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Time-Domain Approximation by Iterative Methods 

L. E. MCBRIDE, JR., MEMBER, IEEE, H. w. SCHAEI’GEN, MEMBER, IEEE, AND K. STEIGLITZ, MEMBER, IEEE 

Abstract-An iterative procedure is presented which permits the 
determination of a rational transfer function in the Laplace trans- 
form variable s which is optimal with respect to given input and 
output time-functions. The optimal system of a particular order is 
defined as the one whose output when subjected to the known input 
function is nearest in the time integral square sense to the desired 
output function. The method is thus applicable to a number of 
problems involving the minimization of an integral square error. 

To illustrate the technique, a set of optimal lumped-parameter 
delay lines is synthesized and their characteristics investigated; the 
behavior and convergence of the iteration in these problems is also 
studied. 

A comparison of other iterative methods applicable to the same 
problems leads to the conclusion that the proposed procedure has 
real advantages in computational simplicity and speed of conver- 
gence. 

T 

IME-DOMAIN approximation can be regarded as 
the problem of finding a network of given complexity 
which, when subjected to a particular input, will 

produce (at least approximately) a desired output as a 
function of time. If it is assumed that any rational function 
of given order can be synthesized as the transfer function 
of a network, the problem is reduced to finding the coefli- 
cients of a ratio of polynomials in the transform variable, 
s, which best fits the required input-output relation. It 
is in this sense identical to the problem of identifying an 
unknown linear system from a sample of its input and 
output functions. 

Among the computational procedures proposed for 
linear system identification, Kalman’s [l] method for 
finding the coefficients of a rational z-transform function 
by linear regression is among the easiest to use. However, 
as a method for time-domain synthesis it has two dis- 
advantages: it results in a sampled-data model which 
must then be approximated by a rational function of s; 
and it minimizes an artificial error criterion which does 
not correspond directly to any measurable error. It has 
been shown [2] that the second objection can be eliminated 
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by using an iterative procedure, with the Kalman estimate 
as first iteration; if the iteration converges, as it does in 
many practical cases, the resulting transfer function 
minimizes the mean square error between desired and 
actual model output. It is the purpose of this paper to 
show that similar iterative procedures can be applied 
directly to continuous system identification and to give 
examples of their effectiveness in time-domain approxi- 
mation. 

Let the system input be x(t) and the desired output 
function y(l), both defined for t > 0 [z(t) may be an 
ideal impulse, in which case y(t) is the desired network 
impulse response]. If v(t) is the actual response of the 
network to z(t), a natural error criterion is 

J = s,T [u(t) - y(t)]’ dt = ~‘e2(t) dt. (1) 

The transfer function of the network to be synthesized 
has the form 

G(s) = 
a,+a,-,s+ ... +a& 
b, + b,-,s + 1 ‘. + sn 

a,s? + an-,sen+l + *. . + UO 
= bs-” + b,-ls-n+l + . . . + 1 

=N(S>. 
D(s) w 

(In most problems a, is omitted because it is known that 
the network impulse response should not contain an 
impulse at t = 0; it is also possible to assume a numerator 
order different from that of the denominator, but this 
alternative will be ignored to simplify the notation.) 
Then if X(s) is the Laplace transform of s(t), etc., 

V(s) = gf$ X(s), E(s) = V(s) - Y(s) (3) 

and 

a-%) _ -s- “N(s) 

abi D2(s) -us> =’ -Phi(S). 

(4) 

Now 

aJ -= 
aai 

2 T 
s 

e(t) se(t) 
0 xdt 

(5) 
aJ 2 T 

s 
ae(t> -= 

dbi 0 e(t) x dt I 

1 Division of numerator and denominator by sm avoids the neces- 
sity for differentiation in the first iteration; it is equivalent to assum- 
ing that the initial denominator is sn, and has no effect on subsequent 
iterations. 
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and, by the definition of the Lnplace transform, where the subscript j refers to the iteration number. It is 
m 

P,,(s) = $1 e(t) exp (-st) dt 

assumed that the coefficients of Di-l have been previously 
computed, and are regarded as fixed during the jth 

E 0 iteration. Therefore, 

= s m de(t) 
o z ew C-4 dt; (6) 2 (94 

therefore, 
a&(s) _ -s-i 

Pai = !$l ) phi(t) = - dbi Di-l(s) 
Y(s) = -P,;(s). (W 

* ab; 
Since the expressions in (9) are independent of ai and bi, 

and a necessary condition for the values of ai and bi to and cl(t) is a linear function of these coefficients, the 
be optimal with respect to the error criterion J is gradient of J is linear and the optimal values of the 

aJ 
coefficients can be obtained by linear regression. 

-= *- 2 ye(t) it = 0 i = 1, . ..n If the coefficient vector y and signal vector q(t) are 
aui JO (7) defined by 
f3J 

s 

7 
-=2 
ab, e(t)p,,(t) dt = 0 i=l 7 . ..n 

0 

where pai, phi may be regarded as the output from a set 
of filters described by (4). 

Unfortunately, (7) is a highly nonlinear set of equations 
in the coefficients ai and bi, and no method of direct 
solution is apparent. Three ways of attacking the problem 
have been considered; they can be called for convenience 
Gradient Methods, Mode 1 Iteration, and Mode 2 

Y= 

Iteration. cl(t) and J, can be written as 

GRADIENT METHODS 

Since (7) defines a method for determining the gradient 
of J in coefficient space, one straightforward compu- 
tational method is based on a descent to the minimum. 
For any initial set of a’s and b’s, e(t), p.i(t), and phi(t) 
can be obtained by simulating the filtering operations 
of (3) and (4) on either a digital or analog computer. 
The gradient can then be computed from (7) and indicates 
in which direction each coefficient must be altered to 
reduce J. A suitable small increment is then added to 
each coefficient, the resulting e, p’s, and gradient computed 
and the process repeated until the gradient is approxi- 
mately zero. A variety of more sophisticated programming 
methods for finding the minimum given a gradient compu- 
tation procedure is also available [3]. 

These methods have been tested on similar problems 
in sampled-data systems and have been found effective. 
Usually, however, a very large number of iterations is 
required for convergence, and the procedure is particularly 
unwieldy when a large number of coefficients (e.g., more 
than ten) is to be computed; because the other iterative 
methods seem to work so well for time-domain synthesis, 
gradient techniques were not tried in this case. 

MODE 1 ITERATION 

A new error, cl(t), is defined such that 

E,(s) = $y$) X(s) - a Y(s) (8) I 1 

e,(t) = y’q(t) - 2%0(0 
and the gradient of J, with respect to y is 

[S 

T 
grad J, = 2 q(t)@(t) dt 1 Y 

0 
- 2 1’ z-Mth(Q dt 0 

(10) 

= 2Qy - 2c (11) 

where the prime denotes the transpose, Q is a 2n X 2n 
matrix and c is a vector of order 2n. 

Then the values of the 2n a’s and b’s which minimize 
the integral square error J, can be obtained directly from 

y = Q-‘c. (12) 

Since all of the signals composing q(t) and &-,(t) can be 
obtained from the given z(t) and y(t) by means of the 
filtering defined by (9), Q and c can be computed either 
by analog or digital simulation from the previously 
estimated denominator Dim,(s). 

The difference between the true error e(t) and the 
linear error cl(t) is shown graphically in Fig. 1. If Do(s) 
is assumed to be unity, e1 is simply the true error filtered 
by a device having D,(s) as its transfer function. Therefore, 
in the first iteration e1 is analogous to the Kalman error 
used in sampled-data system identification [l], [2]. 

The iteration can thus be started either with a fist 
estimate of D obtained from some other source, or with 



1966 MCBRIDE, JR., ET AL.: TIME-DOMAIN APPROXIMATION 383 

Fig. 1. True error and linear error compared. 

the equivalent of a Kalman estimate. The computation 
of y is repeated; if at some stage in the iteration Di(s) z 
Di-l(s) then cl(t) z e(t) and J, cz J. Such convergence 
cannot be guaranteed, but experimental evidence indicates 
that the procedure does converge in many practical 
problems, and does produce a significant reduction in true 
integral square error compared with the Kalman equiv- 
alent or various nonoptimal approximation techniques.’ 

MODE 2 ITERATION 

When the Mode 1 iteration converges, J, = J but 
grad J, # grad J. Since it is the gradient that enters 
into the condition for a minimum, it might be expected 
that a procedure converging to grad J = 0 would reduce 
the error still further. 

Let a new signal variable phi(t) be defined by its 
transform 

Then an approximation to (5) can be written 

aJ 
s 

T 

aai 
NN2 el(O$MO dt 

0 

aJ 
s 

T 
z-2 o el(t>~dt> dt 

(14) 

and since the right-hand side of (14) is linear in ai, bi, it 

can be set equal to zero and solved for the coefficients. 
The computation is similar to that of Mode 1. If a 

signal vector p(t) is defined by 

P(i) = 

the gradient of J with respect to y becomes approximately 

2 A similarly motivated iteration, proposed by Loeb [ll] for 
fitting a ratio of polynomials to a known function in the Chebyshev 
sense, has been found strongly convergent in such problems [12]. 

[S 
T 

grad J x 2 p(t)q’(t) dt 
0 1 Y - 2 ST &(MO dt 0 

= 2Qy - 2c. (16) 

It should be noted that this mode cannot be started 
from an initial estimate of G(s) which is either zero or 
unity. In the first case p&i = 0, and in the second p,i = fi.;; 
in either case 0 will be singular. At least one estimate 
must be made by a different method before Mode 2 can 
be used. As might be expected, the convergence of Mode 2 
is more variable than that of Mode 1, but when it con- 
verges, it attains the true minimum. 

Because Mode 1 uses the desired output y(t) as a 
substitute for the output v(t) from the optimal N/D 
[compare (9b) and (13)], it seems reasonable that in 
the early stages of iteration when v(t) is far from optimal, 
Mode 1 should give a better approximation to the true 
error surface, and therefore converge more rapidly. On 
the other hand, once the solution is in the neighborhood 
of the optimal point, the actual v is the best approximation 
to the optimal v and Mode 2 converges more rapidly. This 
general expectation has been borne out by experience in 
every case considered. 

EFFECT OF NONZERO INITIAL CONDITIONS 

In the foregoing analysis the energy stored in the 
network at t = 0 was assumed to be zero. However, 
nonzero initial energy can be included in the problem, 
and the optimum values of various initial conditions 
computed simultaneously with the system parameters. 
This generalization is most conveniently made by adding 
a term to (3) to represent the output due to arbitrary 
initial conditions: 

V(s) = f$$ X(s) + g ) 
(17) 

H(s) = h,s-” + . * * h,s?. 

Then time functions r{(t) and P,(t) can be defined in 
terms of their transforms as 

swi aE, 
ahi 

- __ = l&(s) 
D,-,(s) 

and can be obtained through simulation as the impulse 
response of a system whose transfer function is s-“/D. 
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TABLE I 

Errors are Six-second Integrals of the Error Squared 

FEii Error-Maximally Error- 
Delay 

Risetime 
Method Initial Parameters Flat Approximation Error-*Iteration 1 Iteration 2 Error-Final (final) 

2” : m.f. 0 0.15017 0.09543 0.09382 0.09360 0.09382 1.1 

2 m.f. 
m.f. 

0 
m.f. 
m.f. 

0 
m.f. 
m.f. 

0 
m.f. 
m.f. 

0 
m.f. 
m.f. 
m.f. 
m.f. 

0.15017 
0.11639 

0.11639 
0.09722 

0.09722 
0.08469 

0.08469 
0.07578 

0.07579 
0.06910 
0.06387 
0.06387 

0.09299 
0.05644 

k%z 
0.04040 
0.06767 
0.04143 

i: %Y 

:: %~~~ 
0.12988 
0.03063 
0.02817 
0.03223 
0.02395 

0.09222 0.09171 
0.05581 0.05640 

0.05516 
0.03908 
0.03959 
0.03896 
0.03004 
0.03320 
0.03020 
0.02479 
0.07010 
0.02450 
0.02133 
0.02034 
0.02186 

0.05459 
0.03972 
0.03927 
0.03801 
0.03045 
0.03001 
0.02886 
0.02462 
0.02885** 

2 F%t 
0 01772 
0.01678*** 

1.1 
1.9 

2.6 
3.3 

4.2 
5.0 
6.0 
5.8 

* Error-Iteration 1 gives the error of the Kalman equivalent estimate in the case where I.C. = 0. 
** Third estimate. 

*** Two iterations of Mode 2 started at the final coefficients obtained from Mode 1. 

Then if the vectors y, p and q are augmented so that 

Y= 

al 

- b, 

h 

hn 

q(t) = p(t) = 

the remaining development for both Modes 1 and 2 
follows without change. The values of hi thus determined 
can be used to find the various initial energy storages of 
the final realization by conventional transform techniques. 

SIMULATION RESULTS 

The two iterative techniques were applied to the prob- 
Iem of approximating the unit step response of a Iumped- 
parameter transfer function to that of an ideal delay 
line. The delay time was one second, and the error squared 
was integrated from t = 0 to t = 6 seconds to form the 
quality criterion (the result approximates that which 
would be obtained over a semi-infinite interval, since the 
error is very small beyond t = 4)., A summary of the 
error criterion values resulting from various approxi- 
mations is given in Table I. The initial parameter values 
from which the iterations were started were either 1) all 
zeros, in which case the first iteration yields the Kalman- 
equivalent estimate, or 2) coefficients obtained from the 
maximally flat approximation to a time delay [4], [5] taken 
from reference [5]. A commonly applied figure of merit, 
the delay-to-risetime ratio, is also given for the final set 
of parameters in each run (risetime is defined as the 

interval during which the response is between 5 percent 
and 95 percent of its final value). As a standard for 
comparison, this ratio for the eighth-order maximally flat 
all-pole network is approximately 1.2.3 

The step responses of the optimal third-, fifth-, and 
eighth-order networks from Mode 2 are shown in Figs. 2,3, 
and 4. In Fig. 5 the response of the fifth-order Mode 1 
network is shown for comparison. Comparison of Figs. 3 
and 5 demonstrates the fact that although the reduction 
in error by the use of Mode 2 is only about 4 percent, the 
resulting step response is clearly superior.4 

Reduction of integral square error by the iteration 
process is illustrated in Fig. 6. The errors shown for 
iteration 0 are those of the maximally flat approximation 
(off-scale in second- and third-order cases). The slightly 
erratic behavior for N = 7 was found to be caused by 
too large a step size in the numerical integration routine. 
Note, however, that Mode 1 exhibits a relative minimum 
at the second or third iteration in nearly every case; such 
behavior seems to be typical of this procedure. 

Figure 7 shows the manner in which the poles of the 
eighth-order network are shifted. from their initial values 
to their final locations by the iterative procedures. Changes 
after the fourth iteration in Mode 1 (solid arrows) are 
too small to be shown effectively on this scale; it is clear 
that the requirement that el % e is fulfilled after very 
few iterations. (The initial poles shown are the result 
of one iteration started from the maximally flat approxi- 
mation.) The dashed arrows show the effect of two 
iterations in Mode 2, starting from the final Mode 1 poles. 

3 It has been brought to the authors’ attention that the ratio for 
the Pade approximation to e-* of order (7, 8) is 4.3. 

* Transfer functions and poles and zeros of these systems are 
listed in Table II. 
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TABLE II 

- Fig. 2 - N = 2.3399 14.49s + 38.15 
D s3 + 4.9059 + 23.88s + 37.85 

Poles: Zeros: 
-1.40 
-2.10 

f j4.00 3.10 * j2.59 

Fig. 3 N - = 3.804~~ - 53.85.~~ + 573.5~~ - 2903.4s + 6728 
D 1 + 10.557~~ + 151.57~3 + 875.1~~ + 3768s + 6708 

Poles : Zeros: 
-2.37 f j4.50 
-i.ii i j9.36 

3.95 f j2.61 
3.13 zkj8.31 

Fig. 4 N - = -5.793s’ + 14.2.8~6 - 4197s6 f 59117s4 - 70965OsJ + 5126616~~ - 24149837s + 51742153 
D s” + 16.70~~ + 685.0s” + 8279s5 + 132583~~ + 1030916ss + 7220545~~ + 27077219s + 51849648 

Poles: Zeros: 
-3.08 h j2.31 
-1.75 f j12.9 

-2.40 f j7.43 4.02 f j5.41 4.45 
-1.12 f j18.4 3.36 f j11.4 2.72 f j17.5 

Fig. 5 N - = 3.62.~’ - 45.65~~ + 502.35~~ - 2497.5s + 5851.1 
D s5 + 7.704~~ + 146.2~~ + 705.36~~ + 3423.5s + 5804.9 

Poles: 
-1.69 f j4.65 -2.31 
-1.00 f jlO.1 

Zeros: 
3.65 f j2.63 2.65 fj8.53 

Fig. 2. Step response of third-order system (Mode 2). 
t - SECONDS 

Fig. 3. Step response of fifth-order system (Mode 2). 

I.21 

1.2.- 

0.0 .. 

QB-- 

0.4-m 

0.4-m -! 
1) 

I o-&p 4 I 2 3 4 5 6 

I 2 3 4 7 6 t -SECONDS 

t -SECONDS -0.41- 

Fig. 4. Step response of eighth-order system (Mode 2). Fig. 5. Step response of suboptimal fifth-order system (Mode 1). 
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0.1 

a09 

0.03 

0.02 

0.01 

N=2 MOOE I. 
N=2 MODE 2. - MODE I ITERATION 

-----c MODE 2 ITERATION 
m POLES OF MAXIMALLY FLAT NETWORK 

(STARTING POINT FOR 1st ITERATION) 

h <‘A 

7 

N=4 MODE I. 
N=4 MODE 2. 

N=5 MODE I. 
N=5 MODE 2. 

N=6 MODE 2. 

N=7 MODE 2. 

TO MODE 2. 

4::::::: ::: 
123456 7 6 9 IO II 

ITERATION NUMBER 

0 

Fig. 6. Reduction of integral square error by iteration, starting 
from maximally flat approximation. 

COMPARISON OF ITERATIVE METHODS since 

The method of steepest descent and other gradient 
techniques may be called first-order methods. They use 
only the first partial derivatives of the error criterion to 
determine the direction to be followed in parameter space; 
the step length along this line is determined either arbi- 
trarily or by repeated gradient computation. Since for 
the problems considered here the gradient can always be 
obtained by filtering plus correlation, each iteration is 
relatively simple. However, the number of iterations is 
usually large, and it is at least intuitively obvious that 
the inclusion of additional information about the error 
surface should reduce the number of steps required. 

It can be seen [e.g., by differentiating (13)] that the 
second term of (19) can also be computed by a filtering 
and correlation process, so that the Newton method 
could be used directly. However, 4n2 filtering operations 
would be required and each iteration made more complex. 
This approach has not been tried but might prove useful 
in certain cases. The (Newton’s) matrix equation to be 
solved for y then becomes 

The standard second-order technique is Newton’s 
method, which requires both a gradient vector and a 
matrix of second partial derivatives at a point to construct 
the approximate quadratic surface defined by the three- 
term Taylor series. Since the equations for the optimum 
parameters are linear when the surface is quadratic, they 
can be solved by matrix inversion. A new quadratic 
surface is then constructed at this minimum and the 
process repeated. 

where the expression in square brackets is the matrix 
whose components are defined by (19). 

For the problems considered in this paper, the necessary 
second-derivative matrix is 

A simplified iterative method can be devised by simply 
omitting the second term of (19). Since this term would 
be zero if e were a linear function of y (the error surface 
were quadratic), the procedure is identical to Newton’s 
in this case. It has been called the Gauss-Newton method 
and explored by a number of authors [6], [7]. Its principal 
attraction lies in the fact that it is a second-order method 
reauirinp: onlv the gradient vector p(t); it can thus be 

0 

B G--r\ 

0 20 -60 -5.0 -4.0 - 3.0 -20 

Fig. 7. Motion of eighth-order poles with iteration. 

--j 20 

--j 16 

--j I4 

-. j I2 

-jlO 

--j 6 

--j4 

--i2 

p,(t) = F. 

z 

2.rL4 
s 

T 

ayi hi 
o pi(t dt + 2 s” e(t) -??@- 

0 ayi ayi dt (19) 1 - ” - - 
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employed in any problem for which a gradient computer 
is available. For example, the method of quasi-linearization 
[8], [9] is an iterative procedure based on gradient com- 
putation alone; if it is used with noisy measurements to 
find the set of parameters which minimizes a mean 
square error between observation and prediction (as 
suggested in [9]) the resulting equations can be written 
in the form of (19) and (20) with the second term of 
(19) omitted. Unfortunately, computational simplicity is 
obtained at the expense of convergence in many problems. 
Reference [7] gives a necessary and sufficient condition 
for the existence of any region of convergence at all, 
and also gives examples requiring another iterative method 
to bring the solution within a convergent region. 

Laguerre coefficients [lo] and will be discussed under 
more general conditions in a later report. The advantage 
of such an approach is the confining of all integration to 
a single step (in [lo] this step is the one in which the 
Laguerre coefficients are determined), while the iterative 
procedures necessary to obtain a rational transfer function 
involve only difference equations. 

The methods presented in this paper, both Modes 1 
and 2, are also second-order methods in that they define 
a quadratic error surface at each successive solution. 
However, the surface is obtained, not from the Taylor 
series for the true surface, but by defining a new error, 
E, [see (S)]. This procedure has two advantages as com- 
pared to the other second-order methods: 1) it is compu- 
tationally simpler than any other except the Gauss- 
Newton methods; 2) for problems in which the minimum 
value of the error criterion is zero, E, = E and the first 
iteration (Kalman equivalent) gives the exact solution. 
(These no-noise problems include most of those usually 
cited in discussions of identification; all of the illustrative 
examples of [7] and [9] belong to this class.) 

When zero error is impossible, general statements about 
convergence are difficult to verify. Mode 1 has proved 
convergent for arbitrary starting points in all of the 
problems discussed here and in many others, and it has 
always been possible to find a region in which Mode 2 
is convergent by the use of Mode 1 or a mixed mode in 
which $ is gradually replaced by 17. 

Although these methods do not appear applicable in 
their present form to the most general problem for which 
the Newton or gradient methods are suited, they can 
be directly applied to many problems besides time-domain 
synthesis, including the fitting to measured data of 
nonlinear differential equations in which the unknown 
parameters appear linearly. Other fields in which ad- 
ditional work is needed are prediction and spectrum 
identification, for which the Kalman-equivalent problem 
is singular; it seems possible that alternate computation 
of N and D separately will permit the application of 
iteration to these problems. 

One objection to all of these methods is the inefficiency 
of the digital computer in the integration of differential 
equations; because each iteration involves filtering and 
correlation, the computation time is much longer than 
is needed for sampled-data problems 121. (The eighth- 
order delay synthesis required nearly two minutes per 
iteration on the IBM 7094.) One way of eliminating this 
difficulty is the transformation of the continuous problem 
to another space where the same coefficients appear as 
the solution to a sampled-data problem. This procedure 
has been used in synthesizing a delay line by means of 

CONCLUSION 

A method has been proposed which is applicable to 
the general problem of optimal time-domain synthesis, 
defined as the determination- of the rational transfer 
function of given order whose output when subjected to 
a known input function best approximates, in an integral 
square sense, a given desired time function. Since the 
problem of linear system identification from operating 
records may be posed in similar fashion, the technique 
is applicable to both. 

As an illustration of the practicality of the iterative ap- 
proach, lumped delay lines of orders from second through 
eighth have been synthesized; they are optimal (have 
minimum integral square error) for step inputs. Effective 
convergence in such problems appears to occur within 
three to five iterations. The method appears to have 
advantages over other iterative procedures for this class 
of problems, requiring fewer iterations for convergence 
and simpler computations for each iteration. The proposed 
technique is easily programmed for the digital computer, 
but requires longer computing times than the analogous 
sampled-data identification problem. 
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