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We propose a new kind of automaton that uses newly computed site values as soon as they are available. We call them
Filter Automata (FA); they are analogous to Infinite Impulse Response (IIR) digital filters, whereas the usual Cellular
Automata (CA) correspond to Finite Impulse Response (FIR) digital filters. It is shown that as a class the FA’s are equivalent
to CA’s, in the sense that the same array of space-generation values can be produced; they must be generated in a different

order, however.

A particular class of irreversible, totalistic FA’s are described that support a profusion of persistent structures that move at
different speeds, and these particle-like patterns collide in nondestructive ways. They often pass through one another with
nothing more than a phase jump, much like the solitons that arise in the solution of certain nonlinear differential equations.

Histograms of speed, displacement, and period are given for neighborhood radii from 2 to 6 and particles with generators up
to 16 bits wide, We then present statistics, for neighborhood radii 2 to 9, which show that collisions which preserve the identity

of particles are very common.,

1. Introduction

Cellular automata have attracted attention re-
cently as non-numerical models for nonlinear
physical phenomena [1]. Vichniac [2) points out
that they “exhibit behaviors and illustrate con-
cepts that are unmistakably physical...”, and he
goes on to mention “relaxation to chaos through
period’ doublings,” “a conspicuous arrow of time
in reversible microscopic dynamics,” “causality
and light-cone,” and others. The purpose of this
paper is to describe a new kind of automaton that
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supports soliton-like structures in a strikingly clear
way.

Scott et al. [3] propose as a working definition
that “a soliton ¢,(x — ur) is a solitary wave solu-
tion of a wave equation which asymptotically pre-
serves its shape and velocity upon collision with
other solitary waves.” The simplest examples are
provided by solutions to the dispersionless linear
wave equation. What is remarkable about solitons
is that they can be supported by nonlinear equa-
tions with dispersion.

The notion of a solitary wave can be carried
over in a natural way to the context of automata
(either CA or FA) as follows: The term solitary
wave or particle in an automaton will be taken to
mean a periodic pattern of non-zero cell values
that propagates with fixed finite velocity. A colli-
sion between two particles will be said to be a
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soliton collision if the particles retain their identi-
ties after the collision. (For an example see Fig, 3.)
The particular class of filter automata described
here, which we call parity-rule FA’s, support
thousands of particles of relatively small size, are
irreversible, and totalistic - that is, they belong to
the simple class of automata that depend for their
next state only on the number of 1's in the argu-
ment field of the next-state function (see below).
Furthermore, as we will see in what follows, soli-
ton collisions are quite common, occurring for
some next-rule radii and ranges of particle widths
99% of the time. In contrast, in the totalistic one-
dimensional CA’s studied extensively by Wolfram
[5] particles are relatively rare and non-destructive
collisions extremely rare. There are also two-
dimensjonal CA’s that support particles - for
example the gliders in the game of Life [7], or the
billiard-ball models in the reversible CA’s des-
cribed by Margolus [4). But the ease with which
particleés are supported by parity-rule FA’s, and
their propensity for passing through one another,
appear to be unknown in the study of CA’s.

2. Filter automata

We will restrict ourselves here to one-dimen-
sional automata with k-valued site values a!, where
the subscript i refers to the space variable ( 0 <
i< +09), and the superscript ¢ refers to time
(0 <t < + o). In the usual CA [5], the evolution

- of the dutomation is determined by a fixed rule F

of the form

a;*!=F(a] al..), (1)

¢
ai_ s a;_ il @isenny
with

F(0,0,...,0) =0.

The nekt value of site i is a function of the
previous values in a neighborhood of size 2r + 1
that extends from i—r to i+r. Given initial
states at all the sites, which we assume run from

— oo to + oo, repeated application of the rule F
determines the time evolution of the automaton.
In an FA, the next-state rule is of the form

al*'="F(ait}, al*l,,,...,a*  al,. ., al,,).
()
Now the next state is computed using the newly

updated values a/*} ai*!, ,,..., a'*}, instead of

a;_,,8{_,41,...,aj_,. This is precisely analogous
to the operation of an IIR digital filter, whereas a
CA corresponds to an FIR digital filter (see, [6],
for example).

Although we allow the sites in an FA to extend
from —oo to + o0, we must assume that to the
left, anyway, there are only a finite number of sites
containing non-zero values. This will then give us
an unambiguous way to compute the evolution of
the FA, using a left-to-right scan. We always start
with an initial configuration that has only a finite
number of non-zero site values.

Following Wolfram’s terminology [5], when the
next-state function F depends only on the sum

S(i)= i iy (3)

j==r

we say an automation is rotalistic. This class, al-
though small and easy to specify, appears to ex-
hibit all the interesting kinds of behavior found in
general automata, and the particular class of FA’s
described here will be totalistic.

We will focus attention on the class of filter
automata with binary-valued sites (k = 2) defined
by the following next-state rule. If S(i) is the
number of I’sinthe i—r toi+r wmdow at time
t, then the new value of site i is

+1_ [1, SevenbutnotO,
i {O, otherwise. (4)

These we will call the parity-rule filter automata,
and we will think of them as parameterized by the
single integer r = 2,3, ..., the radius.
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3. Some examples

Fig. 1 shows a typical particle, one that occurs
in the r=13 parity-rule FA. The first line corre-
sponds to generation 0-it indicates the initial
values assigned to the array of sites (a black square
indicates a site with value 1, and the absence of
such a square indicates a site with value 0). Subse-
quent lines correspond to subsequent generations.
It is apparent from this figure that a particle has a
well-defined period (the number of generations
needed for the bit pattern to repeat), and displace-
ment (the number of sites moved during a period,
with plus measured to the left). In this case the
period is 3 and the displacement 1.

We will refer to the succession of states passed
through by a particle as its orbit. A convenient
way to identify a particle uniquely is to view each
orbital state as a binary number, and to take the
smallest binary number in its orbit as the canoni-
cal code or generator of the particle.

It is not hard to see that the position of the
rightmost 1 of a particle can never move right. For
this to happen, we must be in the situation where
the values of a},..., a;,, are all 0, and there are an
even nonzero number of 1’s among the values
a!*l,...,a!*l. As the window slides right, this
situation must be repeated, and so an infinite
number of 1’s would be generated, a contradiction.
In fact it has been proved [11] that such situations
can never be reached from an initial condition
with a finite number of 1’s; that is, that the
parity-rule FA’s are stable in this sense.

From the previous observation, we know that
particles are either stationary or move left. It is
also not hard to see that the maximum speed of a
particleiis r — 1, and this is realized by the particle
consisting of r+1 consecutive 1’s, which has
period 1.

As Hirota and Suzuki [10) describe, one char-
acteristic of solitons is that “A wave packet at any
given position dissolves into many solitons each of
which travels at its own velocity.” Fig. 2 shows a
typical evolution from a disordered state for the
r=73 parity-rule FA. Exactly the same kind of

Fig. 1. A typical particle supported by a parity-rule filter
automaton, illustrating period and displacement. This example
is for r = 3, has canonical code 629, displacement 1, and period
3. The code sequence in its orbit is 629, 697, 1241.

dissolution into several particles with different
velocities can be observed.

Fig. 3 illustrates pairwise collisions that we call
soliton — those in which the identity of both par-
ticles is preserved, while fig. 4 shows examples of
non-soliton collisions. Extensive empirical evi-
dence suggests that in a soliton collision the fast
particle cannot be shifted to the right, and the
slow particle cannot be shifted to the left. That is,
the fast particle may only be pushed forward, and
the slow only retarded. The latest collision in fig. 4
results in 2 particles moving in parallel and is
particularly interesting because it shows that par-
ticle collisions are not always reversible. By re-
versible here, we mean that the picture rotated
180° would be a valid evolution of this or some
other automaton. If we turn this picture upside
down, it becomes clear that spontaneous splitting
would be required for reversibility.

We next want to present some statistics for
pairwise particle collisions, but first we need to
study the maximum possible number of different
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Fig. 2.1 Typical evolution from a disordered state, for the r = 3 parity-rule filter automaton, showing dissolution into several particles
with different speeds.
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Fig. 3. Some typical soliton collisions, for the r=§ parity-rule filter automaton. The initial particle canonical codes and displace-
ment/periods are, from left to right: 145 (12/6), 201 (12/6), 273 (12/6), and 27 (7/2).
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Fig. 4. Some typical collisions in which the identities of both particles are changed, for the r=3 parity-rule filter automaton. The
initial particle canonical codes and displacement /periods are, from left to right: 601 (8/8), 9451 (10/10), 43 (6/6), and 967 (20/12).

ways two particles can collide, given their periods
and dlsplacements

4. The determinant of a particle pair

Given any two particles that move at different
speeds, it is clear that we can arrange a collision
betweeu them by choosing an initial configuration
with thq faster particle to the right of the slower. If
the two< particles start close enough together, it
may happen that they interact in a way that is
impossiltle when they start far apart. In such cases
we say tihe collision is improper; otherwise we say
it is p¢oper We will restrict our attention to

proper collisions, because we will always allow an
initial spacing adequate for typical interactions.

We will say that two collisions are the sameé if
the bit patterns of their history can be put in
concordance by shifts in space and time, and
different otherwise. We can now calculate a strict
limit on the number of different proper collisions
possible between two particles.

Theorem 1. Let the two particles have displace-
ments d,, d,, periods p,, p,, and speeds d, /p, <
d,/p,, so that particle 2 hits 1. Let ¢ = lem( p,, p,),
and the difference in speeds be As=d,/p, -
d,/p,- Then the number of different proper colli-
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sionsis no larger than

DET}:PlP:‘AS =pid, = p,d,.

Proof. After q generations, the same relative con-
figurdtion of bits in the particles’ orbits repeats, so
we need only cycle through g-As initial sep-
aratic})ns to obtain all possible proper collisions.

Case }: p,, p, relatively prime. In this case those
q-4s=p,p,-As situations include all combina-
tions of orbital states.

Case 12: P1» P, not relatively prime. Then in ¢- As
situations we have covered only ¢/(p,p,) of the
total possible. Therefore there are at most gp, p, -
As/q‘= D1 P, - As possible situations, as before.

We call DET the determinant of the collision,
because it is precisely the 2 X 2 determinant with
rows ?Pnl’z and d,d,.

s. Pahicle and collision statistics

Diélionaries of particles were compiled in the
follov‘ying simple way. All bit patterns with width
up to 16 were used as starting configurations of
the ‘arity-rule FA’s, and the automata played
forw%d in time long enough for particles to be
generated and separated. The resulting bit strings
were than analyzed to catalog the canonical codes,
speedk, displacements, and periods of the particles
so generated. Table I shows histograms of the
results, sorted by speed for each value of r, for all
distinct displacement-period pairs, and for all
canonical codes of width < 16. ‘ _

There is a somewhat hazy distinction between
two particles with the same speed traveling in
parallel, and one particle. For our purposes we
insist that a single particle not have a gap of 2r or
more consecutive 0’s in its canonical code.

The number of particle generators increases
sharply with r,'growing from only 8 for r=2 to
13109 /out of a possible 32768 — the number of odd
integers up to 2' - for r = 6. Another striking fact

is the tendency for certain displacement/period
pairs to be preferred. For example, for r =6 the
two pairs d/p=44/12 and 56/14 account for
65% of the total.

These particle dictionaries were used to study
the question of how often a 2-particle collision is
soliton; that is, how often the two particles pass
through one another without change in their iden-
tities. Given a set of particles, all possible pairwise
collisions were sampled uniformly as follows: a
random pair (a, b) was chosen, with b faster than
a and all such pairs equally likely. Then the fast
particle was played a random number g genera-
tions forward in time, where g was chosen uni-
formly between 0 and the period of the fast par-
ticle less 1; that is, the fast particle was put in a
random orbital state. The slow particle was then
placed in its canonical orbital state with its right
end a random number x spaces to the left of the
left end of the fast particle, where x was chosen
uniformly between k and k+ DET -1, k being
large enough to ensure a proper collision. Finally,
the result of the ensuing collision was weighted by
its corresponding DET to make the sample uni-
form over all possible collisions, rather than over
all possible pairs of particles. This was done for
2000 collisions, for various values of radius r and
for particle dictionaries with code-widths up to 10,
14, and 16. The results are shown in table I1.

The general trend is that the estimated probabil-
ity of soliton collisions increases with r for fixed
code-widths, and decreases with code-width, al-
though there are exceptions. What is perhaps most
striking is the high level of the observed frequen-
cies, reaching 99% for code-widths up to 10, and
r=38 and 9. It was also the case that mutual
annihilation was never observed; every collision
resulted in at least one particle.

6. Quasi-equivalence of CA’s and FA’s

A natural question is whether FA’s are essen-
tially different from CA’s, or whether any FA can

be simulated in some sense by a CA. In this

o A e A S S e o NG o e S N P S T o |




J.K. Park et al. / Soliton-like behavior in automata 429

Table I

Speed, displacement, period, and frequency of occurrence for all particles with canonical code width < 16,
radius 2 to 6.

Speed Disp. Per. Freq. Speed Disp. Per. Freq. Speed Disp. Per. Freq.

Radius = 2, no. of pars. = 8 Radius = 4, no. of pars. = 682 Radius = 6, no. of pars. = 13109
0.000 ] 1 1 2333 35 15 2 1333 4 3 4
0.500 1 2 1 2500 5 2 1 2500 5 2 3
0.500 2 4 1 2500 25 10 14 2500 10 4 19
0.500 3 6 1. 257 18 7 8 2500 15 6 15
0.500 8 16 1 257 36 14 68 2500 20 8 195
1.000 1 1 3275 1 4 5 2500 25 10 8
2.750 2 8 4 3200 16 5 30
Radius = 3, no. of pars. = 198 2.750 4 16 4 3200 32 10 1635
0333 1 3 1 3000 3 1 1 337 27 8 95
0.500 1 5 1 3.667 11 3 5
0.500 4 8 4 Radius = 5, no. of pars. = 6534 3.667 22 6 33
3.667 44 12 4157
1.000 1 1 2 000 ! 1 .
1000 ) 5 1 . 3.900 39 10 213
1.000 4 4 4 1000 3 3 3 4000 28 7 21
: 2.000 2 1 3 4353
1000 5 s 1 4.000 56 14
1.000 6 6 ; 2000 4 2 6 4250 17 4 5
1000 8 3 n 2000 8 4 20 4250 34 8 7
1.000 10 10 4q 2000 10 5 2 425 51 12 3
1.000 16 16 g 2000 12 6 10 4250 68 16" 1742
: 2.000 16 8 110 4.444 40 9 1
1.333 8 6 2
2.000 20 10 4 4444 80 18 227
1.333 16 12 63
1.400 7 5 3 2.600 13 5 41 4.500 9 2 1
‘ 2.600 26 10 . 926 4500 63 14 102
1.400 14 10 17
1500 3 5 . 2,750 11 4 3 4.600 23 5 3
‘ 2.750 22 8 46 43833 29 6 1
1.500 6 4 1
3.000 3 1 2 5000 5 1 1
1.500 12 8 4 3000 p 5 ) -
1.571 2 14 16 3000 9 3 51
1.667 5 3 4 3000 12 P p
1.667 10 6 3 o
1.667 20 12 y 000 18 6 6
2 3.000 36 12 2251
1.750 14 8 1
2,000 s 1 ;3000 45 15 12
: 3.200 32 10 7
, 3.286 23 7 53
Radius = 4, no. of pars. = 682 3.286 46 14 1929
0.667 2 3 2 3500 7 2 2
1.500 3 2 4 3500 14 4 35
1.500 6 4 10 3500 21 6 3
1.500 9 6 6 3500 28 8 32
1.500 12 8 44 3500 35 10 1
1.500 15 10 2 3500 2 12 37
2000 - 2 1 1 3500 56 16 693
2.000 4 2 1 3500 70 20 4
2,000 10 5 14 3.667 33 9 7
2,000 20 10 219 3.667 66 18 96
2.125 17 8 19 3.800 19 5 2
2333 7 3 18 3.800 38 10 1
2.333 14 6 19  3.800 76 20 2
2 1

2.333 28 1

e
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Table II
Frequency of collisions that are soliton, in per cent. Based on samples of 2000 collisions.
Radius Width < 10 Width < 14 Width < 16
2 38.74 3874 38.74
3 2463 11.02 9.55
4 65.63 30.50 35.38
5 73.97 4513 45.20
6 80.35 80.76 52.67
7 80.62 84.51
8 99.78 83.63
} 9 99.42 78.16
N\

section |\we will show that the latter is true; in
particular, we will show that the space-time array
generated by any particular FA can also be gener-
ated by some CA, and vice-versa.

First |consider the constraints imposed on the
order in which site values in FA and CA space-time
arrays be generated. Any site value 4! in an
FA space-time array is determined by a!_,...,
al_y,alTh,..., a!;}. These site values are in turn
determined by the values of other sites, but all
sites that could possibly affect a! lie within the
region {aj;f: k20, j<kr) (this is the shaded
in fig. 5). For the space-time array of a CA,

the region {a/;% k>0, —kr<j<kr}.

i+j
1-to-1

with the property that the orientation of the space
axis is erved. Changing the value of some site

it cannot in a CA space-time array. Thus, if we
wish to|simulate an FA with a CA, we must
somehow change the orientation of the space axis.
This motivates a “tilting” mapping from the FA
space-time array to the CA space-time array, a
mapping that rotates the region in fig 5 so that it
looks more like the region of fig. 6.

Suppose then that we are given an FA, with
parameters r and k, and we want to generate the

N\
N

Fig. 5. The region that can affect a point in an FA.

Fig. 7. Illustration of the simulation of an FA by a CA, for the
case r = 2. The space axis of the CA is tilted, and each cell of
the CA is a conglomerate of (r+1) cells of the FA. To
compute the value of CA cell G, we compute in turn the value
of FAcella, b, ¢, d, e and f.
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same array of space-time values using a CA, using
parameters r’ and k’. The mapping we will use is
illustrated in fig. 7 for the case r = 2. First, groups
of three consecutive cell values in a particular
generation of the FA array are coalesced to form
one cell in the corresponding CA, so that the CA
has k’|=2"*!, Next, we take the space axis (con-
stant-time axis) of the CA to be tilted so that cells
in the same CA generation correspond to cells
along a line rotated counterclockwise from hori-
zontal in the FA space-time array.

Using capital letters to represent the cells in the
CA, lower case for the FA, we next show how
the value of the cell G in generation ¢+ 1 can be
computed from the values in the neighboring cells
A, B,C, D in generation ¢. First, find the value of
the FA cell a from the FA components in 4 and
B. Next find the values of cells b and ¢ from the
value of a and the components of B and C.
Finally, find the values of FA cells d, ¢, and f
from the values of b, c and the components of C
and D. This then gives the value of the CA cell G.
We can summarize this in the following

|
TheorerJn 2. Every space-time array that is gener-
ated by an r, k — FA can also be generated by a
CA with r’=r and k’=2"*!, provided that we
allow the values to be computed in a different
order. The FA cell values are also coded in groups
of r + 1/ alphabet symbols.

|

Next consider the problem of simulating a CA
with an ‘CFA. A glance at fig. 8 shows that this is
easy, provided that we allow a slippage to the left:
Jjust compute the value at site x + r at the point x,
and choose the FA rule to depend only on the
values in the preceding generation. Each genera-
tion will therefore be shifted r cells to the left with
respect to the CA array, but will otherwise be
identical; in this case the time axis is tilted. We
summarize this as

Theorem| 3. Every space-time array that is gener-
ated by a r, k’ — CA can also be generated with an

x AT

Fig. 8. Ilustration of the simulation of a CA by an FA. The
value at cell x + 7 is computed at point x in the FA, so that
the time axis of the FA is shifted to the left r cells every
generation.

FA with r=2r" and k=k’, provided that we
allow each successive row in the FA to be dis-
placed r units to the left with respect to the
corresponding row in the CA.

7. Discussion

Many questions about the class of filter au-
tomata remain unexplored. Some rules other than
the parity rule appear to support particles the way
the parity rule does. For example, the following
variation of the parity rule seems to support par-
ticles and soliton collisions, and the particles are
on the average slower:

+1_J/1, SevenbutnotOor?2,
@i {O, otherwise. ()

Other rules are unstable in the sense described in
section 3. While the question of stability in linear
Infinite Impulse Response digital filters is settled
by the criterion of characteristic values being in-
side the unit circle, an analogous general technique
for FA’s is unknown.

One of the motivations for studying cellular
automata in general is to gain insight into the
nonlinear phenomena that occur in the solution of
differential equations, and in the physical systems
they are used to model. We have seen that certain
simple one-dimensional automata give rise to soli-
tary waves that very often pass through one another
non-destructively. Whether such automata capture
the mechanism of soliton generation in differential
equations is uncertain, but we feel worthy of fur-
ther study.
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Another reason for studying CA’s is. the possi-
bility of embedding useful computation within
such regular and simple structures. One-dimen-
sional cellular automata can be implemented in
VLSI in a highly pipelined and efficient way [8),
resulting in what amounts to a cellular automaton
machine with an almost unlimited degree of paral-
lelism. Even if the embedding of a useful computa-
tion is'very inefficient, it may still be more than
compensated for in certain applications by the
parallelism and efficiency of the VLSI implementa-
tion. There exist complex CA’s that simulate a
universal Turing machine, but we still do not
know how to construct a simple one-dimensional
CA that does useful computation. It appears, how-
ever, that it will help to have particles that can
pass thirough one another, because that will make
possible communication between different ele-
ments of the automaton.

Carter [9] describes the transmission of informa-
tion in molecules using physically supported soli-
tons. The general notion of processing information

- in simple, homogeneous media via solitons opens

the way for speculation about such computation at
the level of the molecule or the biological cell.
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