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1 Hint: You can do this via the following stronger

inequality: for any (not necessarily symmetric) matrix A,

‖A‖ ≤
√

αβ where α = maxi ∑j |Ai,j | and β = maxj ∑i |Ai,j |.

2 Tao’s blogpost explains this and other
methods to prove sharp upper-bounds
on the norms of random matrices

Instructions : This homework familiarizes you with basic ideas from
linear algebra and spectral graph theory that will be helpful (and
will be assumed to be prior knowledge) in this class. We recommend
that you do it yourself. Solutions will be posted in one week for your
reference. This problem set is not graded.

The following exercises recall some basic facts. We will use them
without proof in this course so it will be useful to solve all of them.

Preliminaries All matrices and vectors will be over the reals. In all
the exercises below you can use the fact that any n× n matrix A has a
singular value decomposition (SVD)

A =
r

∑
i=1

σiui ⊗ vi (1)

with σi ∈ R and ui, vi ∈ Rn, and for every i, j ‖ui‖ = 1 , ‖vj‖ = 1

(where ‖v‖ =
√

∑ v2
i ), and for all i 6= j, 〈ui, uj〉 = 0 and 〈vi, vj〉 = 0.

The SVD of a matrix can be computed in polynomial time.

Equivalently A = UΣV> where Σ is a diagonal matrix and U
and V are orthogonal matrices (satisfying U>U = V>V = I). If A
is symmetric then there is such a decomposition with ui = vi for
all i (i.e., U = V). In this case the values σ1, . . . , σr are known as
eigenvalues of A and the vectors v1, . . . , vr are known as eigenvectors.
You can use that there’s a polynomial time algorithm A can be found
in polynomial time. (You can ignore issues of numerical accuracy in
all exercises.)

Exercises

Exercise 1 (Matrix Norms). Let A be an n× n matrix with singular values
σ1 ≥ σ2 ≥ . . . σn. The spectral norm ‖A‖2 of A is the maximum of ‖Av‖2

over all vectors v ∈ Rn with ‖v‖2 = 1. The Frobenius norm ‖A‖F of A is√
∑ A2

i,j.

1. Prove that ‖A‖2 ≤ ‖A‖F ≤
√

n‖A‖2. When are these two inequalities
tight (give examples)?

2. Prove that for symmetric A (i.e., A = A>), ‖A‖2 ≤ maxi ∑j |Ai,j|1.

3. Prove that for the adjacency matrix A of a d-regular graph ‖A‖2 = d.

Exercise 2 (Trace Moment Method). Let A be a symmetric n× n matrix.2

https://terrytao.wordpress.com/2010/01/09/254a-notes-3-the-operator-norm-of-a-random-matrix/
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3 Hint: For any v, how is ‖Uv‖2 related
to ‖v‖2?
4 First deal with the special case when
v = e1 and w = e2, the standard basis
vectors.

1. Let Tr(A) = ∑ Ai,i. Prove that for every even k, ‖A‖2 ≤ Tr(Ak)1/k ≤
n1/k‖A‖2.

2. (Bonus) Let A be a symmetric matrix such that Ai,i = 0 for all i and
Ai,j is chosen to be a random value in {±1} independently of all others.
(a) Prove that (for n sufficiently large) with probability at least 0.99,
‖A‖2 ≤ n0.9. (b) Prove that with probability at least 0.99, ‖A‖2 ≤ n0.51.

Note: While ‖A‖2 can be computed in polynomial time, both
maxi ∑j |Ai,j| and ‖A‖F give even simpler to compute upper bounds
for ‖A‖2. However the examples in Exercise 1 show that they are not
always tight. It is often easier to compute Tr(Ak)1/k than trying to
compute ‖A‖2 directly, and as k grows this yields a better and better
estimate.

Exercise 3 (Positive Semidefinite Matrices). Let A be an n× n symmetric
matrix. Prove that the following are equivalent:

1. For every vector v ∈ Rn, v>Av ≥ 0 (note: v>Av = ∑i,j Ai,jvivj).

2. All eigenvalues of A are non-negative.

3. There are linear functions L1, . . . , Lm such that the quadratic polynomial
PA defined as PA(x) = ∑ Ai,jxixj can be written as PA = ∑i L2

i . In
particular, the polynomial PA is a sum of squares.

4. A = B>B for some r× n matrix B

Any of the above statements can be taken as a definition of positive semidefi-
nite matrices (denoted by A � 0.)

Exercise 4 (Gaussian Distributions). The standard Gaussian random
variable g on Rn has the following probability density function: γ(x) =(

1√
2π

)n
exp(− ‖x‖

2
2

2 ).

1. (Rotation Invariance) Let g be a a standard Gaussian random variable.
Prove that for any matrix U such that U>U = I = UU>, Ug is also a
standard Gaussian random variable3.

2. (Orthogonality implies Independence) Prove4 that for any orthogonal
pair of vectors v, w, and standard Gaussian g, the random variables
〈g, v〉 and 〈g, w〉 are independent.

Exercise 5 (Covariance Matrices). Let D be a probability distribution
on Rn. The covariance matrix of D is defined (assuming it exists) as
ED(x−ED x)(x−ED x)>.
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5 Both these assumptions are not
necessary. But the proof is slightly more
technical.

6 The extreme value theorem says that
a continuous function on a closed,
bounded subset of Rn attains its
supremum and infimum.

1. Prove that for any vectors v1, v2, . . . , vk ∈ Rn, the matrix M =

∑i≤n viv>i is positive semidefinite.

2. Prove that the covariance matrix of any distribution D is positive
semidefinite.

3. Prove that for any positive semidefinite matrix M ∈ Rn×n, there exists a
probability distribution D on Rn with covariance M (and mean 0).

Exercise 6 (Basic Convexity and Hyperplane Separation). Let K ⊆
Rn. K is said to be convex if for every x, y ∈ K and any α ∈ [0, 1],
αx + (1 − α)y ∈ K. Let B = {x | ∑i x2

i ≤ 1} be the unit ball in `2

norm. K is said to be bounded if K ⊆ cB for some finite c. A point x
is said to be a limit point of K if x can be approximated arbitrarily well
by points in K. That is, for every ε > 0, there exists a y ∈ K such that
‖x− y‖2 ≤ ε. K is said to be closed if every limit point of K is contained
in K. The halfspace defined by a vector h and a threshold τ is the set:
Hh,τ = {x ∈ Rn | 〈h, x〉 ≥ τ}.

In the following, we will prove the following fundamental theorem of
convex analysis: For any convex set K that is closed, bounded5 and convex
and v 6∈ K, there exists a halfspaces Hh,τ such that K ⊆ Hh,τ while
v 6∈ Hh,τ . The hyperplane {x | 〈h, x〉 = τ} is said to be a separating
hyperplane for K and v.

1. (Projection) Let K be a closed, bounded, convex set. Let v 6∈ K. Let
dist : K → R be the function defined by dist(x) = ‖v− x‖2. Verify that
dist is continuous over K. Apply the extreme value theorem6 to conclude
that there exists a points m ∈ K such that 0 < dist(m) ≤ dist(x) for
every x ∈ K.

2. Let fv : K → R be defined as fv(x) = 〈m− v, x〉 − ‖m‖
2
2−‖v‖2

2
2 . Our

goal is to prove that {x | fv(x) = 0} is a good separating hyperplane.
Towards this, verify that fv((m + v)/2) = 0. Prove that fv(v) < 0. Have
you used convexity of K yet?

3. We will now prove that fv(x) > 0 for every x ∈ K. Suppose towards a
contradiction that there exists a y ∈ K such that fv(y) ≤ 0. Prove that
∇ fv(m)>(y−m) < 0. That is, “moving” in the direction of y decreases
fv.

4. Conclude that there is a positive 1 > α > 0 such that fv(m + α(y −
m)) < fv(m). Derive a contradiction to finish the proof.

Exercise 7 (Separation Oracle for PSD Matrices).
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1. Prove that S+ = {M | M � 0} ⊆ Rn×n is a closed, convex set. Use the
definition of a closed set given in the previous exercise, where the distance
between two matrices M1 and M2 is ‖M1 −M2‖F.

2. Suppose N ∈ Rn×n is not positive semidefinite. Show that there’s a poly-
nomial time algorithm to compute a matrix B such that ∑i,j Bi,j Mi,j ≥ 0
for every M ∈ S+ while ∑i,j Bi,jNi,j < 0.
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