
The Design of Wide- 
Band  Recursive and 
Nonrecursive  Digital 
Dif f erentiators 

LAWRENCE  R.  RABINER, Member, IEEE 
Bell  Telephone Laboratories,  Inc. 
Murray  Hill, N. J. 07974 

KENNETH  STEIGLITZ, Member, IEEE 
Department of Electrical  Engineering 
Princeton  University 
Princeton, N. J. 08540 

Abstract 

Designs for recursive and  nonrecursive  wide-band differentiators are 
presented. The coefficients for the recursive differentiators were op- 
timally chosen to minimize a square-error criterion based on the mag- 
nitude of the  frequency response. The coefficients for the  nonrecursive 
differentiators were chosen using a frequency sampling technique. One 
or more of the coefficients wereoptimallyselected to minimize the peak 
absolute error between the obtained frequency response and the re- 
sponse of an ideal differentiator. The frequency response charac- 
teristics of the recursive differentiators had  small  magnitude  errors  but 
significant  phase errors. The nonrecursive differentiators required on 
the  order of 16 to 32 terms for the magnitude  error of the frequency 
response to be as small as the magnitude errors for the recursive dif- 
ferentiators; however,  there  were no phase  errors  for  the  nonrecursive 
case. The delay of the recursive differentiators was small  compared to 
the delay of the nonrecursive differentiators. 
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introduction 

A differentiator forms  an integral part of  many  physical 
systems. Therefore,  the design  of adequate  wide-band 
differentiators has always been of considerable interest. 
With the increased trend  towards digital simulation of 
systems, optimal  techniques for designing wide-band  digi- 
tal differentiators are being more widely investigated. 
Kaiser [ 11 has presented a review  of  several techniques for 
designing both nonrecursive and recursive differentiators. 

Recent  work  by Steiglitz [2] has concentrated  on  the 
optimal design  of  recursive digital filters (i.e,, filters syn- 
thesized with both poles  and zeros) with the aid of a large 
digital computer.  The  computer optimally chose z-plane 
positions of poles and zeros to minimize a square-error 
criterion based on  the  magnitude of the frequency re- 
sponse. The design problem  for nonrecursive digital 
filters  (Le.,  filters  synthesized with only zeros) has recently 
been considered by Gold  and  Jordan [3:], and  Rabiner, 
Gold,  and  McGonegal [4]. They used a digital computer 
to determine  optimal values  of a few samples of the dis- 
crete Fourier  transform of the finite impulse response in 
order to minimize peak  magnitude deviation from  the 
prescribed frequency response. 

The work  done  by Steiglitz indicated that by designing 
ideal differentiators and allowing a noninteger number of 
samples of delay, differentiators could  be designed with 
usable bandwidths up to 100 percent full band. In this 
paper we present specific designs for several recursive and 
nonrecursive differentiators using the optimal design tech- 
niques of the earlier work.  These designs are evaluated and 
compared with respect to approximation  errors  and 
realizations, whenever possible. 

Theory 

The ideal frequency response characteristics of a digital 
differentiator are shown in Fig. 1. The first two curves in 
the top line show the magnitude and phase of the fre- 
quency response, and  the third curve shows the resulting 
imaginary part of the frequency response (the  real part is 
identically zero in this case). The magnitude  response in- 
creases linearly up to a normalized frequency of 1.0 (the 
Nyquist frequency') and then decreases linearly back to 
0.0 at  the sampling frequency. The magnitude  response is 
periodic in frequency, as shown, because of the discrete- 
ness property.  The  phase  is n/2 radians for frequencies up 
to the  Nyquist frequency and -n/2 radians  from  the 
Nyquist frequency to the sampling frequency, and is also 
periodic. The resulting imaginary part of the frequency 
response increases linearly to 1.0 at  the Nyquist  fre- 
quency, jumps discontinuously to - 1.0, and then in- 
creases linearly to 0.0 at the sampling frequency. 

The Nyquist  frequency  is  the  highest  frequency  allowable at 
the input  to the digital  system. Thus  the  input is  sampled at twice 
the Nyquist frequency. 
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Fig. 1. The frequency response curves for the ideal  differentiator. In  the 
tlrst  line a re  shown the magnitude curve, phase curve, and  imaginary  part 
of the frequency response.  The second line shows the magnitude  and  phase 
curves for an  ideal  one-half sample delay network. The third line shows the 
magnitude  and  phase curves for an  ideal  differentiator with half  a  sample 
of  delay. 

It is the discontinuity in the imaginary part of the re- 
sponse at  the Nyquist  frequency which makes it difficult 
to design  very wide-band differentiators. It is impossible 
to  obtain  a discontinuity in  the  imaginary part, like the 
one shown at  the  top of Fig. 1, in a  zero  bandwidth region. 
Therefore  a certain amount of the frequency band is 
designated to be  a  transition region. Typical  designs which 
result from  this  method  are  shown in [l]  and [4]. The 
widest bandwidth differentiators obtained  (with  reason- 
able approximation  error)  are  about 95 percent. 

One way around  the problem of a discontinuity at  the 
Nyquist  frequency is to  add  a delay of a half sample to  the 
differentiator, i.e., to consider the design of an ideal differ- 
entiator  with half a  sample delay. The magnitude  response 
and  phase  response  curves of an ideal half-sample  delay 
network are shown in the middle of Fig. 1. The magnitude 
is 1 for all frequencies; the phase  response is linear with  a 
discontinuity of X radians  at  the  Nyquist frequency. The 
overall differentiator frequency  response  with half a 
sample  delay is shown at  the  bottom of Fig. 1. The 
magnitude  response  curve is identical to  the original 
differentiator magnitude  response curve, but  the  phase 
response  curve is now linear with  a discontinuity of X 

radians  at 0 frequency, At first thought it would seem that 
all that  this  procedure  has  accomplished is a shifting of a 
discontinuity from  the  Nyquist  frequency  to 0 frequency. 
However, if one  takes  into  consideration  that  the  magni- 
tude  at 0 frequency is exactly 0, it is  seen that there must 
be  a  zero of the differentiator on the unit circle at zero 
frequency. A zero on  the unit circle will automatically 
give a  phase discontinuity of ?r radians. Thus  the shifting 
of the discontinuity to 0 frequency,  along  with the zero of 
the  magnitude  response at this frequency, has alleviated 
the  approximation difficulties. 

Using  this result, both recursive and nonrecursive ap- 
proximations to  the half-sample  delay differentiator can 

be designed with  bandwidths  up to 100 percent full band. 
Some specific designs  are  presented in the following sec- 
tions. 

Recursive Designs 

The  canonic form used to describe the transfer func- 
tion of a recursive differentiator is seen in (1): 

K (1 - z-lail) (1 - x-laiz) 

i=l (1 - x - % i l ) ( x  - x - ' b i z )  
H ( x )  = A --___-___--. (1) 

The transfer function of (1) describes a  cascade of K 
sections each  containing  two  zeros  (at z= ail, aiz) and  two 
poles (at z=bil ,  biz). The poles and zeros are chosen 
optimally by computer to minimize  a  square-error cri- 
terion  based  on  the  magnitude of the frequency response. 
The  sum of the squares of the magnitude  error at 21 
equally spaced frequencies from 0 to  the Nyquist fre- 
quency was  minimized with respect to positions of the 
fixed number of poles and zeros used  in the  approxima- 
tion.  In Figs. 2 through 4 are shown the  error  curves 
(both magnitude  and  phase  error) for one-section (K=  l), 
two-section (K= 2), and three-section (K= 3) differen- 
tiators. It should  be  noted that these designs are  for full- 
band differentiators. The  actual values of the poles  and 
zeros, as well as  the  constant multiplier A ,  are given  in 
Table  I. 

Fig. 2 shows that  the  peak magnitude  error  for  the  one- 
section design is about 1.1 X l e 2  and  occurs  near  the 
Nyquist  frequency.  The  peak  phase  error  for  this design  is 
about 10.5 degrees and occurs at  a normalized  frequency 
of about 0.6. For  the two-section design  of Fig. 3, the 
peak  magnitude  error is about 6.3X occurring  near 
the Nyquist  frequency, and  the  peak phase  error is again 
10.5 degrees. It should  be  noted that  the magnitude  error is 
under 1.OX le3 for  about 95 percent of the  bandwidth. 
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TABLE I 

Poles and Zeros o f  Recursive  Diff  erentiators 

RECURSIVE  DiFFERENTlATOR 

"'" c MAGNITUDE  ERROR 2 SECTIONS I 
One-Section 

Zeros : 1.oooO0000, -0.67082621 

Poles : -0.14240300, -0.71698670 

A :  0.36637364 

Two-Section 
Zeros : 0,99999949, - 0,86810806 

0.32672838, -0.44183252 

Poles : -0.10779165, -0.87602073 
0.33494085, -0.51312758 

A: 0.36804011 

Three-Section 
Zeros : 0,99999956.  -0.87737870 ~~ 

0.36692749: -0.49648721 

Poles : -0.11127243, -0.88411119 
-0.15993072X10~fj0.72664683X10-1 

0.35896158, -0,55390515 
0.63811464><10-' -0.63137788X10-1 

A :  0.36789870 

Fig. 2. The magnitude  and  phase  error  curves  for  the  optimum  one-section 
recursive  approximation  to  the  ideal  differentiator. 
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Fig. 3. The magnitude  and  phase  error curves for  the  optimum  two-section 
recursive  approximation to the  ideal  dif ferentiator. 

Fig. 4. The  magnitude  and  phase  error curves for  the  optimum  three- 
section  recursive  approximation  to  the  ideal  differentiator. 
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The  errors of the three-section differentiator of Fig. 4 are 
quite similar to  the two-section  differentiator. The most 
notable  improvement  is  a halving  of the magnitude  error 
in the low-frequency region. It seems clear that  the  ap- 
proximation  error  reduction  in going from  two to three 
sections is small compared to  the  error reduction  in going 
from  one to two sections. Thus  further increases in the 
number of sections  would  probably not change the results 
dramatically.  Furthermore, since the design technique  ap- 
proximated only the magnitude  characteristics of the 

t \ I  
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I I I I I I Y 
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differentiator, the phase  error  did not change  appreciably 
as the  number of sections increased, as can easily be seen 
from  Figs. 2 through 4. 

Nonrecursive  Designs 

An  optimal design method  for nonrecursive filters was 
recently presented  by Gold  and  Jordan,  and developed  by 
Rabiner,  Gold,  and  McGonegal. In this technique, 
linearly spaced  samples of the frequency  response of the 
desired filter were  specified and  the  continuous frequency 
response was  determined using the discrete Fourier  trans- 
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form. The  interpolation  formula  obtained  was 

exp[ - jwN T-(l T - f)] 
H(ejwT) = ~ 

N 
-- 

where 

Hk = H(ejwT) 

Le., { H A }  are 

k=O 
Y 

sin. ($ - G) 

values of the  continuous  frequency  response 
at equally  spaced  points around  the unit circle; T is the 
sampling period;  and N is the  duration of the  impulse re- 
sponse in samples. By making the substitution 

H k  = j G k e j T k l N  (4) 

each of the  terms inside the summation of (2) becomes 
imaginary, and  thus  the entire sum is imaginary. For N 
even, the complex factor outside the summation in (2) 
represents a  pure  delay of an integer plus  one- 
half (e- jWT(l lz))  number of samples.  Thus (2) suggests that 
a differentiator with exactly half a  sample  delay  can  be 
designed  nonrecursively by setting 

k = 0,1,  * , N / 2  

and applying  the substitution of (4) into (2). Equation (2) 
shows that in the  resultant interpolated frequency re- 
sponse, the magnitude  response  approximates the 
differentiator magnitude  response  (with no  approximation 
error  at  the frequencies where the exact values were speci- 
fied), and  the  phase response is exactly the phase  response 
shown at  the  bottom of Fig. 1, Le., half a  sample  delay 
curve +a radians. [It should  be  noted that  the Hk are 
complex, as seen from (4).] By varying  some of the Gk, 
or equivalently the Hk, the magnitude  approximation 
error  can  be  reduced  without affecting the  phase  curve  at 
all. 

Examples of full-band nonrecursive differentiators for 
values of N from 16 to 256 in powers of 2  are given  in 
Figs. 5  through 9, and  the relevant data  are  tabulated in 
Table 11. For each of these cases a single frequency  sample 
(one of the Gk) was  optimally  chosen to minimize  peak 
error.  Table I1 lists the value of this variable frequency 
sample ( G N , ~ )  as well as  the peak  magnitude  error for  the 
various  values of N used. In each of Figs. 5  through  9 
are shown the impulse  response at  the  top of the figure, 
the  magnitude  response  curve in the  middle, and the 
magnitude  error  curve at  the  bottom. Since the phase 
curve is always identical to the  phase  curve  at  the  bottom 
of Fig. 1, there  was  no need to  plot it again. 
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Fig. 5. The  impulse  response, magnitude curve, and  magnitude  error 
curve for the  optimum  nonrecursive approximation to  the ideal  differen- 
tiator with N = 1 6. 

Fig. 6. The  impulse response, magnitude curve, and  magnitude  error 
curve for the  optimum  nonrecursive approximation to  the ideal  differen- 
tiotor  with N = 32. 
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As seen in Fig. 5, the  peak magnitude  error  for N =  16 is 
about 1.4X l e 2  and occurs at  about 95 percent full band. 
For N =  32 the  peak magnitude  error is 6.9X l e 3  again 
occurring  near the Nyquist  frequency.  Peak  magnitude 
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Fig. 7. The  impulse  response,  magnitude  curve,  and  magnitude  errar 
curve  for  the  optimum  nonrecursive  opproximation  to  the  ideal  differen- 
tiator  with N = 64. 

Fig.  8.  The  impulse  response,  magnitude  curve,  and  magnitude  error 
curve  for  the  optimum  nonrecursive  approximation  to  the  ideal  differen- 
tiator  with N = 128. 
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errors  for N=64, 128, and 256 are 3.5X1e3,  1.7X1e3, 
and 9. X respectively. Thus a doubling of N tends to 
halve the magnitude  error.  Therefore at  the expense  of in- 
creased N it would seem that  the  error can  be  made  arbi- 
trarily small. 
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Fig. 9. The  impulse  response,  magnitude  curve,  and  magnitude  error  curve 
for the  optimum  nonrecursive  approximation to the  ideo1  differentiator 
with N =  256. 

TABLE Il 

Coefficients  for  Full-Band  Nonrecurrive  Differentiotorr 

N Peak Magnitude 
Error 

I_______.- 

16 0.98609619 0.01 3909 
32 0.99306030 0.006944 
64  0.99653320 0.003472 

128  0.99826661 0.001735 
256  0.99913330 0.000868 

Additional Nonrecursive Designs 

It was of interest to consider designs  of nonrecursive 
differentiators whose bandwidth was less than 100 percent 
full band  for small values  of N ( N -  16, 32). For these 
cases, the three largest frequency samples ( G h r l n ,  G(N/+~,  
G(N/2)- -2)  were optimally varied to minimize the peak  error 
over the band of interest. The resulting designs are given 
in Table 111. In  this  table the  three coefficients are given, 
along with the peak  error  for several  values of percentage 
bandwidth. 

For N =  16 the results in Table I11 show that  the peak 
magnitude error  drops very fast as percentage bandwidth 
decreases,  going from 2.7X for 95 percent bandwi,dth, 
to 0.7X10-5 for 80 percent bandwidth. For N=32 the 
peak magnitude error  drops even faster going  from 
3.8X le4 for 95 percent bandwidth to 8 X  lo-’ for 80 
percent bandwidth.  Thus merely  by restricting the band- 
width of differentiation to a reasonable value (less than 
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TABLE 111 a large value of N a  large  number of multiplications per 
Coefficients for  Wide-Band  Nonrecurrive  Differentiators sample are required in the nonrecursive  case (for realiza- 

tion by direct convolution). However, for realization by 
Percent  Peak 
Band-  Magnitude GN/Z 

fast  convolution,  using the  fast  Fourier  transform,  the 
G(N/z)-I G ( N / z ) - ~  

width Error processing  time is only  weakly sensitive to  the value of N 
used. 

N=16 In  terms of the accuracy of approximation,  the  one- 
;; : : ~ ~ $ ~ : ~ ~ ~  : :~ : :~~~~~ :::iz;;i section recursive differentiator has somewhat smaller 
85 0,00022  0,93826903  0.87324582  0,74978209 peak  magnitude  error than  the N =  16 full-band nonrecur- 
80 O.oooo7  0.92890015  0.86994255  0.75000000 sive case. However,  there is a large phase  error in the 

recursive design and  none in the nonrecursive one. The 
95  0.00038  0.97510987  0.93785916  0.87484839 two-  and three-section recursive designs  have  peak  magni- 
90 o.oooo3 0.96475830  0.93508185  0.87500000 tude  errors  comparable  to  the N =  32 nonrecursive design. 
85 0 000002  0.95614625 0 93098622 0 87483514 80 0:-8 o.95259399 o:92893748 0:87453343 Finally, recursive differentiators can  be  designed to 

have  a  small delay, whereas the delay  for  nonrecursive 
differentiators is generally about N / 2  samples. 

N=32 

100 percent), the  peak  magnitude  error  can be made  quite Conc,usions 
small even for  small values of N .  

Comparison of these data with earlier results [ 11, [4] on 
nonrecursive differentiator design  shows considerable  im- 
provements. For  a given N and  a given bandwidth, the 
peak  magnitude  error of designs given in this paper is 
considerably less than  the peak  magnitude  error resulting 
from earlier designs, 

Comparison Between Recursive and Nonrecursive 
Designs 

It is very  difficult to  compare  the different designs for 
differentiators (or  any  other filter for  that  matter) because 
there  are  many issues which must  be considered. For 
example, the recursive designs  are easily  realized with 
only  a few multiplications per output  sample;  whereas  for 

Designs  for full-band recursive and nonrecursive differ- 
entiators  have been presented and discussed. Additional 
designs for small  values of N,  where the differentiation 
bandwidth is less than 100 percent, have been presented 
for the nonrecursive case. 
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