind pre-processing, we present the follow-
ing simplified example. Suppose that a vector s of two
binary symbols is transmitted via two independent Gaus-
sian noise channels, with noise powers σ2

l with l = 1,2
and σ2

2 ≥ σ2
1 , with the symbol s(l) being transmitted

 +1
+1-1

l=2

+1-1

l=1

+1 -1

-1

 +1 -1

[+1,+1]T [-1,+1]T [-1,-1]T

[2,1] [1,1] [2,2] [1,2]
[+1,-1]Ts:

p:

2nd

closest
1st

closest

1st

closest
2nd

closest

1st

closest
2nd

closest

Figure 4— FlexCore’s pre-processing and most-promis-
ing path selection for the independent channel example
(two transmit antennas, binary modulation).

through the channel l. In FlexCore each parallel chan-
nel corresponds to a level of the Sphere decoding tree.4

All possible transmitted symbol combinations are shown
in Fig. 4. It is known from detection theory that the
best decoding method for this example is to choose the
symbols lying on the same side of the x-axis (positive
or negative) as the received signals lie. That means that
the most likely solution in the tree of Fig. 4 is the path
consisting of the first-closest symbols to the received sig-
nal (on each parallel channel) and, therefore, its position
vector is p = [1,1]. It can also be shown that the corre-
sponding probability of including the correct vector is
Pc (p = [1,1]) = (1−Pe(1))(1−Pe(2)), with Pe(l) being
the error probability of binary modulation for a noise vari-
ance of σ2

l . The second most likely path to include the
correct solution is for a case where on one parallel chan-
nel the symbol lies on the same side of the x-axis as the
received observable (i.e., the tree path includes the closest
symbol to the received observable) and on the other chan-
nel the symbol and received observable lie on different
sides of the x-axis (i.e., the tree path includes the second-
closest symbol to the received observable). This means
that the second-most-promising path is either the path
p = [1,2] or the path p = [2,1].5 Finally, the least-promis-
ing path is p = [2,2] with Pc (p = [2,2]) = Pe(1) ·Pe(2).6

After performing the pre-processing step, and when
the actual received signal y is available, detection takes
place. In the case that our system has only two available
processing elements, FlexCore calculates the Euclidean
distances for the two most promising paths p = [1,1] and
p = [1,2]. Then, the detection output is the vector with
the smallest calculated Euclidean distances (Fig. 2).
Generalizing to the MIMO channel. In a similar man-
ner to the independent Gaussian channels case, for the
actual Sphere decoding tree, and for any QAM constella-

4In the Sphere decoding case, however, the levels are not independent
but, as we show in the Appendix, the following approach still applies.

5Since we assumed that σ2
2 ≥ σ2

1 , then Pc (p = [1,2]) ≥
Pc (p = [2,1]) and therefore (1−Pe(1))Pe(2)≥ Pe(1)(1−Pe(2)).

6We note again that the position vector identifies these tree paths
in terms relative to the signal that the AP will later receive, instead of
identifying absolute tree paths, hence pre-processing is possible a priori.

tion, the corresponding probabilities can be approximated
as

Pc(p)≈
Nt

∏
l=1

Pl (p(l)) (2)

with
Pl (p(l)) = (1−Pe(l)) · (Pe(l))(p(l)−1) (3)

and

Pe(l) =

(
2+

2√
|Q|

)
· erfc

(|R(l, l)| ·√Es

σ

)
(4)

where erfc is the complementary error function, which
can be calculated on-the-fly or pre-calculated using a look-
up table, Es is the power of the transmitted symbols, σ2

is the noise variance, and p(l) is the lth element of p. We
defer a mathematical justification to the Appendix.

3.1.1 Finding the most promising position vectors

FlexCore needs to identify the set E consisting of the
NPE most promising position vectors, with NPE being the
number of available processing elements. An exhaustive
search over all possible paths becomes intractable for
dense constellations and large antenna numbers. There-
fore, we translate the search into a new pre-processing
tree structure (distinct from the Sphere decoder tree) and
propose an efficient traversal and pruning approach that
substantially reduces pre-processing complexity.

We now explain how to construct and traverse the pre-
processing tree with an example: Fig. 5 shows its struc-
ture for three transmit antennas. Each node in the tree
can be described by a position vector and its likelihood
Pc (Eq. 2). Tree construction begins by setting the tree

[1,1,1]

[2,1,1] [1,1,2]

[3,1,1] [2,2,1] [2,1,2]

[2,2,1] [1,3,1] [1,2,2]

[2,1,2] [1,2,2] [1,2,2]

[1,2,1]

x

x

x

Figure 5— A pre-processing tree construction for three
transmit antennas.

root to a node whose position vector consists of only
ones (p=[1,1, . . . ,1]) since this will always be the “most
promising” one, regardless of the MIMO channel. Then
we expand the tree root node, namely, we construct its
child nodes and calculate their Pc values. To find the wth

child node (w∈ [1, . . . ,Nt]), we increment the wth element
of the parent’s position vector by one, as shown in Fig. 5.
To avoid duplication of pre-processing tree nodes, when
expanding a node whose position vector has been gener-
ated by increasing its lth element, the wth children nodes

(w ∈ [l +1, . . . ,Nt]) are not expanded. To avoid unneces-
sary computations while calculating the Pc values of the
children nodes, we further observe that for two position
vectors p̃ and p that only differ in their wth component,
their probabilities are related by Pc(p̃) = Pc(p) ·Pe (w).
After expanding the tree root, we include its position vec-
tor in the set E of most promising position vectors and
we store all the children nodes of the expanded node and
their Pc values in a sorted candidate list L (of descending
order in Pc). Tree traversal continues by expanding the
node with the highest Pc value in L. The expanded node
is then removed from L, its position vector is added to
E and the node’s children are appended to L. Whenever
|L| exceeds NPE , we remove from L the |L|−NPE nodes
with the lowest Pc values. The process continues until
|E |=NPE . Finally, we introduce a stopping criterion in or-
der to terminate the tree search if the sum of the Pc values
of the vectors currently in E , is larger than a predefined
threshold. An example case is discussed in Section 5.

Pre-processing complexity. In terms of this process’
complexity, we first calculate the error probabilities (Pe(l)
in Eq. 4), which can be computed once and reused sev-
eral times during pre-processing. Then, we require in
the worst case Nt real multiplications per expanded node.
Since the maximum amount of expanded nodes is at most
NPE , the maximum complexity in terms of real multiplica-
tions is (NPE ·Nt). In very dense constellations (e.g., 256-,
1024-QAM) a rather large number of parallel processing
elements may be required to reach near ML-performance.
In such challenging scenarios, sequential execution of the
pre-processing phase may introduce a significant delay.
However, our simulations have shown that a parallel ex-
pansion of the nodes with the highest probabilities Pc in
L is possible with negligible throughput loss compared
to a sequential implementation, provided that the ratio of
available processing elements NPE to the number of nodes
expanded in parallel is greater than ten. As a result, the la-
tency of the pre-processing step for large MIMO systems
is insignificant compared to that of the QR decomposition.
In MIMO systems with dynamic channels and user mobil-
ity, the most promising paths will vary in time. Therefore,
and as validated in [17], in such cases reliable channel
estimates are still required to preserve the gains of spatial
multiplexing. FlexCore will then leverage these estimates
to recalculate the most promising paths, together with the
traditionally required channel-based pre-processing (e.g.,

Pre-Processing Detection

QR/ZF FlexCore FlexCore
NPE = 32 NPE = 128 NPE = 32 NPE = 128

8×8 ≈2048 102 301 4608 18432
12×12 ≈6912 136 391 9984 39936
Parallelizability - 3 12 32 128

Table 2— Complexity in real multiplications and “paral-
lelizability” of Pre-Processing and FlexCore detection.

t1

t3 t4
t5

t6
t7

t2

t8

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

13th

14th

15th

16th

Figure 6— Detection square and triangles 1-8 for 16-
QAM and approximate predefined symbol ordering, cal-
culated when the received symbol is within triangle t1.

channel inversion for linear detection or QR decompo-
sition for Sphere decoder-based detection). In such dy-
namic channels, pre-processing complexity requirements
can become comparable to those of FlexCore’s detection,
as shown in Table 2. Latency requirements can then be
determined by the required sequential QR decomposition
(or channel inversion for linear detection).

3.2 Core Allocation and Parallel Detection
To perform detection in parallel, each of the calculated
position vectors in E has to be allocated to a different
processing element. FlexCore’s pre-processing has al-
ready identified the position vectors as a function of their
Euclidean distance sorted order. For example, if the cor-
responding position vector is p = [3,1,2], then the tree
path to be processed consists of the node with the second
smallest Euclidean distance at the top level, the smallest
in the second level and the third smallest in the first level.
Typically, finding the node (i.e., QAM symbol) with the
third smallest Euclidean distance to the observable would
require exhaustive calculation of all Euclidean distances
at a specific level (e.g., for 64-QAM it would require 63
unnecessary Euclidean distance calculations). In order
to avoid these unnecessary computations, we exploit the
symmetry of the QAM constellation, defining an approxi-
mate predefined order based on the relative position of the
“effective” received point ỹl in the QAM constellation.

ỹl =

(
yl−

Nt

∑
p=1+l

R(l, p) · s(p)

)
/R(l, l). (5)

We calculate the approximate predefined symbol order
by assuming that the “effective” received point lies in
a square which is centered at the center of the QAM
constellation and of side length equal to the minimum
distance between consecutive constellation symbols as
in Fig. 6. We then split the square into eight triangles ti
(i = 1, ...,8) and via computer simulations, compute the
most frequent sorted order for “effective" received points
lying in these triangles (as a function of their relative
position to the center of the square), storing the order in
a look-up table. Fig. 6 shows the resulting approximate

order for a 16-QAM constellation when the received point
lies within t1. We note that the constellation’s symmetrical
properties allow us to store the order of just a single
triangle (e.g., for t1) since the order for all other triangles
will be just circularly shifted (with a center one of the
constellation points). During actual decoding, at each
level we identify the relative position of the square as
well as the relative position of the received point within
the square. We then identify the symbol with the kth

smallest distance by using the predefined ordering. If,
however, the latter points to a symbol that is not part of
the constellation (i.e., the center of the grid is not the same
as the center of the constellation), then the corresponding
Euclidean distance calculation unit is deactivated.

4 Implementation
To showcase the versatility and efficiency of FlexCore we
implement it on FPGAs and GPUs. In particular, since
FlexCore focuses available processing resources to the
most promising parts of the Sphere decoding tree, we
demonstrate that it can consistently outperform state-of-
the-art implementations, regardless of the underlying plat-
form. We first evaluate FlexCore’s gains when realized
on GPUs based on the Compute Unified Device Architec-
ture (CUDA) programming model [31]. These types of
many-core architectures are among the more challenging
technologies to display FlexCore’s actual gains, as the
developer does not have direct control over the allocation
of processing elements, but can instead control the way
parallel threads are generated.

Additionally, we implement FlexCore on FPGAs, a
platform that is less programmable than a GPU but more
able to be tailored to FlexCore’s design. FPGA implemen-
tation of fixed-complexity detection schemes has been
examined in the literature [2, 5, 26, 49], enabling low la-
tency and high throughput detection. Apart from high
performance at a low power envelope [16], FPGAs al-
low greater flexibility for the examined fixed complexity
schemes. For instance, the designer may choose to im-
plement in parallel a fraction or even a single path of the
total paths required. Therefore, FPGAs are more effective
in highlighting FlexCore’s computational flexibility.
GPU-based detector implementation. To implement
FlexCore we have extended the MIMOPACK library [34]
by introducing support for single-precision floating-point
computations, and therefore we have achieved improved
processing and memory transfer throughput, and reduced
storage requirements. To further improve transfer through-
put we added support for non-pageable host memory allo-
cation. Finally, we provided support for streams, a means
of concurrent execution on GPUs through overlapping
asynchronous (i.e., in practice independent) operations.

The parallel FCSD generates Nsc×|Q|L threads on the
GPU, with L being the number of levels to be fully ex-

panded and Nsc the number of subcarriers to be processed
in parallel, given it is supported by the memory of the
GPU. To facilitate parallel computations, storage for all
position vectors is allocated in advance by the library. Our
FlexCore implementation generates Nsc×|E | threads. We
note that FlexCore has a higher workload compared with
FCSD due to the additional arithmetic/branching opera-
tions and their application to the topmost level of the tree.
Memory-wise, compared to MIMOPACK’s FCSD our
FlexCore implementation requires three additional Host
to Device (H2D) transfers: a) two |Q|×4-byte wide involv-
ing the order of a single triangle and b) one Nsc×Nt×|E |-
byte wide containing the tree paths. Since the latter matrix
essentially represents the position vectors, its values can
be limited to single bytes for |Q| ≤ 256.
FPGA-Based Detection Design. FlexCore was designed
with latency minimization in mind and thus, we present
a pipelined parallel architecture and the implementation
of both FCSD’s and FlexCore’s detection engines. For
the purpose of consistency, we consider our processing
element as the fully-instantiated logic required to process
a whole Sphere decoder path from the top to the bot-
tom level of the tree. To implement the fixed-complexity
schemes, we have designed modular, low-complexity and
highly parameterizable fixed-point architectures using
Verilog RTL code. We have explicitly designed each
branch at every level, replicated branches and connected
levels in a structural manner. In order to save resources,
in the topmost FCSD level we employ constant complex
coefficient multipliers (CCMs) which perform a hard-
wired integer multiplication of R(l, l) by the complex
constellation point value. Moreover, to avoid the divi-
sion in Eq. 5, we consider the effective received point
as ỹl ·R(l, l), (for all comparisons involving the constella-
tion plane, we multiply the latter’s values by R(l, l)). To
save DSP48 resources (Xilinx’s embedded FPGA mul-
tiplication/arithmetic logic unit) and to maintain a low
utilization of the generic FPGA fabric, we employ mul-
tiple constant coefficient multipliers (MCMs) similar to
the ones described in [11] (i.e., employing indices for s).

Fig. 7 shows an overview of the detection engines’
architecture and modular design principle which allows
for reusability, fair comparison and an instantiation of
an arbitrary number of detection paths. Bit widths and
pipeline levels are parameterizable at instantiation time.
All levels of FlexCore are implemented by replicating
the branches displayed in the top left of Fig. 7. The
FCSD’s design follows a very similar approach allowing
the reuse of FlexCore’s modules, apart from the topmost
FCSD level, where for its fully parallel implementation
we designed and instantiated |Q| CCMs in parallel. Note
that the high level architecture of every branch remains
almost identical to the one displayed in Fig. 7, apart from
its ỹl ·R(l, l) unit, whose complexity increases as we ap-

Figure 7— FPGA architecture of proposed detection en-
gines: FlexCore (left) and FCSD (right).

proach the bottom tree levels. Additionally to the FCSD,
FlexCore’s branches include pipeline registers to store
the desired closest point offset to the received vector and
non-pipelined registers storing the order for a single trian-
gle. FlexCore’s slicer computes the midpoint value and
index instead of the actual constellation point, forwarding
the results to the FlexCore engine which outputs the de-
tected constellation point index. The l2 norm unit (Fig. 7,
bottom-left) is designed to directly employ two cascaded
DSP48 FPGA slices, one in multiplication mode and the
second in multiply-add mode. Finally, a parameterizable
(regarding both the supported width and the number of el-
ements) pipelined minimum tree unit outputs the detected
solution. At a minimum level of pipeline (i.e., submodule
i/o and three registers per embedded multiplier), the total
FCSD latency is 95 up to 150 clock cycles (Nt =8 and 12
respectively). The FlexCore engine induces an additional
minimum latency of 5 cycles per level.

5 Evaluation
In this section we discuss FlexCore’s algorithmic per-
formance and implementation aspects compared to the
state-of-the-art. We first evaluate FlexCore’s throughput
performance on our WARP v3 testbed. Based on these
results, we then jointly assess FlexCore’s algorithmic and
GPU implementation performance. Finally, we provide a
design space exploration of high-performing detection for
various parallelization factors on the state-of-the-art Xil-
inx Virtex Ultrascale xcvu440-flga2892-3-e FPGA. Our
evaluation focuses on scenarios where the channel is static
over a packet transmission and it does not account for the
pre-processing complexity. Since the pre-processing task
needs to take place any time the channel changes (see

§3), the corresponding overhead can be easily calculated
based on the assumed channel dynamics.

5.1 Throughput Evaluation
Methodology and setup. To evaluate FlexCore’s
throughput gains we use Rice’s WARP v3 radio hardware
and WARPLab software. We employ 16- and 64-QAM
modulation with the 1/2 rate convolutional coding of the
802.11 standard. Each user transmits 500-kByte pack-
ets over 20 MHz bandwidth channels within the 5 GHz
ISM band in indoor (office) conditions. We implement
an OFDM system with 64 subcarriers, 48 of which are
used to transmit payload symbols, similarly to the 802.11
standard. Eight- and 12-antenna APs are considered, with
the distance between co-located AP antennas to be ap-
proximately 6 cm. For the eight-antenna AP case, evalua-
tions have been made purely by over-the-air experiments
involving all necessary estimation and synchronisation
steps (e.g., channel estimation). For the 12-antenna AP
case, and due to restrictions on the available hardware
equipment, evaluation is performed via trace-driven sim-
ulation. To collect the corresponding MIMO channel
traces, we have separately measured (over the air) and
combined the received channel traces of single-antenna
users to 12-antenna APs (1×12) . Fig. 8 displays a graphi-
cal overview of our testbed with the positions of the eight-
and 12- antenna APs. Similarly to [32], the individual
SNRs of the scheduled users differ by no more than 3
dB. This minimizes the condition number of the channel
(a low condition number is an indicator of a favorable
channel) but therefore also limits the potential gains of
FlexCore and Sphere decoding approaches in general. For
all our evaluations, the examined SNR is such that an ML
decoder reaches approximately the practical packet error
rates (PERML) of 0.1 and 0.01 when the number of active
users is equal to the number of the AP antennas. For the
realization of both FlexCore and FCSD we employ both
the sorted QR decompositions of [4] and [13] and we
show the best achievable throughput.
FlexCore’s throughput for Nt =Nr. Fig. 9 shows the
achievable network throughput of FlexCore, FCSD and
the trellis-based parallel decoder introduced in [50], for
several numbers of available processing elements, against
the throughput achieved by exact ML detection and linear
MMSE detection. The evaluation is based on the assump-
tion that minimum latency is targeted. Therefore, each
parallel element is only allocated to one parallel task. In
the case of FlexCore and FCSD, each processing element
is used to calculate the Euclidean distance of a single tree
path per received MIMO vector. In [50] each processing
element calculates the partial Euclidean distance of each
constellation point. As a result, [50] would also require a
fixed number of processing elements, equal to the QAM
constellation’s size. In practice, for all schemes, a pro-

Figure 8— Testbed floorplan (circles: 8-antenna APs,
rectangles: 12-antenna APs, triangles: single-antenna
users transmitting to 8-antenna APs, squares: single-
antenna users transmitting to 12-antenna APs).

cessing element could be used multiple times to carry out
multiple parallel tasks sequentially, but this would result
in an increase in latency. In agreement with the litera-
ture [32, 38, 54], Fig. 9 demonstrates that linear detection
results in a poor throughput when Nt =Nr.7 It also shows
that while the trellis-based method of [50] outperforms
MMSE, it is consistently inferior to FCSD and FlexCore,
in all evaluated scenarios. In addition, it requires a fixed
number of processing elements, and is therefore unable
to scale its performance with the number of available pro-
cessing elements. Due to these limitations, in the rest of
the paper we focus on comparing FCSD and FlexCore.

Fig. 9 shows that, in contrast to FSCD, FlexCore op-
erates for any number of available processing elements
and it consistently improves throughput when increasing
the available processing elements. On the other hand,
and as discussed in §2, the FCSD can fully exploit pro-
cessing elements as long as their number is a power
of the order of the employed QAM constellation. Fig-
ure 9 also shows that for a given number of available
processing elements, FlexCore consistently outperforms
FCSD in terms of throughput. When 12 users transmit
16-QAM symbols to a 12-antenna AP, at an SNR such
that PERML = 0.1 (SNR=13.5 dB), when 196 parallel el-
ements per subcarrier are available, FlexCore can provide
nearly 2.5× the throughput of the FCSD. In addition, due
to FlexCore’s pre-processing, which focuses the available
processing power to the tree paths that are most likely to
increase wireless throughput, FlexCore requires signif-
icantly fewer processing elements than FCSD to reach
the same throughput. For example, in a 12×12 64-QAM
MIMO system and at an SNR such that PERML = 0.01
(SNR=21.6 dB), FlexCore requires 128 parallel paths to

7We note that MMSE can achieve better throughput if we allow
Nt < Nr . This is shown in [32], as well as in Fig. 10.

 16-QAM (8x8)

 16-QAM (8x8)

 64-QAM (8x8)

 64-QAM (8x8)

 16-QAM (12x12)

 16-QAM (12x12)

 64-QAM (12x12)

 64-QAM (12x12)

P
E
R
M
L
=

0.
1

P
E
R
M
L
=

0.
01

8 users x 8-antenna AP (8x8) 12 users x 12-antenna AP (12x12)

Number of available Processing Elements

T
hr

ou
gh

pu
t (

M
bi

t/
s)

FlexCore, 16-QAM FlexCore, 64-QAM FCSD, 64-QAMFCSD, 16-QAM
[50], 64-QAM

[50], 16-QAM
MMSE, 16-QAMML, 16-QAM ML, 64-QAM MMSE, 64-QAM

xxxxxxxxxxx xxxxxxx

xxxxxxxxxxxxxxx

FCSD & [50] not supportedx

Figure 9— Achievable network throughput of FlexCore, FCSD and trellis-based decoder [50] for minimum processing
latency, as a function of the available processing elements, compared to optimal (ML) detection and MMSE.

reach 95% of the ML-bound, whereas FCSD requires
4096. Fig. 9 also shows that, in principle, the gains of
FlexCore against the FCSD increase when the transmis-
sion conditions become more challenging. Namely, when
the number of antennas and the QAM constellation’s or-
der increase, and when the SNR decreases (and therefore
the PER of the ML solution increases).

FlexCore’s throughput v. number of users. The bars
in Fig. 10 show the achieved network throughput of Flex-
Core against the throughput of Geosphere and MMSE,
as a function of the number of active users simultane-
ously transmitting 64-QAM symbols to a 12-antenna AP
at an SNR such that PERML = 0.01 (SNR=21.6 dB). We
assume that 64 processing elements per sub-carrier are
available for FlexCore. However, we also consider an ad-
justable version of FlexCore (a-FlexCore) that from the 64
available processing elements, uses as many as required
so that the sum of the Pc values of the corresponding
most promising paths becomes 0.95. As expected [38,54],
Fig. 10 shows that MMSE is almost optimal only when
the number of active users is significantly smaller than the
number of AP antennas. In contrast, exact or approximate
ML methods, including FlexCore, can support numbers
of users that are similar to the number of the AP antennas
and still scale network throughput. This ability to reclaim
the unexploited throughput of linear detectors separates
FlexCore from prominent large MIMO architectures such
as [38,54]. Fig. 10 also shows that in contrast to the previ-

ously proposed parallel schemes, FlexCore has the ability
to adjust the number of activated processing elements and
therefore the overall complexity to the channel conditions.
When the number of active users is significantly smaller
than the one of the AP antennas, where the MIMO chan-
nel is well-conditioned and linear detection methods also
perform well, a-FlexCore reduces the number of active
processing elements to almost one, resulting in an overall
complexity similar to that of linear methods.

5.2 Algorithmic/GPU-Based Evaluation
Methodology and setup. We compare FlexCore’s
combined kernel execution and memory transfer times
against MIMOPACK’s parallel and single-threaded FCSD
employing CUDA 7.5 and OpenMP. We choose MI-
MOPACK’s FCSD over other state-of-the-art GPU imple-
mentations such as [10], since MIMOPACK is available
as open-source. Implementing both detectors on the same
library leads to the most fair comparison of the underly-
ing algorithms, which is the aim of this work. We then
evaluate detection performance, based on our previous
assessment, in the context of the LTE standard [1]. GPU
simulations are executed on the Maxwell-based GTX
970 device CPU simulations based on the OpenMP li-
brary are executed on the octacore FX-8120 x86_64 gen-
eral purpose processor using 16 GB of RAM. Our pro-
filing setups involve |Q| ∈{16,64}, Nt ∈{2, ...,16} and
64≤Nsc≤168,140 (256 thread blocks).
FlexCore’s speedup gains. Fig. 11 overlays FlexCore’s

A
verage num

ber of active P
rocessing

E
lem

ents (P
E

s) out of 64 available (line)

T
hr

ou
gp

ut
 (

M
bi

t/
s)

(b
ar

s)
Geosphere
FlexCore

MMSE

Active PEs

a-FlexCore

Number of users transmitting to a
12-antenna AP

Figure 10— Bars: Network throughput of FlexCore and
a-FlexCore with 64 available processing elements against
Geosphere and MMSE, for a 12-antenna AP with six to 12
simultaneous users. Line: Corresponding average number
of activated processing elements for a-FlexCore.

speedup in 12×12 scenarios using 64-QAM modulation
against the case where FCSD fully expands L∈{1,2}
levels (Sec. 2). The solid horizontal line depicts the
GPU-based FCSD (baseline reference), while dashed and
dotted lines display the results of CPU-based execution
for a varying number of OpenMP threads (denoted as
OpenMP-1, OpenMP-2 etc.). The horizontal axis lists
the number of Sphere decoder tree paths considered in
parallel by FlexCore.

Fig. 11 shows that the GPU-based FCSD is at least 21×
faster than the 8-threaded CPU version which in turn pro-
vides a maximum speedup of 5.14× over single-threaded
execution (i.e., a 64.25% parallel efficiency). Thus, the
many-core implementation and our MIMOPACK en-
hancements benefit both detection schemes. GPU re-
sults also show an expected sublinear increase in rela-
tive speedup as the thread ratio increases. At the SNR
for which PERML is 0.01, (Fig. 9), FlexCore’s speedup
against the GPU-based FCSD increases up to 19×, as we
require just 128 parallel paths to reach the same perfor-
mance (Fig. 11, L=2). Speedup is maximized when we
process in parallel a sufficient number of sphere decoder
paths and/or subcarriers (e.g., Nsc≥ 1024 at high occu-
pancy). When jointly assessing performance and power
by employing the Joules per bit index (computed as Power
(W) / Processing Throughput (bps)), FlexCore is 17.3%
(Nt =8) up to 51.3% (Nt =12) more energy efficient. For
L=2, FlexCore’s energy advantage increases by 97.5%.

FlexCore for LTE. To obtain system context, we assess
computation time, including data transfers, with respect
to the 3GPP LTE standard [1]. LTE requires that a 10 ms
frame contains 20 timeslots, each with a 500 µs dura-
tion (a total of 140× the number of occupied subcarri-

10
24 51

2
25
6

12
8 64 32 16 8

10−2

10−1

100

101

102

L = 2
L = 1

|E|: Sphere Decoder Paths Considered In Parallel

S
p
ee
d
u
p
vs

G
P
U
-b
as
ed

F
C
S
D

FlexCore on the GTX 970 - |Q|=64, 12× 12, L ∈{1,2}

FlexCore (Nsc=64) FlexCore (Nsc = 1024)

FlexCore (Nsc = 16384) Baseline: FCSD (GPU)

FCSD (OpenMP-1) FCSD (OpenMP-2)

FCSD (OpenMP-4) FCSD (OpenMP-8)

Figure 11— FlexCore’s speedup vs FCSD (GPU/CPU).

ers). Fig. 12 shows the corresponding 64-QAM SNR loss
for Successive Interference Cancellation (SIC) [47], the
FCSD and FlexCore compared to ML detection, based
on the supported number of paths. For Nt =8 and when
employing 8 streams, FlexCore supports 105 down to 4
paths for the two extremes of the LTE modes for which
the SNR loss is 0.2 to 2.1 dB. In the Nt = 12 case, the
corresponding SNR loss becomes 0.9 to 9.8 dB (68 down
to 2 paths). In the case of SIC (essentially a single-path
FlexCore), the loss can be up to 11.9 dB. Notice that
even though FlexCore’s threads have a higher workload
compared to FCSD’s, the latter’s inherent lack of flexi-
bility significantly limits support to just the 1.25 MHz
LTE mode for L=1 at Nt ∈{8,12}. We note that when
L=2, the FCSD fails to meet the LTE requirement for
Nt =8, |Q|=16 and the more demanding cases.

5.3 Algorithmic/FPGA-Based Evaluation
Methodology and setup. We first present the implemen-
tation cost, achieved frequency and power consumption
of a single processing element, considering |Q|= 64,
Nt ∈{8,12} at the minimum level of pipeline (Sec. 4)
and 16-bits width. Then, based on the results of Sec. 5.1,
we jointly evaluate power and FPGA processing through-
put. Note that the number of processing elements M that
can be instantiated in practice on an FPGA is limited by
the latter’s available resources. Due to our pipelined de-
sign though, the number of processing elements does not
need to be equal to the number of Sphere decoder paths.
Thus, we explore performance for varying values of M
at a 5.5 ns delay (the minimum supported by both detec-
tion engines up to the number of instantiated processing
elements). We note that due to host system memory lim-

-8

-4

0

xFlexCore FCSD FCSD not supported
S

N
R

 L
os

s
co

m
pa

re
d

to
 M

L
 (

dB
)

P
E
R
M
L
=

0.
1

P
E
R
M
L
=

0.
01

8 users x 8-antenna AP 12 users x 12-antenna AP

LTE-Mode (bandwidth)

1.
25

 M
H

z
2.

5
M

H
z

5
M

H
z

10

 M
H

z

15
 M

H
z

20

 M
H

z

-8

-4

0

x x x x x x x x x x

xxxxxxxxxx

1.
25

 M
H

z
2.

5
M

H
z

5
M

H
z

10

 M
H

z

15
 M

H
z

20

 M
H

z

SIC

Figure 12— FlexCore, FCSD and SIC on the GPU at
64-QAM, against the ML SNR, considering the detection
latency requirements of the several LTE modes.

N
t×

N
r

64-QAM CLB
LUTs DSP48 fmax Power

Logic Mem FF-pairs slices (MHz) (W)

8×
8 FlexCore 3206 15276 1187 5363 16 312.5 6.82

FCSD 2187 11320 713 4717 16 370.4 6.54

12
×

12 FlexCore 5795 28810 2497 11415 24 312.5 9.157
FCSD 4364 23252 1537 10501 24 370.4 9.04

Table 3— Single processing element on the XCVU440-
flga2892-3-e for FlexCore and the FCSD at 64-QAM.
FlexCore’s path increases area-delay product on average
only by 73.7 to 57.8% (Nt =8 and Nt =12 respectively).

itations, M≤ 32 in the case of FlexCore (both antenna
setups) and M≤32, M≤64 respectively for the FCSD at
Nt =12 and Nt =8. We estimate power through Xilinx’s
Power Estimator, under worst-case static power condi-
tions at 100% utilization. Results are compared using the
area-delay product and the efficiency index of Joules/bit.
FlexCore’s single-path cost. Our FPGA implementation
shows that FlexCore’s significant advantage in terms of
numbers of required processing elements (see Fig. 9),
comes at a small implementation overhead per processing
element. Table 3 presents implementation results for M=
1, where a CLB is a Configurable Logic Block, containing
Look-up Tables (LUTs), Flip-Flops (FFs) and distributed
RAM. In fact, the processing element overhead tends
to decrease as Nt increases; in the case of FlexCore and
FCSD respectively for Nt= 12, there is a 1.81× and 1.99×
area delay product increase compared with the Nt =8 case.
Timing analysis shows that logic delay is below 2 ns; the
rest is attributed to routing.
Flexibility revisited: Multi-Path performance. Flex-
Core’s design allows detection by employing an arbitrary
number of Sphere decoder paths and for M=32, its pro-
cessing throughput on this device can reach 13.09 Gbps
when 32 paths need to be processed, to 3.27 Gbps (128

Instantiated Processing Elements
Extrapolated Processing Elements

10
0

10
1

10
2

10−8

10−7

10−6

Number of processing elements M

E
n

er
gy

E
ffi

ci
en

cy
(J

ou
le

s/
b

it
)

FCSD, Nt=8, L=1 FlexCore, Nt=8, L=1
FCSD, Nt=12, L=1 FCSD, Nt=12, L=2

FlexCore, Nt=12, L=1 FlexCore, Nt=12, L=2

Figure 13— FPGA energy efficiency exploration on the
XCVU440-flga2892-3-e under the same FlexCore and
FCSD network throughput requirements (Fig. 9, |Q|=64).

required paths). We remind that for 12×12 MIMO, Flex-
Core with 32 and 128 paths reaches the same network
throughput as the FCSD does with 64 and 4096 paths
respectively (see Fig. 9). To support the 20 MHz LTE
bandwidth for 32 and 128 Sphere decoder paths, three
or more and nine or more FlexCore processing elements
need to be respectively instantiated at 5.5 ns. In con-
trast, as the FCSD requires at least |Q| PD outputs (to
visit all nodes on all tree levels for L=1), its processing
throughput is log2(|Q|)·Nt · fmax

|Q|/M Mbps (fmax is the maximum
operating frequency in MHz). Even when we instantiate
M=64 processing elements, the FCSD fails to meet the
20 MHz LTE bandwidth for L=2 (4096 required paths)
and it requires instantiation of twice as many processing
elements as FlexCore to support the 1.25 MHz mode. It
is thus less area and energy efficient. Fig. 13 displays
the energy efficiency of the proposed detection engines in
terms of J/bit for a varying number of processing elements
to reach the same network throughput (see Fig. 9). For
extrapolating the numbers of processing elements that can
be instantiated, a 75% maximum device utilization [3]
is assumed in order to retain performance by avoiding
routing congestion. Overall, the FCSD requires on av-
erage 1.54× up to 28.8× more J/bit (Nt =8, L=1 and
Nt =12, L=2 cases respectively). These results illustrate
FlexCore’s significant efficiency advantage. To put GPU
performance into perspective, our FPGA implementations
achieve a two and three orders of magnitude higher energy
efficiency for L=1 and L=2, respectively.
Discussion. We have shown that FlexCore can efficiently
exploit any number of available processing elements, and
can outperform linear detection methods even when a
small number of processing elements is available. Com-
pared to the FCSD, FlexCore can provide significant

throughput gains for the same number of processing ele-
ments and it can achieve near-optimal performance with
a number of processing elements that can be more than
an order of magnitude less. FlexCore’s modest detection
requirements translate to a GPU implementation speedup
of 19× (64-QAM, 12×12 MIMO at 21.6 dB) against the
FCSD when the latter fully expands two levels (Fig. 9 and
11). FlexCore’s flexibility allows it to operate in varying
conditions, in which the FCSD fails to meet the LTE’s
timing requirements. To the best of our knowledge, Flex-
Core is the first Sphere-decoding-based detection scheme
that can support all LTE bandwidths, while providing per-
formance better than the one of SIC, even for 12× 12
MIMO systems on a GPU [33, 35, 40, 50, 51]. Our FPGA
implementation results reveal that FlexCore is 34% to
96% more energy efficient than the proposed FCSD im-
plementation and can reach a throughput of 13 Gbps on a
state-of-the-art device. Also to the best of our knowledge,
these are the first FCSD-based FPGA implementations
for 8×8 and larger antenna arrays [2, 5, 26, 49].

6 Related Work
The exploitation of parallelism alone to reduce processing
latency is not a novel approach: indeed, implementations
of all kinds of Sphere decoders (e.g., both breadth-first
and depth-first) involve some level of parallelism. How-
ever, existing approaches either take a limited or inflexible
level of parallelism or they perform parallel processing
takes place in an suboptimal, heuristic manner, without
accounting for the actual transmission channel conditions.
Parallelism at a distance calculation level. Both depth-
first [8, 20, 45] and breadth-first Sphere decoder im-
plementations, including the K-Best sphere decoders
[9, 18, 28, 30, 36, 37, 46, 48], calculate multiple Euclidean
distances in parallel any time they change tree level. In
addition, after performing the parallel operations, the
node or list of nodes with the minimum Euclidean dis-
tance needs to be found, which requires a significant
synchronization overhead between the parallel processes.
This level of exploited parallelism is fixed, predetermined,
non-flexible, with high dependencies which are related to
the specific architectural design. In addition, in K-Best
Sphere decoders the value of K, which is predetermined,
needs to increase for dense constellations and large num-
bers antennas, making K-best detection inappropriate for
dense constellations and large MIMO systems. Using
FlexCore’s approach we can adaptively select the value
of K, which will differ per Sphere decoding tree level.
Parallelism at a higher than a Euclidean distance
level. Khairy et al. [27] use GPUs to run in parallel multi-
ple, low-dimensional (4×4) Sphere decoders but without
parallelizing the tasks or the data processing involved in
each. Jósza et al. [25] describe a hybrid ad hoc depth-first,
breadth-first GPU implementation for low dimensional

sphere decoders. However, their approach lacks theoret-
ical basis and cannot prevent visiting unnecessary tree
paths that are not likely to include the correct solution.
In addition, since the authors do not propose a specific
tree search methodology, their approach is not extendable
to large MIMO systems. Yang et al. [52, 53] propose
a VLSI/CMOS multicore combined distributed/shared
memory approach for high-dimensional SDs, where SD
partitioning is performed by splitting the SD tree into
subtrees. But partitioning is heuristic, and their approach
requires interaction between the parallel trees, thus mak-
ing it inflexible. In addition, the required communication
overhead among the parallel elements makes the approach
inefficient for very dense constellations and inappropriate
for a GPU implementation.
Other detection approaches. Local area search ap-
proaches [29,39,42] could also be used for the detection of
large MIMO systems, but they are strictly sequential and
require several iterations, resulting in increased latency.
Lattice reduction techniques [15] are also prohibitive for
large MIMO systems due to their sequential manner and
high complexity (O(N4

t)).

7 Conclusion and Future Work
We have described FlexCore, a computationally-flexible
method to consistently and massively parallelize the prob-
lem of detection in large MIMO systems, as well as sim-
ilar maximum-likelihood detection problems. Our Flex-
Core GPU implementation in 12×12 64-QAM MIMO,
enjoys a 19× computational speedup and 97% increased
energy efficiency compared with the state-of-the-art. Fur-
thermore, according to the best of our knowledge, our
FlexCore’s GPU implementation is the first able to sup-
port all LTE bandwidths and provide detection perfor-
mance better than SIC, even for 12×12 MIMO systems.
Finally, our implementation and exploration of FlexCore
on FPGAs showed that for the same MIMO system, its
energy efficiency surpasses that of the state-of-the-art by
an order of magnitude. A promising next step is to extend
FlexCore to “soft-detectors” as in [7, 43].

8 Acknowledgments
This material is based upon work supported by the UK’s
Engineering and Physical Sciences Research Council
(EPSRC Ref. EP/M029441/1), by the National Sci-
ence Foundation under Grant No. 1617161 and the Eu-
ropean Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement No. 279976. The Authors would
like to thank the members of University of Surrey 5GIC
(http://www.surrey.ac.uk/5GIC) for their support. Finally,
we thank our shepherd Lin Zhong and the anonymous
reviewers for their insightful feedback.

References
[1] 3GPP LTE Encyclopedia: An Introduction to LTE,

2010.
[2] K. Amiri, C. Dick, R. Rao, J. R. Cavallaro.

Flex-sphere: An FPGA configurable sort-free
sphere detector for multi-user MIMO wireless
systems. Software Defined Radio Forum (SDR),
2008.

[3] D. Amos, A. Lesea, R. Richter. FPGA-based
prototyping methodology manual: best practices in
design-for-prototyping. Synopsys Press, 2011.

[4] L. Barbero, J. Thompson. Fixing the complexity of
the sphere decoder for MIMO detection. IEEE
Transactions on Wireless Communications, 7(6),
2131–2142, 2008.

[5] L. G. Barbero, J. S. Thompson. FPGA design
considerations in the implementation of a
fixed-throughput sphere decoder for MIMO
systems. IEEE International Conference on Field
Programmable Logic and Applications, 1–6, 2006.

[6] J. R. Barry, E. A. Lee, D. G. Messerschmitt. Digital
Communication. Springer Science & Business
Media, 2004.

[7] J. Boutros, N. Gresset, L. Brunel, M. Fossorier.
Soft-input soft-output lattice sphere decoder for
linear channels. IEEE Global Telecommunications
Conference (GLOBECOM), vol. 3, 1583–1587,
2003.

[8] A. Burg, M. Borgmann, M. Wenk, M. Zellweger,
W. Fichtner, H. Bolcskei. VLSI implementation of
MIMO detection using the sphere decoding
algorithm. IEEE Journal of Solid-State Circuits,
40(7), 1566–1577, 2005.

[9] S. Chen, T. Zhang, Y. Xin. Relaxed K-best MIMO
signal detector design and VLSI implementation.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 15(3), 328–337, 2007.

[10] T. Chen, H. Leib. GPU acceleration for fixed
complexity sphere decoder in large MIMO uplink
systems. 2015 IEEE 28th Canadian Conference on
Electrical and Computer Engineering (CCECE),
771–777, 2015.

[11] Chia-Hsiang Yang, D. Markovic. A flexible DSP
architecture for MIMO sphere decoding. IEEE
Transactions on Circuits and Systems I: Regular
Papers, 56(10), 2301–2314, 2009.

[12] R. Courtland. Transistors could stop shrinking in
2021. IEEE Spectrum, 53(9), 9–11, 2016.

[13] V. K. D Wübben, J Rinas, K. Kammeyer. Efficient
algorithm for decoding layered space-time codes.
IEEE Electronics letters, 37(22), 1348–1350, 2001.

[14] E. Viterbo, and E. Biglieri. A universal decoding
algorithm for lattice codes. Proceedings of GRETSI,
611–614. Juan-les-Pins, France, 1993.

[15] Y. H. Gan, C. Ling, W. H. Mow. Complex lattice
reduction algorithm for low-complexity
full-diversity MIMO detection. IEEE Transactions
on Signal Processing, 57(7), 2701–2710, 2009.

[16] G. Georgis, G. Lentaris, D. Reisis. Acceleration
techniques and evaluation on multi-core CPU, GPU
and FPGA for image processing and
super-resolution. Journal of Real-Time Image
Processing, 1–28, 2016.

[17] R. E. Guerra, N. Anand, C. Shepard, E. W.
Knightly. Opportunistic channel estimation for
implicit 802.11 af MU-MIMO. Teletraffic Congress
(ITC 28), 2016 28th International, vol. 1, 60–68.
IEEE, 2016.

[18] Z. Guo, P. Nilsson. Algorithm and implementation
of the K-best sphere decoding for MIMO detection.
IEEE Journal on Selected Areas in
Communications, 24(3), 491–503, 2006.

[19] B. Hassibi, H. Vikalo. On the sphere-decoding
algorithm I. Expected complexity. IEEE
Transactions on Signal Processing, 53(8),
2806–2818, 2005.

[20] C. Hess, M. Wenk, A. Burg, P. Luethi, C. Studer,
N. Felber, W. Fichtner. Reduced-complexity
MIMO detector with close-to ML error rate
performance. Proceedings of the 17th ACM Great
Lakes symposium on VLSI, 200–203. ACM, 2007.

[21] IEEE Standard for Information Technology, part 11:
wireless LAN Medium Access Control (MAC) and
physical layer (PHY) specifications, amendment 4:
enhancements for very high throughput for
operation in bands below 6 GHz (IEEE Std
802.11ac-2013).

[22] IEEE Standard 802.11: wireless LAN medium
access control and physical layer specifications,
2012.

[23] Intel’s Skylake Core i7: a performance look, 2016.
http://techgage.com/article/
intels-skylake-core-i7-6700k-a-performance-look.

[24] J. Jaldén, B. Ottersten. On the complexity of sphere
decoding in digital communications. IEEE
Transactions on Signal Processing, 53(4),
1474–1484, 2005.

[25] C. M. Józsa, G. Kolumbán, A. M. Vidal, F.-J.
Martínez-Zaldívar, A. González. New parallel
sphere detector algorithm providing
high-throughput for optimal MIMO detection.
Procedia Computer Science, 18, 2432 – 2435, 2013.

[26] M. S. Khairy, M. M. Abdallah, S.-D. Habib.
Efficient FPGA implementation of MIMO decoder
for mobile WiMAX system. IEEE International
Conference on Communications, 1–5, 2009.

[27] M. S. Khairy, C. Mehlführer, M. Rupp. Boosting
sphere decoding speed through Graphic Processing

Units. European Wireless Conference (EW),
99–104, 2010.

[28] Q. Li, Z. Wang. Improved K-best sphere decoding
algorithms for MIMO systems. IEEE International
Symposium on Circuits and Systems, 1159–1162,
2006.

[29] S. K. Mohammed, A. Chockalingam, B. S. Rajan.
A low-complexity near-ML performance achieving
algorithm for large MIMO detection. IEEE
International Symposium on Information Theory,
2012–2016, 2008.

[30] S. Mondal, A. Eltawil, C. A. Shen, K. N. Salama.
Design and implementation of a sort-free K-best
sphere decoder. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 18(10),
1497–1501, 2010.

[31] J. Nickolls, I. Buck, M. Garland, K. Skadron.
Scalable parallel programming with CUDA. ACM
Queue Magazine, 6(2), 40–53, 2008.

[32] K. Nikitopoulos, J. Zhou, B. Congdon, K. Jamieson.
Geosphere: Consistently turning MIMO capacity
into throughput. Proceedings of the ACM
SIGCOMM, 631–642. ACM, 2014.

[33] T. Nyländen, J. Janhunen, O. SilvÃl’n, M. Juntti. A
GPU implementation for two MIMO-OFDM
detectors. IEEE International Conference on
Embedded Computer Systems (SAMOS), 293–300,
2010.

[34] C. Ramiro, A. M. Vidal, A. Gonzalez. MIMOPack:
a high-performance computing library for MIMO
communication systems. The Journal of
Supercomputing, 71(2), 751–760, 2014.

[35] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar,
A. M. Vidal. Fully parallel GPU implementation of
a fixed-complexity soft-output MIMO detector.
IEEE Transactions on Vehicular Technology, 61(8),
3796–3800, 2012.

[36] M. Shabany, P. G. Gulak. Scalable VLSI
architecture for K-best lattice decoders. IEEE
International Symposium on Circuits and Systems,
940–943, 2008.

[37] M. Shabany, K. Su, P. G. Gulak. A pipelined
scalable high-throughput implementation of a
near-ML K-best complex lattice decoder. IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 3173–3176, 2008.

[38] C. Shepard, H. Yu, N. Anand, L. Li, T. Marzetta,
R. Yang, L. Zhong. Argos: Practical many-antenna
base stations. Proceedings of ACM Conference on
Mobile Computing and Networking (MobiCom),
2012.

[39] N. Srinidhi, S. K. Mohammed, A. Chockalingam,
B. S. Rajan. Near-ML signal detection in
large-dimension linear vector channels using

reactive tabu search. arXiv preprint
arXiv:0911.4640, 2009.

[40] D. Sui, Y. Li, J. Wang, P. Wang, B. Zhou. High
throughput MIMO-OFDM detection with Graphics
Processing Units. IEEE International Conference
on Computer Science and Automation Engineering
(CSAE), vol. 2, 176–179, 2012.

[41] K. Tan, et al. SAM: Enabling practical spatial
multiple access in wireless LAN. Proceedings of
ACM Conference on Mobile Computing and
Networking (MobiCom), 2009.

[42] K. V. Vardhan, S. K. Mohammed,
A. Chockalingam, B. S. Rajan. A low-complexity
detector for large MIMO systems and multicarrier
CDMA systems. IEEE Journal on Selected Areas
in Communications, 26(3), 473–485, 2008.

[43] H. Vikalo, B. Hassibi, T. Kailath. Iterative decoding
for MIMO channels via modified sphere decoding.
IEEE Transactions on Wireless Communications.

[44] E. Viterbo, J. Boutros. A universal lattice code
decoder for fading channels. IEEE Transactions on
Information Theory, 45(5), 1639–1642, 1999.

[45] M. Wenk, L. Bruderer, A. Burg, C. Studer.
Area-and throughput-optimized VLSI architecture
of sphere decoding. IEEE/IFIP 18th VLSI System
on Chip Conference (VLSI-SoC), 189–194, 2010.

[46] M. Wenk, M. Zellweger, A. Burg, N. Felber,
W. Fichtner. K-best MIMO detection VLSI
architectures achieving up to 424 Mbps. IEEE
International Symposium on Circuits and Systems,
4 pp.–1154, 2006.

[47] P. W. Wolniansky, G. J. Foschini, G. Golden, R. A.
Valenzuela. V-BLAST: An architecture for
realizing very high data rates over the
rich-scattering wireless channel. IEEE URSI
International Symposium on Signals, Systems, and
Electronics (ISSSE), 295–300, 1998.

[48] K. wai Wong, C. ying Tsui, R. S. K. Cheng,
W. ho Mow. A VLSI architecture of a K-best lattice
decoding algorithm for MIMO channels. IEEE
International Symposium on Circuits and Systems
(ISCAS), vol. 3, III–273–III–276, 2002.

[49] B. Wu, G. Masera. A novel VLSI architecture of
fixed-complexity sphere decoder. 13th Euromicro
Conference on Digital System Design:
Architectures, Methods and Tools (DSD), 737–744,
2010.

[50] M. Wu, S. Gupta, Y. Sun, J. R. Cavallaro. A GPU
implementation of a real-time MIMO detector.
IEEE Workshop on Signal Processing Systems,
303–308, 2009.

[51] M. Wu, Y. Sun, S. Gupta, J. R. Cavallaro.
Implementation of a high throughput Soft MIMO

Detector on GPU. Journal of Signal Processing
Systems, 64(1), 123–136, 2011.

[52] C. H. Yang, D. Marković. A 2.89mW 50GOPS
16x16 16-core MIMO sphere decoder in 90nm
CMOS. IEEE European Solid-State Circuits
Conference (ESSCIRC), 344–347, 2009.

[53] C. H. Yang, T. H. Yu, D. Marković. A 5.8mW
3GPP-LTE compliant 8x8 MIMO sphere decoder
chip with soft-outputs. IEEE Symposium on VLSI
Circuits (VLSIC), 209–210, 2010.

[54] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu,
J. Zhang, Y. Zhang. Bigstation: enabling scalable
real-time signal processing in large MU-MIMO
systems. ACM SIGCOMM Computer
Communication Review, 43(4), 399–410, 2013.

A Position Vector Error Probability Ap-
proximation

For the top sphere decoding tree layer (l = Nt), the proba-
bility of the first closest symbol to the effective received
point ỹ(Nt) not to be the transmitted symbol is equivalent
to the corresponding symbol error rate over an AWGN
channel, or [6]

Pe(Nt) =

(
2+

2√
|Q|

)
· erfc

(
R(Nt ,Nt) ·

√
Es

σ

)
, (6)

Then, the probability of the first closest symbol to the
received to be the transmitted one is PNt (1) = 1−Pe(Nt).
Calculating the probability for the kth (with k > 1) closest
to the received symbol to be the one transmitted would re-
quire real-time two-dimensional integrations since an ana-
lytical solution is infeasible. Instead, we approximate the
problem based on the observation that the inter-symbol
distance in QAM constellations scales nearly in a square-
root manner, as a function of the position index k related
to the received signal.

Then we make the approximation that the decision
boundaries (Dk) would scale in a similar manner. That is

Dk =
√

c · k, (7)

where c is a positive and real constant. Then,

PNt (k) = P(Dk−1 < |nNt | ≤ Dk)

= P
(
|nNt | ≤

√
c · (k)

)
−P

(
|nNt | ≤

√
c · (k−1)

)
. (8)

Since the amplitude of the noise sample (nNt) is Rayleigh
distributed

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

Experimental Results (SNR=1dB)

Simulation Results (SNR=1dB)
Approximation (15) (SNR=1dB)

Experimental Results (SNR=15dB)
Simulation Results (SNR=15dB)

Approximation (15) (SNR=15dB)

Index k

P
N
t(K

)

Figure 14— Comparison between (11) (solid), simula-
tion (dashed, Gaussian noise) results for PNt (k), and ex-
perimental results (dashed-dotted, WARP platform) for
the probabilities PNt (k) at various SNRs.

PNt (k) = exp
(
−c · (k−1)

σ2
nt

)
− exp

(
−c · (k)

σ2
nt

)
= exp

(
−c · (k−1)

σ2
nt

)
·
[

1− exp
(
− c

σ2
nt

)]
(9)

Applying the above for k = 1 is 1−Pe(Nt), with Pe(Nt)
defined in (6), therefore, for both equations to hold,

Pe(Nt) = exp
(
− c

σ2
l

)
. (10)

Accordingly, the probability that the kth closest constella-
tion point to the observable of the top level (l = Nt) is the
transmitted one can be expressed as

PNt (k) = (1−Pe(Nt)) · (Pe(Nt))
(k−1). (11)

Fig. 14 compares the theoretical estimates of the “per-
level” probabilities PNt to the ones obtained by simula-
tions as well as to the ones obtained by actual experiments
using our WARP v3 platform implementation (described
in Section 5.1). It shows that our theoretical model is very
accurate in all SNR regimes.

It can be easily shown that, the above equation does
hold for any sphere decoding tree level, given that all the
higher layers include the correct solutions (the correct
transmitted vector). This is because the effect of the cor-
rect solution can be easily removed in terms of successive
interference cancellations. As as result, the probability Pc
can be calculated as in equations (2), (3) and (4) (Sec. 3).

