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Abstract—An iterative technique is proposed to identify a linear
system from samples of its input and output in the presence of noise
by minimizing the mean-square error between system and model
outputs. The model chosen has a transfer function which is a ratio
of polynomials in z\. Although the regression equations for the op-
timal set of coefficients are highly nonlinear and intractable, it is
shown that the problem can be reduced to the repeated solution of a
related linear problem.

Computer simulation of a number of typical discrete systems is
used to demonstrate the considerable improvement over the Kalman
estimate which can be obtained in a few iterations. The procedure is
found to be effective at signal-to-noise ratios less than unity, and
with as few as 200 samples of the input and output records.

I. INTRODUCTION

Many investigators have considered the problem of identifying
plants from input-output observation records. Indeed, the control
engineer is in touch with physical reality either through the analysis
of physical models or through the examination of observed system
signals, and the latter is often the only information available. This is
especially true in changing environments, where an adaptive ap-
proach is called for. The characterization of physical systems by a
parametrized model remains today a central problem in control
theory. . .

Of special utility when a high-speed digital computer is available
is a linear sampled-data model [1], [2], which assumes that the input
and output samples are related by a rational z-transform

N(z)/D(z)
where
N =ar+air?+ -+« + apaz™ D

and :
D) =144 4Bz

The use of a rational model permits greater freedom with fewer
parameters than the polynomial obtained by linear regression [3]
and requires no a priori assumption about the settling time. Since the
number of parameters must be small compared to the number of data
points when noise is present, the rational function permits more accu-
rate identification when record length is limited, e.g., in slowly time-
varying systems. Also, every linear, lumped-parameter physical plant
has a s-transform of this form. A recently proposed identification
method using the model [4] has optimal characteristics but is waste-
ful of data and requires an elaborate nonlinear computational tech-
nique.

Kalman [1] suggested finding the 2u coefficients by a linear re-
gression on the input-output record. In Fig. 1, if x and w are the avail-
able finite records of input and output samples, respectively, the fol-
lowing minimization is involved:

1 d
ch,=5’r_j{|xzv—w1)|27'=min o

where
X =X(@) =2 xo
W=W() = Z wig
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Fig. 2. True model-plant output error.

where the summations are carried out over the record length, and
where the contour of integration is the unit circle. The solution to
this problem is relatively simple and convenient to implement; it
involves the inversion of a 21X 2# correlation matrix. In Appendix 1
it is shown that the solution is

b=Qc (2

°= [—ag]

is the coefficient vector, and @ and c are appropriate correlation
matrix and vector computed from the records of x and w.

While the minimization problem shown diagrammatically in Fig.
1 is easy to solve with a digital computer, it is not the one usually of
interest. In fact, the error residual of (1) does not have any real
physical interpretation. A more meaningful problem would be to
minimize the error shown in Fig. 2

S

where

 §
iz. = min, - (3)
z

This is the mean-square error between the predicted output and the
observed output of the plant. Unfortunately, (3) is a highly nonlinear
regression problem, and to thesauthors’ knowledge cannot be solved
exactly. It is the purpose of this paper to present a technique for
carrying out the minimization (3) by iteratively carrying out min-
imizations of the type (1). Thus the method is inherently no more
difficult than the Kalman linear regression, but exchanges increased
computation time for a better approximation to the solution of (3).
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Fig. 3. The iterative prefiltering scheme.

I1. THE ITERATIVE PROCEDURE

The idea of the iterative procedure is shown diagrammatically in
Fig. 3. First the minimization problem (1) is solved, using (2) and the
original input-output records. The result is a “first estimate” of

N(z) and D(z), the Kalman estimate. Call these Ni(z) and D\(z). The

original input and output records, x and w, are then filtered by the
digital filter 1/D\(z), yielding new, prefiltered input and output rec-
ords £ and . These prefiltered records are then used in place of the
original input-output records in (2) and new estimates Ny(z) and
Dy(z) are obtained. The digital filter 1/Dy(2) is then used to find #
and % from x and w, and so forth. At each stage, the previous de-
nominator is used to prefilter the input and output records, so that
Ni(2) and Di(z) are found such that
’dz D.

== k-

i=1,23---, and Dy=1,

’dz
z

r{' Xﬁ— _ DI
J Dl—l Dl—l

= min,

If convergence is obtained, that is, if the coefficients of D; converge
as 1 becomes large, the error of Fig. 3 is equal to the error of Fig. 2.
While no proof of convergence can be offered, every experiment with
this technique conducted thus far has resuited in a decrease in mean-
square error. This procedure is referred to as mode 1 iteration.

The estimate could be further improved, however, if the partial
derivatives of the true error criterion were equal to zero at conver-
gence. This condition does not hold at the end of mode 1 iteration be-
cause the two errors, though equal, are different functions of the
model parameters. [n Appendix II it is shown that a solution to this
second problem is still given by (2), but the method of computing
@ and c is altered. This procedure is called mode 2 iteration. The
basic difference between the two methods is the fact that in mode 1
the measured plant output wis used as an approximation to the model
output v.

Mode 2 must be started from an initial set of parameters, and is
unstable (does not converge) if the initial values are far from the
optimum. One or more iterations in mode 1 can be used to provide
a starting point for mode 2; in many problems a more satisfactory
procedure is to “slide” smoothly from 1 to 2 by using a mixture of w
and v during intermediate iterations. The difference in mean-square
error is usually small, but convergence in mode 2 invariably means
a superior estimate, and one which has in several cases been verified
by gradient methods to be the true minimum. In Section III the re-
sults of some experiments are described.

ITI. EXPERIMENTAL RESULTS

To investigate the behavior of the technique, tests were made
using the IBM 7094 digital computer. Random numbers were gen-
erated and used for the input record x; these were filtered through a
known plant to produce the output signal y. To y were added inde-
pendent random numbers with zero mean to produce the corrupted
output signal w. The iterative identification procedures described in
Section 11 were then carried out; with each iteration the records x
and w were prefiltered and the appropriate linear regression equations
were solved to yield a new estimate for N and D and a new prefilter
for the next iteration. At each stage two mean-square errors were
calculated and recorded; first the mean-square error between the cor-
rupted output of the plant and the output v from the model N/D
(refer to Fig. 2)

Ev=avel[y+n— v,

The second mean-square error is the error between the uncorrupted
plant output and the output of the model N/D

E: = ave |y — o]

E, is the error of (3) and is the one that is to be minimized. Its mini-
mum value should be near the variance of the noise. E; is indicative
of the accuracy of the identification, and determines whether the
identification is useful. Throughout these experiments the variance of
the uncorrupted output y was fixed at unity, and record lengths of
203 points were used. It was found that for a fourth-order identifica-
tion, computing time was about two seconds per iteration.

The integrands which determine the errors in (1) and (3) differ
by a factor of 1/[D|?3, so that if |D| is nearly constant on the unit
circle the original Kalman estimate, which minimizes (1), will come
close to minimizing (3) as well. This will happen if the poles of the
original plant are well within the unit circle. In this case the Kalman
estimate will have associated with it an E, which is close to the noise
variance and the iterative technique cannot be expected to yield a
great improvement.

Figure 4 illustrates the behavior of the mode 1 iteration when the
original Kalman estimate was relatively poor (this plant had a double
pole at 2=0.9). Here both E, and E, decrease steadily, and are still
decreasing at the 25th iteration.

Figures 5, 6, and 7 illustrate the behavior of the iterative tech-
nique when the original Kalman estimate is relatively good. In these
cases mode 1 iteration still produces significant improvement espe-
cially in E;. However, both E, and E; tend to reach relative minima.

As would be expected, the experimental results show that in all
cases the identification is better at low noise levels.

Figure 7 shows the difference between modes 1 and 2 in a case
where the actual plant is of higher order than the model. Mode 1
identification error is about 15 percent larger than the mode 2 mini-
mum, whereas the Kalman error is 450 percent larger. These figures
are typical of the relative improvement attainable by the iterative
methods. Convergence of mode 2, once a rough identification is ob-
tained, is often, as in this case, much more rapid than that of mode 1.

IV. CoNCLUSIONS

The iterative identification methods described in this paper have
given significant improvement over the Kalman estimate in every
case considered. Successful convergence within 10-20 iterations has
been obtained in more than fifty widely varying problems without
failure. Each iteration is computationally identical to the Kalman
linear regression except for prefiltering of the input and output rec-
ords. Hence the method is well suited to high-speed digital computers
and appears to have practical applications.

Further investigation in this field will include trials with input
signals and noises of various spectra.
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Fig. 4. Behavior of mode 1 when the original Kalman estimate
is relatively poor. Second-urder plant and model.
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Fig. 5. Behavior of mode 1 when the original Kalman estimate is

relatively good. Third-order plant and model.
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Fig. 6. Behavior of mode 1 for fourth-order plant and model.
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different from that of Fig. 6. and a third-order model was used.




APPENDIX I
SoLuTION OF LINEAR REGRESSION EQUATIONS
The error of Fig. 1 at time j is given by
n—1 n
¢ = Z aixii — 2 Bawii — wj.

$m0 Sl

If the coefficient vector & and the input-output vector g; are defined
by

¥ = [ao, Tty Qna, "'Bly Tty —Bﬂ])
qi, = [xi'r Tty Fiemal, Wi, 0, wj-"];
this becomes
6 =g’ — w; @

where the prime denotes the transpose. Summing on j over the record
length and taking the gradient with respect to & yields

grad (2 ¢%) = 0/08(2 ¢*) = 23 (3¢;/a8)e; = 22 qye; = 0. (5)
Substitution of (4) into (5) gives '

(X 9ia)s = 3 wig;.

If the 27X 2n correlation matrix is defined as

Q=2 g

and the 2z correlation vector as

c= 3 wg;
the solution to the original minimization problem can be written as
& =Q lc.
The same derivation applies in minimizing the error of Fig. 3,
except that q; is defined in terms of £ and #%.

APPENDIX 1]
MODE 2 ITERATION
Since the true error E(g) is given by
N(z)
E(z) = X(g) ~— —
(2) (2) 6 W(s), (6)
its partial derivatives are given by

_____GE(z) i(_(z_) = X(z)

Aats = D(z)
Ok(s) —X@N@ ., V@ . o
aﬁ‘. = D’(Z) = D(z)z = 17(z)z . (7)

Since the operations of differentiation and the inverse transform
can be interchanged, if a new vector p; is defined by

p = ["25': Cey Rjongr, =i, 0 0, '—ﬁj-—u]
the true error gradient becomes
grad (20 6% = 22" pje; = 23 (P, — wipy) ®

where the second equality is true only at convergence. The procedure
is then identical to that of mode 1, except that the definitions of @
and ¢ become

@=2paq/, c=2 wp,.
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