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Fig. 4. Slowing factor versus  width-to-height ratio o/b. Open circles: experimental values. 
Solid lines: theoretical values. Dashed lines: slowing factor in  the  infinitely  wide  strip 
case. 1: delay data in 121. 

quantity is also equal to the  ratio of the  propagation velocity to the  light 
velocity  in  vacuum. As Seen from  the figure, the  propagation velocity  is 
constant  and very  slow  in the lower  frequency  region.  Let  this  region be 
defined as the slow  mode  region. In the  figure, the  propagation velocity  in 
the slow  mode  region  is from  approximately 1/15 to 1/20  of the light 
velocity, and is  essentially  smaller than  that of TEM propagation  through 
the  SiO,  of the Si layer.  While the values  of  the characteristic impedance 
and  propagation velocity appear to be almost independent  of  the sub- 
strate resistivity in this region, the upper  frequency  limit of the region 
clearly  depends  upon it, and becomes  maximum  for  the lo-’ R.cm 
sample,  extending into  the low-gigaherz  region.  Outside  the  slow  mode 
region,  the characteristic impedance  increases  with  frequency for higher 
resistivity and decreases for lower  resistivity. Further,  the  attenuation 
constant in  the  mid-frequency  range  increases  approximately in propor- 
tion to the  square of the frequency, and is  minimum for  the lo-’ Q.cm 
sample. All  these features are qualitatively  in  good  agreement  with  the 
numerical  result [I 1. Disagreement  in the  attenuation  constant in the low- 
frequency  region can be explained by the finite  resistance of the strip con- 
ductor ignored in the  theoretical  computation,  and this explanation  has 
been confirmed quantitatively by measuring the sheet  resistivity of the 
experimental strips. 

Further,  the slow  wave propagation velocity  was  measured  varying 
the strip width, and the  result is plotted in  Fig. 4 in terms  of the slowing 
factor defined by &,/le versus the width-to-height ratio a/b. The  thickness 
ratio b,/bz is  held  nearly constant  for all the samples  within the range  from 
4 x to 5 x The  propagation delay data in [2] are also  included 
in the figure.  Solid lines give the theoretical  values  based on the  quasi- 
static approach using the  formula  for  microstrip fringing  fields 131. 
Agreement  between the theory and the  experiment  is  generally good,  both 
indicating a decrease in the slowing factor  due  to  the fringing effect  with a 
decreasing  width-to-height ratio. 

In conclusion, the slow  wave  mode  does propagate along  the  micro- 
strip line  on  Si-SiO,  systems,  with its upper  frequency  limit  depending  on 
the substrate resistivity. This mode of propagation seems to be of great 
importance to the  current  monolithic IC‘s, judging from the values of 
resistivity and frequency  usually  employed. 

The  physical  mechanism  of  slow  wave propagation  can be attributed 
to the  large  effective  dielectric constant  due to the  strong interfacial 
polarization (Maxwell-Wagner  mechanism [4]), from  which there results 
a slow  surface-wave-like propagation.  A detailed theoretical and  experi- 
mental  analysis  of t h i s  type  of  line,  including  the  slow  mode  mechanism 
and the  behavior  of other  fundamental modes, will be presented in a  forth- 
coming  paper. 
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Computation  of Spectra with Unequal Resolution Using 
the  Fast  Fourier  Transform 

Abstract-The discrete  Fourier  transform of a sequence, which 
can  be  computed using the fast  Fourier  transform  algorithm,  repre- 
sents samples of  the  ztransform  equally spaced around  the  unit  circle. 
In  this  letter,  a  technique  is discussed and illustrated  for  transforming 
a sequence to a new sequence whose  discrete  Fourier  transform  is 
equal to samples of  the  z  transform  of  the  original sequence at un- 
equally spaced angles around  the  unit  circle. 

In  many applications we are concerned  with the problem of computing 
samples  of the z transform of a sequence on the unit  circle. To  obtain 
samples equuZly spaced around  the  unit circle, the most  efficient  procedure 
is to compute  the discrete Fourier  transform ( D m  using the fast Fourier 
transform  (FFT) algorithm.’  If we are interested  in obtaining samples 
equally  spaced  within a  particular region  of the unit  circle,  then one effi- 
cient  procedure  consists of  using the  chirp  z-transform  algorithm.2 Often 
we would  like to obtain samples that  are unequally  spaced-correspond- 
ing, for example, to a  constant Q spectral  analysis  of the original  sequence. 
An algorithm  for accomplishing  this  with an efficiency similar to  that 
achievable  with the FFT algorithm is not known.  One procedure some- 
times  used  is to  evaluate  the samples  explicitly at the  desired  frequencies. 
Another procedure used is to add equally  spaced  frequency  samples  in 
bands.  A related alternative  procedure  corresponds to implementing a 
spectral  analysis of the sequence  with a recursive or nonrecursive 6lter 
bank. This letter is directed  toward a  procedure  that  perhaps is  slightly 
more  efficient than  the  alternative  just  mentioned, and  may also have  some 
advantages when considering hardware implementation of a spectral 
analysis  with  nonuniform resolution. 

The  procedure consists of transforming  the original  sequence to a new 
sequence  having the  property  that its DFT is equal  to samples of the z trans- 
form  of  the  original  sequence at unequally  spaced  angles around the unit 
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~ i r c l e . ~  Lettingf(n) represent the original  sequence, and g(k)  represent 
the  transformed sequence, we consider linear  transformations between 
f ( n )  and g(k) corresponding  to  expandingf(n) in  terms of a set  of  linearly 
independent sequences $k(n) so that 

The  basic property  that we would  like this transformation to have  is that 
the  transform of the sequence f(n) and  the z transform  of  the sequence 
g(k) are related by a change of variables, so that on the unit  circle, if 

+ m  

G(ejm) = g(k)e-jmL 
k = - m  

and 

then 

so that 
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Fig. 1.  Distortion of frequency for several  values of a. 

G(eiec")) = F ( 6 .  (2) Fig. 2. All-pass network used to impkment a distortion of the  frequency axis. 

Consequently,what  is  required  is that  the  Fourier  transform of f (n)  and  the 
Fourier  transform of g(k) be related by a  distortion of the frequency  axis. 
It can be  shown that  the requirement  placed on the set of functions $k(n)  ' 

such that (2) is satisfied is that 

frequency  variable Ck Since a  computation of the DFT of the new  sequence 
q ( k )  corresponds to sampling  uniformly in o, the frequency  samples ob- 
tained will correspond to nonuniform sampling in  the ori-1 frequency 
variable R Fig. 1 shows the  function e(R) for  several  values of the  parame- 

where 

(3) ter a. 
For  the remainder of the discussion, we  will assume that f (n)  and g(k) 

are  both  zero for n<O. It is straightforward to modify the discussion to 
incorporate  the  more general case. For  the  particular functions $dn)  
defined by (5), it can be  shown that 

m 

Therefore, the  functions q k ( n )  must  have an all-pass characteristic,  that is, 1 n$,(n)$k(n) = k .  r = k 
their z transform on the unit  circle  must  have  unity  magnitude  independent 
of frequency.  With  these conditions satisfied,  the relationship between the = 0, r # k .  
frequency  variable o corresponding to the  Fourier transform of the new 
sequence g ( k )  and the frequency variable R corresponding to the  Fourier Consequently, this set of functions $k(n) is orthogonal with a weighting 
transform of the original  sequence f(n) is that  function  of n and  a normalizing constant of k. From this relation together 

" = O  

with (I), the sequence g(k)  is spedied by 
0 = e@,. (4) 

If  we restrict the mapping  from R to o to be such that when R changes 
by 2a then o changes by 2x, and if we require that  the z transform Yk(z) 
of the functions IClt(n) be rational functions of z ,  then Yk(z) must  be of the 
form 

m 

do) = c f ( n W  (8b) 
" = O  

( 5 )  
One  implementation of (8) consists of passing the sequence f( - n) through 
the linear  shift-invariant  network  shown  in  Fig. 2. With the  outputs in  the 

As required,  the magnitude of Yk(z) for z on the unit  circle  is  unity, and the  network of Fig. 2 designated as Pk(n), the sequence g ( k )  is  related to i k (n )  by 
phase  factor e(R) is  given  by 

(1 - a')  sin 
g ( k )  = P k ( O ) .  

o = e(n) = tan-' 1- (6) To obtain the samDles  of the  suestrum of the original  sequence on the 
distorted frequency  scale, the DFT of the  sequeice  g(k)-is  computed. 

It can be shown that  the inverse relation is From  the curves in Fig. 1, with the  parameter a real  and between 0 and 1, 
the effect on the spectrum  is to sample  with  higher resolution  at low fre- 

(7) quencies and lower resolution at higher  frequencies. If, instead,  a is nega- 
tive,  between 0 and - 1, then  the effect is the reverse, that is, the s p e c t m  
is sampled  with greater resolution at higher  frequencies than  at low fre- 

which corresponds  to replacing a by -a in (6). Consequently, (6) specifies  quencies. It is also straightforward to implement the network  in Fig. 2 
the  relationship between the new  frequency  variable o and  the original  with a complex  value for a. This would then result  in  high spectral resolu- 

(1 - a2)sinw 
[(I + az)coso + 2a 1 = e-'@) = tan-' 

tion  at some intermediate frequency. 
3 A. @ m h e h  and D. ~ ~ h ~ ~ ,  '.Discrete of analog M,I.T, In general,  if the  sequencef(n) is  of  finite duration,  the sequence y(k) 

Res. Lab. Electron., Cambridge, MW., Quart. Ron. Rep. 97, pp. 185-190, April 15,1970. Will  be of  infinite duration. Consequently,  in order to compute  the Dm 
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Comments  on  “Nonlinear Resistors that 
Generate  Subharmonics” 

Abstract-The analysis reported by Erdey is shown to be  incorrect. 

In the above  letter,’ M. R. A. Erdey  discusses  the  response of the 
nonlinear resistor,  characterized by u = 2i2 - 1, to the  driving  voltage 
u = cos wt. He points out that there are four  possible  solutions, 
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Fig. 3. Example of frequency distortion. (a) Original spectrum. (b) Distorted spearurn 
with a = 1 /4. (c) Distorted spectrum with (I = 1 /Z. 
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Fig. 4. Example of  frequency distortion on a sample of spgCh. (a) Original spectrum. 
(b) Distorted s p e c t r u m  with a = 112. 

of g ( k ) ,  an  appropriate  finiteduration window  must be applied.  Applying 
such a window corresponds to “smearing” the spectrum of the sequence 
before obtaining the spectral samples. The spectral window  applied to the 
transform of g(k)  maintains constant width  in o which corresponds to 
smearing the spectrum off(n) with unequal bandwidth. From (6) it  follows 
that  for  a>O, the bandwidth of the spectral window  increases  with  fre- 
quency  in the same way that the spacing of the spectral samples  increases 
with  frequency. This is  similar (but not identical) to the situation where a 
spectral analysis  is  implemented  by  implementing a constant Q filter bank, 
in  which case both the spacing of the spectral samples and the bandwidth 
of the filter  increase  with  increasing  frequency. 

Examples  of spectral analysis  implemented on the basis of this discus- 
sion are illustrated  in  Figs. 3 and 4.  Fig. 3(aHc) corresponds to the DFT 
of an original  sequence and the transformed sequences for Q = 4 and u = ). 
Similarly,  Fig.  4(a) and (b) corresponds to the DFT of an original and a 
transformed segment of a speech  waveform. In all of  these spectra, the 
transform size was 5 12  points. 
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and attempts to identify the correct  solution by considering  parasitic  lead 
inductance. 

Unfortunately.  Erdey  does not discuss the behavior of the  resulting 
differential equation, but apparently assumes that the presence of in- 
ductance will carry i through the value i =O. 

If instead of a small  residual inductance we consider a small  residual 
resistance,  e.g., radiation resistance, the circuit equation becomes 

cos wt = 2i2 - 1 + ei (1) 

or 

The range - (42) < i < 0 is forbidden by this  inequality.  Therefore, i 
cannot change  sign, and in the limiting  case of E-O, 

i = cos-. I ”:I 
This solution has the period T = 2a/o, and there are no subharmonics. 
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Work Function  Difference Between p-type  Polycrystalline 
Silicon and n-type  Single-Crystal Silicon 

Abstract-The work  function  difference  between  p-type  poly- 
crystalline silicon and n-type  single-crystal silicon has been  found 
from  flat-band  measurements on MNOS capacitors to  be +1.55 V 
when  the  concentration  in  the  p-type silicon is 10” atoms/cm3  and 
the  concentration  in  the  n-type silicon is 10l5 atoms/cm’. 

It is  well known that one way to achieve a low  threshold  voltage  in 
MOS devices is to use a silicon  gate [l], [2] since the threshold  voltage  is 
determined  in part by the  work function difference  between the gate and 
the silicon substrate. For a conventional MOS structure with  aluminum- 
oxidesilicon, the work  function  differences  from  aluminum to silicon are 
from  -0.12 to -0.38 V for n-type silicon and -1.08 to -0.82 V for 
p-type  silicon  depending on the impurity concentration of the silicon [3]. 
It is the purpose of this investigation to determine the work  function 
difference  between  p-type  polycrystalline  silicon and an n-type  silicon 
substrate. 

One way to derive the work  function  difference  is to determine the 
flat-band voltage V,, from the capacitance-voltage  characteristics of 
MOS structures. The flat-band  voltage  is  defined as the voltage  applied to 
the gate to counterbalance the work  function  difference  between the gate 
and the substrate, and the sheet  charge  associated  with the silicon  dioxide- 
silicon  interface [4] : 
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