

Implementation of Parallel Arithmetic
in a Cellular Automaton

Richard K. Squier, Ken Steiglitz, Mariusz H. Jakubowski

Abstract

We describe an approach to parallel computation using particle propagation and collisions
in a one-dimensional cellular automaton using a particle model — a Particle Machine (PM).
Such a machine has the parallelism, structural regularity, and local connectivity of systolic
arrays, but is general and programmable. It contains no explicit multipliers, adders, or other
fixed arithmetic operations; these are implemented using fine-grain interactions of logical
particles which are injected into the medium of the cellular automaton, and which repre-
sent both data and processors. We give parallel, linear-time implementations of addition,
subtraction, multiplication and division.

1: Introduction

The goal of this paper is to use Particle Machines (PMs) to incorporate the parallelism
of systolic arrays [3] in hardware that is not application-specific and is easy to fabricate.
The PM model, introduced in [8, 6, 7], uses colliding particles to encode computation. A
PM can be realized in VLSI as a Cellular Automaton (CA), and the resultant chips are
locally connected, very regular (being CA), and can be concatenated with a minimum of
glue logic. Thus, many VLSI chips can be strung together to provide a very long PM,
which can then support many computations in parallel. What computation takes place is
determined entirely by the stream of injected particles: there are no multipliers or other
fixed calculating units in the machine; the logic supports only particle propagation and
collisions. So, while many algorithms for a PM mimic systolic arrays and achieve their
parallelism, these algorithms are not hard-wired but are “soft” in the sense that they do
not use any fixed hardware structures.

An interesting consequence of this flexibility is that the precision of fixed-point arith-
metic is completely arbitrary and determined at run time by the user. Variable precision
arithmetic is exploited in a linear-time, arbitrary-precision division algorithm described in
[10] and illustrated in Section 3.

The recent paper [7] shows that FIR filtering of a continuous input stream, and arbitrarily
nested combinations of fixed-point addition, subtraction, and multiplication, can all be
performed in one fixed CA-based PM in time linear in the number of input bits, all with
arbitrary precision.

The description of a particular PM includes its collision rule set, which determines the
results of collisions of particles. Because these rules only partially specify their input, there
are rule sets whose rules conflict on the outcome of some collisions: that is, one rule states

*Richard Squier is with the Computer Science Department at Georgetown University, Washington DC
20057. Ken Steiglitz and Mariusz Jakubowski are with the Computer Science Department at Princeton
University, Princeton NJ 08544.

particles injected

o= —=—0<=0 O 0

to infinity ———=
Figure 1. The basic conception of a particle machine

that some particle is present in the outcome, and another rule states that it is not. If,
given a particular set of inputs to the PM, one of these conflicting collisions occurs, we say
the rule set is not compatible with respect to that set of inputs. The PM model is Turing
equivalent, so the general question of compatibility is undecidable. However, if the set of
inputs is sufficiently constrained, as is usually the case, the constraints can be used to test
compatibility in time polynomial in the number of particles and rules. See [10] for a proof
of undecidability and a discussion of a practical solution to the problem.

We define the PM model in the next section. We then conclude with high-level de-
scriptions or simulation examples of parallel, linear-time PM implementations of addition,
subtraction, multiplication, and division.

2: Particle machines

Figure 1 shows the general arrangement of a PM. Particles are injected at one end of the
one-dimensional CA, and these particles move through the medium provided by the cells.
When two or more particles collide, new particles may be created, existing particles may
be annihilated, or no interaction may occur, depending on the types of particles involved
in the collision.

The state of cell 7 of a 1-d CA at time ¢ + 1 is determined by the states of cells in
the neighborhood of cell ¢ at time ¢, the neighborhood being defined to be those cells at
a distance, or radius, r or less of cell <. Thus, the neighborhood of a CA with radius r
contains k = 2r + 1 cells and includes cell i itself.

We think of a cell’s n-bit state vector as a binary occupancy vector, each bit representing
the presence or absence of one of n particle types (the same idea is used in lattice gasses;
see, for example, [2]). The operation of the CA is determined by a rule, called the update
rule, which maps states of the cells in the neighborhood of cell ¢ at time ¢ to the state of
cell 2 at time ¢ + 1.

Figure 2 illustrates some typical collisions when binary addition is implemented by par-
ticle collisions. This particular method of addition will be one of two described later when
we develop arithmetic algorithms. The basic idea is that each addend is represented by a
stream of particles containing one particle for each bit in the addend, one stream moving
left and the other moving right. The two addend streams collide with a ripple-carry adder
particle where the addition operation takes place. The ripple-carry particle keeps track
of the current value of the carry between collisions of subsequent addend-bit particles as
the streams collide least-significant-bit first. As each collision occurs, a new rightmoving
result-bit particle is created and the two addend particles are annihilated. Finally, a trail-
ing “reset” particle moving right resets the ripple-carry to zero and creates an additional
result-bit particle moving right.

We need to be careful to avoid confusion between the bits of the arithmetic operation
and the bits in the state vector. The ripple-carry adder is represented by two particle types,
the bits of the rightmoving addend and the rightmoving result are represented by two more
particle types, the leftmoving addend bits are represented by another two types, and the

O ©- @~ <@ <@

One ©- @~ [<@ <@

o~
e © F @

& o[oo

O
G- ©-

G [©- ©-

&
OF OF

f] @ ©- ©-

Figure 2. An example illustrating some typical particle collisions, and one way to
perform addition in a particle machine. What is shown is actually the calculation
01+11 = 100, implemented by having the two operands, one moving left and the other
moving right, collide at a stationary “ripple-carry” particle. When the leading, least-
significant bits collide, in going from row 2 to 3, the ripple-carry particle changes its
identity so that encodes a carry bit of 1, and a rightmoving sum particle representing
a bit of 0 is created. The final answer emerges as the rightmoving stream 100, and the
ripple-carry particle is reset by the “equals” particle to encode a carry of 0. The bits
of the two addends are annihilated when the sum and carry bits are formed. Notice
that the particles are originally separated by empty cells, and that all operations can

be effected by a CA with a neighborhood size of 3 (a radius of 1).

reset particle is represented by one additional type. Thus, the operations shown in Fig.
2 use seven bits of the state vector. We’ll denote by C; the Boolean state vector variable
for cell 4. The individual bits in the state vector will be denoted by bracket notation:
for instance, the state vector bit corresponding to a rightmoving zero particle in cell i is
denoted C;[0gr]. The seven Boolean variables representing the seven particles are:

C;[OR] rightmoving zero

C;[0z] leftmoving zero

Ci[1R] rightmoving one

Ci[1g] leftmoving one

Ci[+0] ripple-carry adder w/ zero carry
Ci[+1] ripple-carry adder w/ one carry
Ci|=R] rightmoving adder reset

All the particle interactions and transformations shown in the example can be effected
in a CA with radius one; that is, using only the states of cells ¢ — 1, ¢, and 7 + 1 to update
the state of cell i. A typical next-state rule (as illustrated in the first collision in Fig. 2)
therefore looks like

Ci[0R] Y = (Ci_1[1R] A Cil+o] A Ciga[11])@ (1)

which says simply that if the colliding addends are 1 and 1, and the carry is 0, then the
result bit is a rightmoving 0.

Notice that using two state-vector bits to represent one data bit allows us to encode the
situation when the particular data bit is simply not present. (Theoretically, it also gives us
the opportunity to encode the situation when it is both 0 and 1 simultaneously, although
the rules are usually such that this never occurs.) It can be very useful to know that a data
bit isn’t present.

In [10] we estimate that 300 cells of a CA implementing a PM with 100 rules and 36
particles will fit on a e¢m? 100 MHz CMOS chip. Such a PM can implement all four
arithmetic operations in linear time.

3: Linear-time arithmetic

We conclude with sketches of linear-time PM implementations of the four basic arithmetic
operations. For details, see [6, 7]. Note that in all of these implementations, we can consider
velocities as relative to an arbitrary frame of reference. We can always change the frame of
reference by appropriate changes in the update rules.

Figure 3 shows in diagrammatical form the scheme already described in detail in Fig.
2. Figure 4 shows an alternate way to add, in which the addends are stationary, and a
ripple-carry particle travels through them, taking with it the bit representing the carry.
We can use either scheme to add, simply by injecting the appropriate stream of particles.
The choice will depend on the form in which the addends happen to be available in any
particular circumstance, and on the form desired for the sum. Note also that negation can
be performed easily by sending a particle through a number to complement its bits, and
then adding one — assuming we use two’s-complement arithmetic.

processor
particle

(addend 1][] (addend2]

Figure 3. The particle configuration for adding by having the addends collide bit by
bit at a single processor particle.

processor
particle
(addend 1) .

]

(addend 2)

Figure 4. An alternate addition scheme, in which a processor travels through the

addends.

Figure 4 also illustrates the use of “tracks”. In this case two different kinds of particles
are used to store data at the same cell position, at the cost of enlarging the particle set.
This turns out to be a very useful idea for implementing multiply-accumulators for FIR
filtering, and feedback for IIR filtering [7]. The idea is used in [10] for implementing division,
adapting an algorithm due to Leighton [4].

Figure 5 shows the particle arrangement for fixed-point multiplication. This mirrors the
well known systolic array for the same purpose, but of course the structure is “soft” in the
sense that it represents only the input stream of the PM which accomplishes the operation.

Figure 6 shows a picture generated by a simulation of the division example described in
[10]. The simulated PM uses 38 types of particles and 112 rules, and is capable of realizing
all the applications mentioned in this paper, including FIR and IIR filtering.

Finally, Fig. 7 shows a completely different algorithm implemented on exactly the same
machine. This example computes the infinite series 1/(1 — z) = 1 4+ a(1 + z(1 + ...)...),
for the case x = 0.5. Four bits of precision are used in the calculation, and a test particle
and associated rules are used to detect the termination condition, which is that no change
occur in the four most significant bits of the intermediate result.

The reader is referred to [6, 7, 10] for more detailed descriptions and a discussion of
nested operations and digital filtering.

4: Discussion

In a way, a PM is a programmable parallel computer without an instruction set — a
NISC (No Instruction Set Computer). What happens in the machine is determined by the

processor
particles

[leftmultipicand] O 0 0 000 [rightmuttipicand |

Figure 5. Multiplication scheme, based on a systolic array. The processor particles
are stationary and the data particles collide. Product bits are stored in the identity of
the processor particles, and carry bits are stored in the identity of the data particles,
and thereby transported to neighbor bits.

space —=

- mirror

mirror

‘. mirror

second iteration first iteration

=— time

- mirror

third iteration

values of x; computation region values of y,

Figure 6. PostScript generated by a simulation of the division implementation. Fach
cell is represented by a small circle whose shading depends on which particles are
present in that cell. For clarity, only every seventh generation is shown. The example

is 1/7.

Josnw

value of x

Joinw

space —=

JoJnw

eooce esece esece oo o
ecec o0 esocooe XTI ece 000
ece: oo eee: oeoe ece: oee ece: ooo
ooe ooe oo ooe eoe eoe eoe oo
ooo ooe ooe ooo ooe ooe. ooe o
ooo ooe ooo ooe ooe ooo ooe c
oo ooo eoo ooe ooe ooe ooe o
eoe ece: oo ecec oee eoe: oee =
eceee ececo0e ececo0e ececo0e ©
ooce ecoce ecoce ecece o
o
000 000 o0 o0 o0 o0 H = C
eecececcesesesesse. eececoccecesscsssesesessssssssesesssse S O
° o o o o ° oomm m w
n F
ooe ceee eeee ceee ecoe ceee ecoe ceee o)
oo ceee eese ceee eeee cece eeee Y =1
o cececeee sececeee cecescee oo 5
cecece secece ceceee o ke]
@®©
cece ceececce cececcee
uostredwod
eooce eccece
5 2 e oot
) W&\@.ﬁ. . ouee
3¢ g
[
eccccece
N LIYTYTTTY
,Q\u o0 —
» ood L
o =
o N
c
@®©

awn — =

Figure 7. Simulation of a different algorithm on the same machine used for division.

The computation is the evaluation of the power series for 1 /(1 —x) by Horner’s Rule.

Every second generation is shown.

stream of input particles. At this point we have accumulated tricks for translating systolic
arrays and other structures into particle streams, but general problems of programming a
PM, such as designing higher-level languages and building compilers, are unexplored.

The three main advantages of PMs for doing parallel arithmetic are the ease of design
and construction, the high degree of parallelism available through simple concatenation,
and the flexibility of word length — which depends, of course, only on the particle groups
entering the machine.

In summary, the particle model gives us a new way to think about parallel computa-
tion. The medium that supports the particles need not be a CA [5], and even if it is, the
implementation need not be in VLSI.

5 Acknowledgement

This work was supported in part by NSF grant MIP-9201484, and a grant from George-
town University.

References

[1] Cappello, P. R., “Towards an FIR Filter Tissue,” Proc. ICASSP 85, pp. 276-279,
Tampa, FL, Mar. 1985.

[2] U. Frisch, D. d’Humie’res, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,
“Lattice gas hydrodynamics in two and three dimensions,” Complex Systems 1 (1987),
pp. 649-707.

(3] H. T. Kung, “Why systolic architectures?” IEEE Comput. 15 1 (Jan. 1982), pp. 37-46.

[4] F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
man Publishers, San Mateo, CA, 1992.

[5] N. Margolus, “Physics-like models of computations,” Physica 10D (1984), pp. 81-95.

[6] R. K. Squier and K. Steiglitz, “Subatomic particle machines: parallel processing in
bulk material,” submitted to Signal Processing Letters.

[7] R. K. Squier and K. Steiglitz, “Programmable Parallel Arithmetic in Cellular Au-
tomata using a Particle Model,” Tech. Rept. CS-TR-478-94, Computer Science Dept.,
Princeton Univ., Dec. 1994. To appear in Complex Systems.

[8] K. Steiglitz, I. Kamal, and A. Watson, “Embedding computation in one-dimensional
automata by phase coding solitons,” IEEE Trans. on Computers 37 2 (1988), pp.
138-145.

[9] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley,
Reading, MA, 1985.
[10] R. K. Squier, K. Steiglitz, and M. H. Jakubowski, “General Parallel Computation
without CPUs: VLSI Realization of a Particle Machine,” Tech. Rept. CS-TR-484-95,
Dept. of Computer Science, Princeton University, Feb. 1995.

