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This paper deals with maximume-likelihood system identification when both the input
and the output signals are corrupted by Gaussian observation noise. A derivation of
exact maximum-likelihood estimation for this problem is included, but the difficulty
of implementing it numerically precludes its practical evaluation at this time. A new
approximate method is introduced, called the ‘output reference’ method, in which
the input noise is referred to the output, and an iterative gradient search method used.
This technique requires no ¢ priori knowledge of the noise covariance matrix. The
method of Koopmans-Levin, which does require knowledge of the noise covariance
matrix, is then reviewed in detail, and experimental results are presented for the white
noise case which indicate that the output reference method is more accurate.

1. Introduction

We consider in this paper maximum-likelihood system identification when
both the input and output signals are corrupted by Gaussian observation
noise. We assume that the unknown system can be modelled by a linear time-
invariant discrete-time transfer function with both zeros and poles and that the
available records are uninterrupted sequences of evenly spaced simultaneous
samples of input and output.

Koopmans (1937) described an eigenvalue procedure which produces
maximum-likelihood estimates provided the data can be separated into inde-
pendent blocks, each block containing P/2 successive samples of the input and
corresponding output signals, where there are P—1 unknown parameters.
Levin (1964) suggested using the procedure on uninterrupted data, organizing
it into adjacent or even overlapping blocks. Ignoring the requirement for
independence between the blocks of data produces estimates which are not
truly maximum likelihood, but which approximate the property in some sense.
Smith and Hilton (1967) have reported that the use of overlapping data blocks
in the eigenvalue procedure is preferable to the use of adjacent blocks for the
estimates from a finite record deviate less from known values in Monte Carlo
computer experiments. Their results are corroborated here. It is important
to note that this method assumes that the noise covariance matrix is known in
advance.

Astrom and Bohlin (1965) and McBride and the present authors (Rogers
and Steiglitz 1967, Steiglitz and McBride 1965) have dealt with the case when
noise is present only in the output measurements, and have presented iterative
gradient search methods for achieving maximum-likelihood estimation in this
case.

1 Communicated by the Authors. This work was supported by U.S. Army Research
Office—Durham under Contract DAHC 04-69-C-0012.
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We put forth here the idea of referring the input noise to the output and
using the iterative gradient search methods for the transformed problem. The
unknown noise colouring filter is in this case related to the unknown system
transfer function,; and this constraint must be omitted from the computation.
The resulting procedure, called the ‘output reference’ method, therefore
produces estimates which are only approximately maximum likelihood, as does
the Koopmans-Levin method. It has the advantage over the Koopmans—Levin
method of requiring no advance knowledge of the noise covariance matrix.

The formulation of a true maximum-likelihood estimate for this problem,
without any approximation, is also discussed in this paper. It is shown that
although theoretically appealing, it leads to a numerical problem which is not
now practical to solve on a digital computer.

Finally, the results of computational experiments are given, comparing the
output reference method with the Koopmans—Levin method. It is found that
the output reference method is more accurate in the white noise case investi-
gated. Thus, the output reference method seems preferable on all counts, since
it appears more accurate, and does not require knowledge of the noise covariance
matrix.

2, The output reference method

Consider the situation shown in fig. 1. To relate the input—output sequences
#(1),y(t), and the corresponding corrupted observations p(¢),q(f}, define the
following linear model in z-transform notation:

Y() = 50 X ()
P(z) = X(2)+AU(2), (1)
Q) = Y () +uV(2),

where
A(z)=a,+a, 2 +... +agz K,
' Bi)y=1+bz7 +...+bp2"F

and Uf(z), V(z) are z-transforms of mutually independent, Gaussian noise
sequences with unknown spectra.

It is convenient to assume that all noise spectra result from filtering white
noise through linear, time-invariant filters. For simplicity these colouring

filters are taken to be stable and all-pole where, of course, the pole positions

are unknown and have to be determined from the observations along with the
system parameters. Omne could equally well allow the filters to have both
poles and zeros, but here we assume:

1

=
(2) )
1
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where
Flz) = 1+fiz""+ ... +f, 2™,
G) = L+ g,z 4 b gz

and E,(z), E,(z) are z-transforms of mutually independent, Gaussian, white,
noise sequences.

Fig. 1
LINEAR

x(t) TIME =INVARIANT y(t)
DYNAMI
TEM

Auv(t) 45" v vit)
+ +
plt) OBSERVED SAMPLES OF q(t)

INPUT AND OUTPUT

Block diagram illustrating the assumed situation in which system parameter estimation
is performed.

Our primary requirement is to estimate the coefficients a;, b; and the values
of A, n.
From (1) and {2) we write:

_Afz) A N
A C
= %P(z) +0D((3E(Z), (3)
where
"D = G O By R )

Since both sequences e,(t) and e,(t) are Gaussian, and all transfer functions are
linear and time-invariant, the signal e(t) in eqn. (4) is also Gaussian. Further-
more, by proper choice of C(z)/D(2), e(t) can be made white. Thus it is possible
to view p(t) as a precisely measurable input sequence and ¢(f) as an output
sequence which includes additive, coloured, Gaussian noise, the result of
filtering white noise by an unknown filter C/D.
Let:
Ciz)=1+c iz ...y 2,
5
D) =14+dz 4. +dyzN. )
The task of estimating from input-output records p(t),q(?), t =1,2,...,7,
the values of the parameters a;,b;,¢;,d;, o has been treated elsewhere (Astrém
and Bohlin 1965, Rogers 1968, Rogers and Steiglitz 1967), where a practical
gradient search technique, the damped Gauss-Newton algorithm, is described.



Downloaded by [Princeton University] at 14:26 11 October 2011

628 A. K. Rogers and K. Steiglitz

To be precisely maximum likelihood, the output-reference method needs to
include the constraint relating C(z){D(z) to A(2)/B(z), eqn. (4). For practical
purposes the constraint is omitted and the method thereby becomes only
approximately maximum likelihood.

The gradient search method employs the log-likelthood function:

L@ = In[P(g(1), ...,q(T) | p(L),...,p(T),8, )]

1 6
—gln?w Thho-s— Lez() (6)
20% 5
where
9 = [ao,...,aK,bl,...,bL,Gl,. ,G;”, ane t\]
and

N D) A,
86 - 5| e -5 (z)] .

The function L(8) is maximized by a choice 8 and o.

3. The Koopmans-Levin method

We choose to derive the eigenvalue method since the details are not easily
found elsewhere (they were omitted from Levin (1964) and Smith and Hilton
(1967)), and they are very relevant to the present discussion of maximum-
likelihood estimation.

The sequences x(2), (), p(t), q(t), u{t), v(t) shown in fig. 1 are arranged into
data blocks and the following P-vectors defined:

@) = [y, gt = 1), ..o, y(t— L), 28}, .., 2t — K)]T,
( ) = [g(t), gt 1), ..., g{t = L), p(8), ---,p(t—K)]',
= [w(®),v{t - 1), ..., vt — L), u{t), ..., u(i — K)]',
0=[1,b,...,bp, —ag, ..., —ax],
where P = K+ L+2.
The structure of the system is then given by:
w'(t)8 =0, (8)
equivalent to Y(z) = A(z) X(z)/B(z).

The corrupting noises represented in n(¢) are assumed to be Claussian with
zero mean and known covariance matrix:

(7)

Elnit)n'(t)] = (9)
Thus for each data block there is a conditional probability density function:
P(A]8) = [2a] "2\ Z]|7 2 exp { = | M) — (t) Iz -1%}- (10)

Tf we choose N independent blocks of data at times ¢; then we can define a
log-likelihood function:

PN N 1 X
L) = ——-In2z~ZIn |Z JI—QjEI A () — (5} -2 (1m

and for maximum-likelihood estimation, a value 9§ is chosen to maximize [
subject to the structural constraints:

w8 =0, j=1,2,..,N. (12)
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Clearly, due to its Gaussian form, 7(8) is a maximum when
1N

J =g BLIMG) =t [z + 2V 0] (13)

is a minimum, ¥, being Lagrange multipliers. i

Now J depends on @ indirectly through p(¢;) and thus to find 8, we choose
first to minimize J with respect to w(¢;). This is analogous to estimating the
input—output sequences, a step we are forced to take in finding an exact
maximum-likelihood procedure with uninterrupted data. Provided the obser-
vation blocks of data are independent, J can be viewed as the sum of N
independent quadratic forms, each having an additional sealar constraint. The
minimum of J is given by the sum of the separate minimum values, readily
found by applying the necessary conditions:

gradJ = —Z-1A(t;) —w(t)]+V,;0=0, §=1,2,..,N. (14)
)
Thus o
W78 = A(t;) — (). (13)
Premultiplying by 8" and using the structural constraint, eqn. (12) gives:
0'A(t)
X — 4 v
¥; = 570 (16)
Alternatively from eqn. {(14), we have:
w(t;) = A(t;) — ¥, 20 (17)

and thus substituting in eqn. (13):

1 N
minJ =5 ¥ 'W;(¢;) 0

rily) j=1
16’08
T 2926’ (18)
where
N
D= TGN (19)
=

To minimize J over 0, it is now therefore necessary to choose 8 so that

minJ is a minimum. Due to the form of minJ this is easily accomplished by
wily) [TT{A)
making @ the eigenvector, normalized so that its first component is unity,

corresponding to the smallest eigenvalue of:
(D—yZ)8 =0. (20)
The analysis hinges on the observation blocks A(f;) being independent.
Were they to be interrelated by constraints arising from the system transfer
function then the minimization of J would require the inclusion of these
constraints as well as those of eqn. (12). If the observation blocks are adjacent
or overlapping, the estimation that results is not truly maximum likelihood,
a point noted by McBride and Levin (1965), but not mentioned by Smith and
Hilton (1967). With limited data one chooses to ignore the constraints and,
as suggested by Levin (1964), solve for 8 through the eigenvalue method making
the matrix D:
T
D= S AN (). (21)

(=1
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4. True maximum-likelihood estimation

When both input and output records are corrupted by additive Gaussian
noise, as represented in fig. 1, there is no difficulty in expressing the log-
likelihood function:

L = In[P(g(1), ---,Q(T),P(]L g 2(1), ..., 2(T), 8,2, 1))
r r
— —TIn27—TlnAu— 2)\2 NG )_2%2‘:;1522@), (22)

where in z-transform notation

£,(2) = Miy(2) = F(2) [P(2) - X(2)),

23
Byfe) = pliy(z) = G(2)[Q(2) —-‘%X(Z)]- 22)
Clearly L is a function of the unknown input sequence z(t), as well as A,
and the coefficients of A, B, F and G. Thus its maximization requires that the
sequence z(¢) be estimated along with the parameters. As in the Koopmans-
Levin procedure, one possibility is to maximize L with respect to the input
sequence z(t), before choosing the parameter vector 6.
For simplicity of discussion we assume the noise to be white

(F(z) = G(z) = 1),
and omit from expressions the explicit dependence on z writing X for X(z) and
X for X(z~"). Then

L=-Tn2r—Tndu-J;—-J,, (24)
where, using Parseval’s relation,

1 I 1 —
Ty = g ot = AMJ§@-M( n%

P-
o= —2%5 céézz(t) 2.‘11«2 2mj § ( )(Q_—X)

L 13 & maximum when J = J; +J, is a minimum. Differentiating J with respect
to x(r) and applying the necessary conditions gives for every =:

dz.
(25)

aJ  —=1[1 1 ANA .,
ax_(v)_%ﬂ)\_zw—x)*p(@‘ﬁx)ﬁ]z dz = 0. (26)
Thus
1 1 A NA
ﬁ(P_X)-*-;E( _EX)§=O
or

© _ P+ (A1B)Q
T 1+ (%) (AA[BBY’
which is clearly recognizable as the solution of a Wiener-type filtering problem.
Substituting this expression in those for J; and J, gives:
1 1 [(AP-BQ)(AP~BQ)dz
(1) 2 2mj (u2BB+a244) =2’

(27)

(28)
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which is analogous to eqn. (18) above in the discussion of the Koopmans-Levin
eigenvalue procedure. Notice that when A = 0 then X = P and eqn. (28) can
be derived directly as the function to be minimized in a maximum-likelihood
estimation of parameters in the presence of white output noise (see Astrém
and Bohlin (1965), Steiglitz and McBride (1965)).

The problem, of course, is not yet solved for it is now necessary to maximize
L with respect to the system parameters and A, u:

1 1 [(AP—BQ)(AP—BQ)dz

L=—Tin2r—Tlndg—s — h DRI (g
ey o A T S By ZBBEinAd 2 Y

The procedure is complicated by the need to factor the denominator of the
integrand. Assume:

,ﬁBB+/\2A2 = HH, (30)
where all zeros of H lie inside the unit eircle. Then

%fﬁ (AP—BQ)AP-BQ)dz _ I .\ (31)

HH zZ =

where the z-transform of e(t) is:
B(z) = 3 (AP - BQ), (32)

and therefore the signal e(f) can be obtained numerically by suitably filtering
the observations p(t) and ¢(t)—provided only that H is available by factoring
p*BB+ A2 AA. In any iterative search for a maximum of L, the factorization
is necessary at each step causing considerable difficulty, one that clearly does
not arise if either A or u is zero.

The search for the maximum of L requires not only the numerical calculation
of e(t), but also in any gradient procedure, the gradient of e(t) with respect to
the parameter vector and this too is complicated by the form of the integrand
in eqn. (31). In the coloured-noise case the equations become even more
complicated. For these reasons the method has not been programmed, despite
an interest in comparing the results of approximate techniques with those of
true maximum likelihood.

5. Experimental comparison between the output reference and the Koopmans—Levin
methods

For purposes of comparison, the output reference methods and the
Koopmans-Levin were used to estimate system parameter values from data
samples generated with the following pulse transfer function:

A(z) 0-482~1 4+ 0-48z2
B(z)  1-1-824z7140-88252~2"

It is similar to the one used in the work of Smith and Hilton (1967) and repre-
sents an under-damped, second-order system. White noise was added to both
the input and the output records, with A% = u% = 0-1, producing the noise-
corrupted sequences from which the system parameters were estimated. Ten
different noise samples were used, and for each a record of 180 samples of
input-output behaviour produced.
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Figure 2 shows the results of the Koopmans-Levin method using 60
adjacent data blocks, each containing three consecutive input—output samples
to form the necessary six vectors for the method. It was assumed in applying
the Koopmans-Levin method that the noise covariance matrix was known to
be its true value.

Fig. 2

x(t) 0487 (1+79) y (t)
1-1-824Z 1+ 0-8827 &

White Nolse White Noise

N/S Ratio
= 1/10

piY) 180 Samples ait)

Koopmans-Levin parameter estimation from finite records, adjacent data blocks.

Koopmans-Levin eigenvalue solution to determine the coefficients of the model:

o AlD)
Y(z) = Bz X{z},
where
Az) = apg+a,z7  +a, 278,
Bz} = 1+4+b, 27 46,272
Ten estimates for different white-noise disturbances:
180 samples arranged into 60 adjacent sets

Istimate a, a, ty —b, b,
1 0-688 0-370 1-363 2-442 1-325
2 —0-045 0-727 0-136 1-604 0-859
3 —0-163 —0-130 0-162 1-181 0-332
4 —0-958 -1-370 1-:024 1-885 1-160
b —1-555 0-231 0-423 1-955 1-130
6 0-476 1159 1-919 2:038 1-114
7 —0-475 —0:863 0-483 2:673 1-999
8 —0:638 1-833 0-945 1-896 0-966
9 —0-181 0-522 0-609 1-313 0-399
10 0-374 —-2-774 —6-817 4973 4:203
Mean —-0-317 0-275 0-785 1700 0-929
Variance 0-478 0-956 0-346 0-233 0-247

t Values ignored in calculating mean and variance.

Figure 3 shows the results of the same method using 178 overlapping data
blocks, each again containing three consecutive input-output samples. The
estimated values of system parameters are clearly closer, on average, to the
truc values by this use of the data.

Figures 4 and 5 show the results obtained with the output-reference method
using three and four parameter noise-colouring filters, respectively. The
cstimated values of system parameters are more accurate than those obtained
above, and the method does not seem very sensitive to the assumed order of
the noise-colouring filters. Thus, it appears that the output reference method is
preferable over the Koopmans-Levin method, especially when little is known
about the covariance of the observation noise.
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Fig. 3
-1 -1
w(t) 048z (1+z ) y(t)
1-1-8247 ' +0-8827 °
White Noise White Noise
N/S Ratio
= 1/10
ply) 180 Samples alt)
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Koopmans-Levin parameter estimation from finite records, overlapping data blocks.

Koopmans-Levin eigenvalue solution to determine the coefficients of the model:

AR)
(2} = =—— X
V() = 5oy Y@
where
A(z) = ag+a, 2= +a, 278,
B()=14+b,z714+b,2"2%
Ten estimates for different white-noise disturbances:
180 samples arranged into 178 overlapping sets

Estimate a, a, ay -b, by
1 0-560 — 0245 1-048 1-805 0-868
2 —0-864 0-689 0-670 1-834 0915
3 0-185 —0-274 0-644 1-862 0-935
4 0-087 —0-016 0-986 1-807 0-876
5 —-0-341 0-691 0-500 1-812 0-885
6 —0-186 —0-078 1-151 1-807 0-875
7 0-015 0-038 0-979 1-777 0-842
8 —0-753 0-917 0-769 1-7717 0-846
9 —-0-010 0-498 0635 1:788 0-851
10% 0-567 0419 - 0391 1-926 0-992
Mean —0-145 0-247 0-820 1-807 0-877
Variance 0-203 0-205 0-051 0-0007 0-001

T Values ignored in calculating mean and variance.
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Fig. 4

x(t) o481+ 7N )
1~18247+0-8827 2

White Noise White Noise
N/S Ratio N/S Ratio
= 1/10 = 1710

p(t) q(t)

180 Somples
Output reference parameter estimation from finite records, three-parameter noise filter.

Gradient search to find the maximum likelihood estimate using the model:

Alz) O(z)
Q) = B) P(z)+2A Diz) E@),
where
Az) = ag+a,z7 +a, 272,
B(z)=14b271+by278,
Cz)=l+¢27,
D@E)=1+d, 2" +d,z"2,
T'en estimates for different white-noise disturbances
Estimate a, a, a, -b, b, A?
1 - 0-256 0-742 0-326 1-834 0-897 0-115
2 0-319 —0:146 0-809 1-819 0-880 0-122
3 0-164 0-290 0-627 1-810 0-865 0-134
4 ~0-257 1:060 0-047 1-838 0-894 0-107
5 —0-008 0-180 0-785 1-822 0-880 0-132
6 0-056 0-202 0-560 1-824 0-881 0-118
ki —0-149 0-707 0-325 1-816 0-878 0-122
8 —0-093 0-492 551 1-815 0-871 0-123
9 —0-317 0-717 0-368 1-821 0-882 0-126
10 0-398 —0-056 0-635 1-826 0-883 0-132
Mean —0-014 0-420 0-503 1-822 0-881 0123
Varianco 0-061 0-150 0-056 0-0013 0-0003 —
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Fig. 5

x{t) oasZ (1 +21) y(t)
1-1.8247 '+ 0-8827 2

White Noise White Noise

NfS Ratio N/S Ratio
=1/10 =110
p(t) 180 Samples q(t)

Qutput reference parameter estimation from finite records, four-parameter noise filter.

Gradient search to find maximum-likelihood estimate using the model:

_4@E C@)
Qz) = oy PO+ A 503 o),
where
A@) =ay+a, 37 +ayz78,
Blz) = 1+b,2 +b, 22,
Clz) = 14c 27 4,278
Diz) = 14+d,2"14+d, 273,
Ten estimates for different white-noise disturbances
Estimate a, a, a, -b, by A2
1 —0:253 0-735 0-331 1-834 0-897 0115
2 0-337 —0-155 0:-797 1-820 0-881 0-122
3 0105 0-391 0-457 1-828 0-886 0-128
4 —0-201 1-019 0-084 1-831 0-888 0-101
5 0-001 0-198 0-604 1-846 0-904 0-123
6 0-136 0-112 0-532 1.830 0-886 0-117
7 ~0-142 0717 0-311 1-817 0-878 0-124
8 - 0-082 (0-488 0-535 1-817 0-873 0-123
9 =-0-320 0-722 0-364 1-821 0-882 0-126
10 0-339 0-201 0-449 1-826 0-883 0-124
Mean —0-008 0-443 0-446 1-827 0-886 0-120
Variance 0-055 0-129 0-037 0-00008 0-0000 —
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