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hstract: n algorithm for making the 
voiced/unvoiced decision in soeech 
analysis is presented. Three teal-ores 
(LPC normalized minimum error, ratio of 
energy content at high to low freauencies, 
and input RMS) define a three-dimensional 
space in which the decision making process is viewed as a pattern classification 
problem. This is formulated as a linear 
program which runs on a training set to 
find a hyperplane dividing the Y/UV 
regions if they are separable, or 
minimizing the distance by which 
misclassification occurs if they are not. 
A procedure is given for selecting the 
features and constructing the training 
set. 

Introduction 

Deciding whether a short segment of 
speech is voiced or unvoiced is an 
important problem in speech analysis. 
Most V/UV decision methods have been based 
on one parameter, sometimes accompanied by 
additional logic to take into account the 
V/flV decision for surrounding segments 
[1—61. No single feature seems to give 
consistently reliable performance in 
making the V/UV decision, so it is 
desirable to combine several features to 
obtain a good characterization of voiced 
and unvoiced segments of speech. One way 
to incorporate a number of features is to 
view the V/tJV decision process as a 
pattern classification problem. Atal and 
Rabiner [7] have used a statistical model 
to design a minimum distance classifier. 
This reouires assuminq a particular 
distribution function for the features and 
computing the mean and covariance matrix 
for each class usinq a large enouqh set of 
data to obtain an accurate statistical 
characterization. 

We present a nonparametric pattern 
classification technique for making the 
V/UT decision in which a relatively small 
set of samples is used to "train" t.he 
classifier. This training is accomplished 
by a linear program which finds a 
hyperplane dividing the V/TJV regions if 

they are senarable, or minimizing the 
distance by which misclassification occurs 
if they are not. No assumptions are made 
about the forms of the probability 
distributions of the features. In 
addition, a method is described for 
constructine the traininq set and for 
selecting the features to be used. 
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We will use pattern classification 
technicues that are described more fully 
in 18] and 19]. Let d be the number of 
features to be used and let the two 
classes be C and C . Then a 2attern a = 

1 2 

(f , f, ...,f) is a point in F 
1 2 d 

(d—djmensional Buclidean space) with f 
being the value of the ith feature, A g et will consist of n patterns 
a , i = 1,... ,n which will be used to 
1 

"train" the classifier to identify the two 
classes correctly. e wish to find a 
discriminant function g(x) such that 

q(x) >0 if x C 
i 1 

g(x) <0 if x EC 
i i 2 

for i = 1, ..., n. If, for the sake of 
simplicity, we require q to be a linear 
function, then the decision surface 
separating the two classes is a hyperplane 
defined by 

g(x) = w f + w f 
11 22 

or equivalently 
t 

q() = 0 

wherew= (w , w , ..., w , w ) isthe 
1 2 d d+1 

ght and u = (f , f , ..., f , 1) 
1 2 d 

is the augmented 2at tern it9i 
corresponding to the pattern x. If the 
patterns to be classified can be separated 
by such a hyperplane, then the two classes 
are said to be 1f1x 2rab1e. In 
this case, we will be able to find a 
weight vector a such that 

t 

!l > u8C 
i i 

t a <0 a 
i i 

where a is the augmented pattern vector 
1 

corresponding to eattern x and we say 

a e C itt x C . If no such 
i 1 •i i 

hyperplane exists, we wish to find the 
hyperplane which by some measure minimizes 
misclassification. 

An equivalent statement of the linear 
separation problem is that we want a 
weiqht vector a such that 

+... +f +w 
d d d+1 

=0 

1 
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where = ( i 

! �b>9 
I 

i i 2 
for i = 1, ..., n. The value b is a 
positive margin to avoid the solution w=O 
and to force the solution away from the 

boundary w u — 0. To handle the 

non—separable case, define the perceptron 
criterion function 

= 
::E_ 

b 

p(w) is proportional to the sum of the 
distances from the misclassified patterns 
to the decision surface, We can get a 
useful weight vector ! even if the n 
patterns in the training set are not 
linearly separable by finding ! and to 
minimize 

where we require 

z = , t 
t 

t > 0 and t > b - w 
i 

for i=1, ..., n. Por a fixed w, the 
minimum value for z results in t being 

1 
the "cost" of v's classification of the 
jth pattern: if w classifies i correctly, 

t 
1 

t = 0; otherwise t b—w . Thus 

z =t= p(w). Therefore, minimizing z 

over t and w will yield a separating 
hyperplane if one exists, or will minimize 
the perceptron criterion function p(w) if 
a separating hyperplane does not exist. 

This can be formulated as a linear 
programming problem as follows: 

t 
mm ç 
Ax > B 
x>0 

where 
t 

I I. 
1 1 

t 

1 -1 
2 2 

t + — 

fh... h] 

A basic feasible solution is !=0, t b for 
1 

i=1,..,n. If the patterns in the 

training set are linearly separable, 0 

and ! will define a separating hyperplane. 
If the patterns are not linearly 
separable, t>0 and w minimizes the 
perceptron criterion function. 

With the addition of slack variables 
to convert the inequality Ax > B to an 
equality, the linear program has n 
constraints and 2n+2(d+l) variables. 

The "correct" V/UV decisions for the 
sentences used in training and testing 
were made by inspection of the waveforms. 
In cases where it was not possible to make 
the V/UV decision based solely on the 
waveforms, an auditory comparison was made 
between the speech synthesized with the 
voiced decision and the unvoiced decision. 
Analysis was performed using the 
covariance method of linear predictive 
coding with 18 poles in the all—pole 
filter, a sampling rate of 15000 Hz, and a 
frame length of 250 samples. The 
synthesis was performed pitch 
synchronously, with the pitch, output 
energy, and predictor coefficients reset 
by interpolation at the beginning of each 
pitch period during voiced speech, and 
reset on the analysis frame boundary 
during unvoiced speech [6,101. Since the 
covariance method of analysis does not 
insure stability, poles found outside the 
unit circle were folded in to a radius of 
.986 (corresponding to a bandwidth of 
about 60 Hz) . Synthesis was performed 
with a monotone pitch of 125 Hz to isolate 
the V/UV decision from the nitch tracking 
problem. Frames in which a transition 
occurred so that the frame was voiced for 
one portion and unvoiced for another were 
not considered in the training or 
evaluation. 

The features considered were: 
1. MS value of the input signal 

(RMS); 

2. Zero crossings (ZC) 
3. Peak amplitude (PEAK) 
4. LPC normalized minimum error = 

zo 

t 

if u S C 
1 

if u C 

t 

x= 

+ 
w 

w 

t 

c= 

0 
d+ 1 

0 
d+1 

1 

n 

1 

(b - ! 
1 

1 1 1 

1 0... 0 

C 1 0. . . 0 

0... 0 1 

t t 
v —v 
n n 
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where is the LPC approximation of 
1 

sample s (EBRN) 
1 

5. Ratio of the energy of the signal above 
L0O0 Hz to that below 2) H (fIILO) 
This was computed by a 256 point ?FT on 
the Hanning windowed seqment consisting of 
the 6 last points of the previous frame 
and the 250 points of the current frame. 

Three sentences (A, 3, and C) which 
together included instances of all 
non—vowel phonemes, and 3 male soeakers 
(LV, PH, HJ) were considered for the 
training otocess, resulting in a set of 9 
possible training sentences. From these, 
the goal was to obtain as small as 
oossible a training set which would 
produce good separation of the voiced and 
unvoiced classes. The following procedure 
describes a method for choosing the 
features to be used and selecting the 
training set in such a manner that the 
effect of each addition to the set of 
features or the training set can be 
evaluated. 
1. Evaluate separability using 1 or 2 
features. 

Pairwise scatter plots of the 
features for 1 sentence and 1 speaker 
(sentence A, speaker LV) indicated that: 
(a) no single feature was sufficient to 
make the V/try decision; (b) RMS and PTAK 
were highly correlated, so only one of 
them should be considered; (c) the 
combination of HILO and either RES or PFAK 
gave reasonably good separation (figure 
1); (d) HILO and ERRN gave fair 
separation; (e) no other pairs gave good 
separation. The ffILO—RfS combination on 
the other training sentences proved to he 
insufficient (figure 2). This 
demonstrated the need for at least 3 
features. The above observations could 

also he made by running the linear program 
with the various pairs of features, and a 
training set. consisting of one training 
sentence, using the resulting cost z as 
the measure of separability. 
2. Construct a training set using 3 
features, 1 speaker. 

Because of (c) and (d) above, ERRN 
was added to HILO and RIIS to form a 
3—feature classifier. The training set 
consisted of all patterns (frames) by a 
single speaker (LV) which were within a 
fixed distance of the hyperplane for the 
HILO—RMS case of step (1). These boundary dtrns are the ones most likely to be 
misclassified. Since the value of the 
discriminant function g is a measure of 
the distance from the hyperplane, •the 

training set. can be constructed by 
choosing all patterns 
x for which g(x ) for the HILO—EMS case i i 
is less than some distance 6 
resulting weight vector 
classified most frames of the 
sentences spoken by two of the 
(LV and HJ) but misclassified 
frames by the third (PH). 

3. Augment the training set.. 
Using the same distance 6 and the 

hyperplane of the HILQ—RMS case, the 
boundary patterns for the speaker for 
which the previous training set was 
inadeguate were added to the training set. 
The resulting weight vector performed 
extrerely well on all 3 speakers. 
U. Test additional features. 

The patterns in the training set of 
step (3) were not linearly separable. The 
addition of a fourth feature, EC, did not 
significantly improve the separability on 
the traininq set. 
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The training st described in step 
(3) used 3 features and contained 103 
patterns. 53 of the patterns were chosen 
in step (2) from sentences by speaker LV, 
and 50 were added in step (3) from 
sentences by speaker OH. The resultinq 
linear program had 103 constraints and 214 
variables. Using the revised simplex 
algorithm, it required maintaining a 
(1014,104) matrix and ran in apnroximatelv 
7.5 seconds on an IBM 360/91. The weight 
vector which minimized the perceptron 
criterion function was found after 131 
iterations * 

¶estinq was performed on 5 sentences 
spoken by each of the 3 speakers. We 
define a type I error to be the 
classification of a voiced frame as 

unvoiced, and a type 2 error to be the 
classification of an unvoiced frame as 
voiced. The following table summarizes 
the results of the testing. The rows 
represent the 3 speakers, and the columns 
the 5 sentences. An entry i,i means that 
i type 1 errors and -j type 2 errors were 
committed. If the table entry includes 
values in parentheses, frames of that. 
sentence were used in the training set 
from which the weight vector was computed, 
and the values in parentheses indicate the 
number of (type 1, type 2) 
misclassifications on members of the 
training set. The average number of 
frames in each sentence was 170. 

A B C 0 B 

1,1 4,1 0,2 0,0 0,0 
(1,0) (2,1) (0,1) 

1,0 2,1 1,1 0,0 
(0 , 0) 

1,0 0,1 0,0 0,0 

The misclassification rate over the 
sentences tested was approximately 0.9 %. 
No audible rnisclassifications were made. 

Conclusions 

We have presented a pattern 
classification technique for making the 
V/UV decision based on several parameters. 
The method uses a linear program to find 
the decision surface which minimizes the 
misclassification distance over a training 
set. A procedure was presented for 
selecting a traiping set and for 
evaluating and choosing features •to be 
used in the V/UV decision making process. 
The training set found sufficient to 
obtain a good classifier for 3 male 
speakers, including one not used in the 
training set, was relatively small (3 

features, 103 patterns). In limited 
testing, the classifier performed with a 
misclassification rate of less than 1 %. 

Further testimq is necessary to 
determine the sensitivity of the technique 
to different classes of speakers (e.g., 
women, children) and to recording 
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conditions. More features may he examined 
to determine the combination which works 
best over the broadest range of speakers 
and recording conditions. Another area of 
further research involves extension of the 
model to allow mixed voiced-unvoiced 
excitation. Since the discriminant 
function is a measure of the distance to 
the decision hyperplane, this function may 
be useful in indicating the degree of 
voicing. Such a measure could be used to 
determine a mixed voiced—unvoiced 
excitation, as found in voiced fricatives. 
This possibility is being examined. 
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