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A SEplEIRING ON CONVEX POLYGONS AND ZERO… SU�I CYCLE
PROBLE� IS*

KAZUO IWANOtt AND KENNETH STEIGLITZI

Abstract. Two natural opcrations on thc sct of convex polygons are sho、 vn to form a closcd scmiring;

the t、 vo operations arc vector summation and convex hull ofthe union Various propcrtics ofthcsc operations

arc investigatcd Kleene's algorithm applied tO this closed semiring solves the problem of determining

、vhether a dirccted graph with two― dimensional labels has a zcro― sum cycle or not This algorithm is sh6、 vn

to run in polynomial timc in the special cases or graphs with one‐ dimensional labcls,BWSP(BackCdgCd

Two―Tcrrninal Serics― Parallel)graphs,and graphs with bounded labels Thc undirected zero― sum cycle

problem and thc zcro― sum sj“′′
`cycle problcm are also invcstigatcd

Key words. semiring,convex polygon,dynamic graph,algorithm,complcxity

AMS(MOS)Subject classl■ cations.05,13,16,52,68

1. Introduction. In this paper,we show that two natural operations on the set of

convex polygons form a closed senliring;the two operations are vector sumination

and cOnvex huH ofthe union.We then investigate the tilne complexity of each operation

and its ettect on the number of edges ofthe polygons.

Kleene's algorithn■ applied to variouS closed senlirings leads to emcient algorithms

for a varicty of prOblems;for example,inding the shOrtest,paths for all pairs of nodes

[3], conVerting a inite automaton into a regular expression, and inding the most
rcliable or largest― capacity patl[5].In thiS paper we use the above closed semiring

to solve the zθ rο―s“″つcツ
`′

θ prθ b″θ
“

in doubly weighted directed graphst

Doubly weighted graphs,which havc a two‐ dilnensional weight on each edge,

have been studied by Lawler[19],Dantzig,Blattner,and Kao[7],and Reiter[24].

The cost of a path is denned as the suln of weights of edges on the path.Theグ οッb″

″θなあた′Z`rO‐ s“

“
(ッCJ`′ rο bた

“
is to nnd a cycle whose costin each dimension is O.

In[12],[13],[14];[15],[17],we saW that certain problems in VLSI applications

inv01ving a regularstructure can betransformed to problemsin two‐ diinensionalininite

graphs consisting of repeated inite graphs.Repeated use of a dOubly weighted digraph,

called the s′α″た gre′力6°,fOrms aグッ4α
“
′ε grapλ G2.As shown in Fig.1,cach label

of the static graph G° indicates the diferences between the χ―andッ‐coordinates of

two conneOted vertices in C2.The absence of a zerO_sunl cycle in the specifled static

graph is then necessary and sumcient fOr the acyclicity of the associated dynanlic

graph. If a two― dimenslonal regular clectrical circuit is associated with a dynanlic

graph,acyclicity of the dynamic graph implies that the associated electrical circuit is

free of an electrical``short circuit"[12].

since the cOst of each path bet、 veen any two vertices can be regarded as a point

in the two‐ dilnensiO,al Euclidean plane,we can associate a pair of vertices υ and″

with a convex polygon αυ
=aS fOHOWS: 

αow is the convex huH of aH points assOCiated
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884 K IヽVANO AND K STEIGLITZ

A static graph G。

The dynamic graph CZ

FIG 1  4s`α rrc grα PII C° Sllο ws llο lt rο cο

“
72`cr rlο グ

`sill G2 7■ `s力
α′′′αr`α sみ O14S α bα Sic c´ 〃

with costs of paths from υ to w.｀ Ve apply the t、 vo opcrations above to the set ofthcse

convex hulls,and use the closed senliring denned by thcse t、 vo operations to solve thc

doubly wcighted zero_suln cycle problcm.ヽ Ve show that this algorithn■ runs in poly―

nolllialtiinc in thc special cases ofbounded label graphs,BTTSP graphs(the Backedged

Two― Terrninal Scries― Paranel graphs),and graphs with one― dimensional labels.The

l‐ bο lr7″
`′

grα′あs,whose labels are O, 1,or-1,arise in VLSI applications where the

interconnections between regular basic cells are lnade locally.The BTTSP graphs are

an extcnsion of the class of Tll・ ο‐T`r′ lj“αI Sarた s― Pα rα′′θ7[1],[8],[26],[27].When the

cxtended abstract of the present paper appcared in[16],the question of whether the

zcro― sum cyclc problcm for general graphs is in P remained open.Kosaraiu and

SuHivan[18]subsequcntly showed that the zero― sun■ cycle problem for any diinension

can be forlllulated in tcrlms of linear progralnining and is thus solvable in polynonlial―

time.Recently Cohen and Mcgiddo[6]provCd that the zero_sum cyclc problem for
any 6xed dilnension belongsto the class NC,and can be solved in the two― dilnenslonal

case in serial tilne O(4′ 2),the best result to date.We hope the present paper retains

indepcndent interest as a ncw connection bet、veen convex polygons and senlirings,

and as a novcl application of Kleene's closure algorithm.

Finally,we discuss variations of the zero― suln cyclc problen■,the undirected case,

and the zero― sunl s'7η′Jθ Cyclc problcm.

2.Two operations and a semiring.恥 Ze deane our closed semiring[21]as f0110Wsi

Let S be the set of an convex polygons whose vertices have intcger coordinatcs.That
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is,S={α Ulα
∈2ZXZ},Where α

U indicates the convex hull of 
α.Notice that this

deflnition anows p01ytopes with an inflnite number of edges,unbounded area,or zero

area,but does not anow curves.Thus our usage of the term`ο
“
υθχ pOレgοr iS mOre

general than the conventional oneo We cOnventionaHy denote an element in S by a

lowercase Greck letter.We regard a point or a line segment as an element of S

For any two sets α,β ∈鳥We denne the new set callcd a υ
“
′οr s夕

“`ノ
α and β

as folloWs:α *β ={(為 ノ)lthere c� st elements(α x,ら,)∈ α and(4,ら )∈ β Such that
χ=αχ+bx,ノ =ら +ら }.See[11]fOr details of this operation.Let O={(0,0)}∈ S and
のbe the empty set.

we dcnnethe∪ operation as the convex hun ofthe union oftwo convex polygons

in S;that is,α ∪ β=(α ∪β)U fOr any α,β ∈だl ln this paper,we can the u Operation

"′

j04‐ S“″2. We Can naturaHy denne a union‐ sum of a countable number of convex

polygons as fonows: Let r be a cOuntable(inite Or ininite)indeX Set and αi∈ S for

aH′ ∈二Then we deflne“
“
J04-s“

“
∪icr αi by U icr αi=(∪ icr α′)∪ .Since∪ icr αi exists

and is unique,its convex hun U icl αi eXiSts and is uniquc.Note that αiis the convex

hun ofsome setin 2ZXZ,and thus every vertex of∪ icr α :iSin 2Z×
Z.Hence Uた

′α i c,

and thus the union‐ suln above is well deflned.

We now deflne the+operation as the convex huH of the vector sunllnation of

two convex polygonsin S;that is,α +β =(α *β )∪ .By COnvention,we denne α+② =
0+α =0.Note as we show later(Cor01lary 3.4,§ 3),that α*β iS itSelf a convex

polygon when α and β are cOnvex polygons.Therefore α+β =(α *β )U=α *β fOr

any α,β ∈S TherefOre,we identlfy+with*,and call the+operation υ
`ε

″οr‐s“

“
.

From the deflnitions,the vector― sum operation is conlmutative.Fig.2 shows an example

of the vector― sum oftwo convex polygons.
We now have the fonowing theorem.

THEOREM 2.1.動
`ッ

s′ι

“
(■ U,+,0,0)お αεわSθ′s`“ frj4g.

:     :   ′:    イ

11′ /

:  ′ ′ ,   :

′
′
:::

!6: : :

FIG 2. α+β iS bο t411グ′グbッ
`グ

g`s′ llα ′α″
`α

′な71οグ″j′ ll′力ι′グgas f′ αο″β A′ jg′
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`rrla sα“
。
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Before proving this theorcnl,、ve need the foHo、ving lenlma.

LEMMA 2.2.L`′ Ib`α εοン4rα b′θ′′′θχ s`r.Lα  α:∈ 2Z×
Zメ

br αJ′ ′∈正 777θ′″
`あ

αυβ

(∪ l..′ αP)∪ =(∪ l_′ α,)∪ .

Pr・οげ Let A be the left― hand side of the above equation and B the right― hand
side.Since αi⊂ A for allた ムwc haVe∪ icr α:⊂ A Since A is a convex hull,we have

(∪ l_′ α′)∪ =3⊂ ス.

Note that α:⊂ 3 and thus αP⊂ B for all j∈ 二Therefore∪ ,c′ (α P)⊂ ユ and

moreover,since B is a convex polygon,A=(∪ i∈ ′αP)∪ ⊂B. □
Now we prove Theorcll1 2.1.

Prοげ ぽ 動
`ο

rθ

“
2.1.We show that thc systcm(SU,十 ,0,0)satisnes the six

propertics of a closed sclniring.

(1)(■ U,0)'Sα
`ο““

″αrjυθ
“
ο40ja This is immediate from the deanition and

Lel■ ma 2.2.

(2)(鳥 +,0)JS α
“
ο′ο′′.From the dcnnition,this is tri� al.

(3)+ αJs″ jbツ r`s ου
`rU.Let 

α,β,γ ∈S be convex polygons.Since α+(β ∪γ)

is convex and contains(α  tt β)and(α tt γ),We have(α tt β)∪ (α +γ )⊂ α十(β ∪γ).

Forthe opposite direction,lct χ be a pointin α十(β ∪γ).ThCn χ can be expressed

as  α+λ b十 (1-λ )C, WhCre λ∈[0,1]. ThCn we have χ=α +λ b+(1-λ )C=
λ(α +b)+(1-λ )(α +C)∈ (α tt β)∪ (α +γ).Therefore,+distributes over U.Note that
、ve can also prove that tt distributes over flnite union― sums by induction.

Sincc α U α=(α ∪α)U=α
∪
=α ,十 is idempotent.

(4)Let r={jl,ゴ2,・
・・

,′た}be a nnite nonempty index sct.Let αj∈ S for aH j∈ 二

Then we can prove∪ ic′ αi=αlU αら∪・・・∪αなby induction onた and Lemma 2.2.

For the empty index set f=(3,we have∪ icの α,=(3・

(5)2Ъθ r`S“′
`Q′

夕
“
′ο4-s“

“
グθ

`S′
οrグリ

`4′
οη′あ

`ο
rグθrれg`ノ

`Й

θ′χε′οだ.The
proof is straightfor、 vard fronn the dcnnition of∪  and Lemina 2.2.

(6)In additiOn to(3),十 グJs″ jbッ′θs ου
`″ `0ツ

′′αbケ jz′

“
′たν

“
jο 4‐s“

“
SU.Let β∈S

and α,cS for f={1,2,・  ・}. Then we prove that β+∪ icl αi=∪ i∈ I(α ,十 β)Lct
Zt=∪ ,c′ αi and zα +β =U icI(α :十 β).We flrst prove that β+Zα C Zα +β .Let ρ=b+χ
be an arbitrary point in β+2iα With b∈ β and χ∈2iα .If there exists a nnite set of

indexes J such that χ∈∪7_′ 9ル  then from (3), p=b+χ ∈β+∪ た′%∈
∪,c′ (β +9ブ )⊂ Zα +β .If χ is not in the union_sunl of a flnite number of αi's,then χ
can bc represented as the lilnit point of a sequence of points,each of which isin some

αi;that is,there exists a countably ininite set ofindexes J={ブ 1,ブ2,・
・・

,ブ
',・

・・,}SuCh
that χ=lim′ →∝乃i where tti∈ 91・

Then

P=b tt χ=b十 1雲 ぅi=1雲 (b+為 1)∈ 1雲 (β +%i)

⊂U(β +%)⊂ U(β +αl)=Zα +β .

ノC′            iC r

Therefore β+Zα ⊂Zα +β .

The converse can be proved similarly, and thus multiplication distributes over

ininitc sums.   □

Ha� ng established that the structure(S∪ ,十 ,0,0)is a closed semiring,we can
apply Klecnc's algorithm to solvc certain problems related to paths in a graph[2],

[21].Ⅵ
rith this goal in inind wc ncxt investigate the basic properties of the operations

+and U.
3. Some properties of the tt and∪ operations. Before stating some propcrties,we

nccd some deflnitions.For a convcx polygOn α in tt we denOte its edge sct by αE and
its vcrtex sct by αv.Let′ be an edge of α or a line that does notintersect α.Then wc
regard ′ as an oriented line with respect to α and deflne its direction, denoted by

θ′(α ),in thc range O≦ θg<27r SuCh that α lics on thc rightぃ hand side of r when we
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traverse r in its pOsitive directiOn.Unless specined,θ
o lneans θθ(α )for an edge θ∈αE.

We regard`∈ αE as a vector e with the directiOn of θ
`(α

).Let αυ
“

。r={el θ∈αE}.By
convention, we deflne the fol10wing special cases: Vヽhen α is either a pOint or the
entire plane,we regard α as a special symb01 and denne αυec′。r={α }.When α is a
line segment a,we denne αυac′。r={e,一 e}.

Let A={α i}に ′be a set Of cOnvex p01ygons.We deinelス |=|∪ た7(α i)υθα。″,that
iS,|ス lis the number of distinct vectors in∪ α,cA(α i)υεεb.We alSo write lス =α l when
ス has the single element α.We say thattwO edges θ∈αE and/∈ βE are α″ig′

`′
when

θθ(α )=ら (β ).

Now we have the f01lowing lemina aboutthe relationship between twO cOnsecutive

edges of a convex polygon and their directiOns.

LEMMA 3.1.Lι ′θα′グ/b`′″ο
`ο“

s`ε

“
riυθ θグg`sげα

`ο“
υ
`χ

 POレgο′αれ c′ο
`た

w,s`
οrα

`み
ηら

`42′
<θc θr θc+π <ら .

PrOοF From the deflnitiOn,ノ lieS in the right_half plane of`.    □
COROLLARY 3.2.Ij`′ αE={θ l,`2,・・・,θ

“
}bθ ′あθθグgθs O/α εο4υ

`χ
′Olッgοη αブ

“
`Jο`た

″jsθ οκルたItι′θtt bθ ′あ
`“

αχゴ
“““`ノ

{θ争}.動θ
“
θ魚>θQ>・ …>θら,,.2%ι sα αE

,s cα JJ`グ ′あθ
`グ

gθ sθ 9“
`“

6θ ″あθ4′わθθた
“
θ
“
rs ο′αE αr′ Orグθr`′ αs αbουθ.

Prοげ The pr00fis clear frOm Lemma 3.1. □
To analyze hOw the+OperatiOn attects the number Of distinct

use the foHo、 ving weH_known theorem.
THEOREM 3.3([11]).Lα  α,β b`′″ο Cο″υθχ ′θ夕gο

“

sf“ S ttθ
“

プら″θυθν
`∈αE U βE,′みθr``χおrs αη θグg`/c(α +β )E′Йα′げsα′な

“
θグ″ブル

`;′
みα′Js9 9′ =θ c・ 1%ゴ s

ι4α b′θs"s″Od手
“
θαメ″′crjο4/=9(θ )ルο

“
αE∪ βE′ο(α +β )E.Mor`ου

`ち
ルθ/1Z′ 6″げο

“ψ Js ο
“
rO.Fig“ rθ 2′ JJ“ s′raたsrあおr力θοr`“. □

COROLLARY 3.4. Lθ ′α,β bθ εο
“
υθχ′0″g04S.動

`4α
+β =α *β =β *α =β +α .

PrOげ For the proof see[11],[20],[28].   □

COROLLARY 3.5. Lθ ″αα
“
グβ bθ εο′υθχ′01ソgο

“
sfr S s“ ε/7′力α′bο″あ77αυ

`α
ノれたθ

“““
bθrげ θた

`S 
α4グ

“
=lα +β .動

`4′
ル θたθ sθ92θ4ιθげα+β εα4 bC Cο

“

′ツたグゴ′
0(4)S″のsルο

“
r″θ

`む
θ sθ9“ι

““
s αE α

“
ごβE.

Prοげ From Theorem 3.3,every edge c in α+β has an assOciated edge/in
αE∪ βE SuCh thatら =θε・ Thus the edge sequence Of(α +β )E Can be Obtained by
merging the two sets{θ εl 

θ∈αE}and{θθl`∈ βE}。  □
COROLLARY 3.6.Ij`′ αl,α 2,・ …,α

“
グαη b`cο

“
υθχ′Olygθ 4sブ4 s ttθ4″

`あ
αυβ

α
“

0″0ル′crJο

“
9/rο

“
(α l)E∪ (α2)E∪・…∪(α″)E to(α l+α2+・ …+αr)Es“ 6カ ′あα′

θ,(a)=θ cルrα
“
ッ
`c(αl)E∪ (α2)E∪・・・∪(α

")E・
PrOο′ The proofis by inductiOn On“ and Theoren1 3.3.    □
THЁOREM 3.7.F♭″α′ッα,β CS″

`Й
αυ

`lα
+β l≦ |{α ,β }≦ lα l+lβ l.

PrOげ The pr00f is straightfOrward from Theorem 3.3.  □
Next we analyze the ettect of the∪ OperatiOn on the number of distinct vectors.

First wc have the fol10wing theorem.

THEOREM 3.8.Lθ ″α αη′ β be bο
““

′θ″ cο

“
υ
`χ

 pθレgο

“
Sげ4 S ttβ′ lα ∪ βl≦

lα l十 lβ l.

Before proving ThcOren1 3.8,we need the fOHOwing lemina.

LEMMA 3.9.Ij`′ αc S α4′ ′1,P2,・ … ,′ηb`′ 0ブ′な。コらθ′

lα U′ lU′2U・ … ∪ Pη l≦ lα l+4.

PraQ/ This can be prOved by lnductiOn On 4. Suppose ′=1. If α cOntains pl,

議譜爛認
・
TrI算胤

Ul∬
噌

江
l訛lξ

el:rfl∬ dサ“LF準
α∪′1∪ ′2U・ …U′た。Then from the inductiOn hypothesis,lβ η ll≦ lα l十 (4-1),and
thuS lβ

"|≦ lβ燿11+1≦ lα l+4. □

vectors, we will
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Prοげ げ 動θοr`“ 3.8.Note that α U β iS α U Pl∪ P2U… ・UP′ where βv=

{′ 1,P2,・ ・・,p“ }・ Thus from Lemma 3.9,lα ∪βl≦ αl+4=lα l十 βl. □

Theorem 3.1l covers the case when α Or β iS an unbounded convex polygon α
*,

�龍】::l11礼規Tゾ∬∵Ⅲ∬81継∫∬ι「脚詈町評W#ず
Since a system(鳥 ∪,十 ,0,0)iS a closed semiring,we can denne the cOnvex polygon

α*by α°U αl∪ ・… =∪ 庭。αL As shown in Fig.2,α
*is∪

Pcα (∪ λ>。 λ′).ThuS α
*iS

essentially a cone emanating from the origin.As a special case,α
*Inay be the entire

plane,a half plane,a line,a half line,or the origin itself.Now、 ve analyze the enect

of the*operation on the number of distinct vectors.

LEMMA 3.10.Fθ r″″ο cO′υ
`χ

′θ″gοれSα α

“

′ %Wι  λαυι lα +γ*≦
lα l+1.

Prοo/ 1f γ
*is either the entire plane,a half plane,a line,a halfline,or the origin

itselt the pr00f is straightforward.Otherwise γ
*is a cone emanating from the origin

and has tヽvo edges g( and gち ・ Let gl(respectively, g2)be the Support lines at υ

(reSpectively, ″)of the COnvcx polygon α such that θgl(α )=θgi(γ
*)and θ&(α )=

:き寝1をall:il‖ξ」よ∫:lЪ¶ :TI:iに :LI:隼専II'11::]:∫躙 1lsl:ι:L:lerel]ust

FIc 3 1α +γ *|≦
lα l+lα′グα∪(β +γ *)=(α ∪β)+γ

*

The above lemlna shows that replacement of α by α+γ*does nOt increase the

number ofedges by lnorethan one.Moreovcr,wc have a stronger resultin the foHo、
ving

theorenl,、 vhich shows thc same result for any number ofsuch replacemcnts in a series

of∪ operations.We、 vill use this theorcm in§ §5 and 6.

THEOREM 3.11.Lcr βi,γ,∈ Sメ,rJ=1,2,・ ・・
,4・ 動

`4″
θあαυ

`

|(β l+γ†)∪ (β2+γ」)U・ …U(β′十γ芳)≦ lβ l U β2 U…・Uβ
"|+1.

Before proving Theoren1 3.11,ヽ ve need some lelnlnas.
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LEMMA 3.12.Lα  γic Sメ 9r j=1,2,… ・,4.ηりθ
“

γ手+γ l+・ …+γ斎=(γ l∪ γ2∪ …・∪γη)*.

Prοq′ We prove this by lnduction on 4,usingた for the index of inductiOn.The

lemma trivially holds forた =1.Whenた =2,we prove that γl+γ」=(γ l U γ2)*・ SinCe

γす,γ」⊂(γl U γ2)*,WC have γ芋+γJ⊂ (γ l U γ2)*・ We next prove the opposite direc‐

tion.Since O∈ γr+γ」 we have from the distributive law γl U γ2⊂ (γ l∪ γ2)+
(γ†+γす)=(γl+γす+γす)∪ (γl+γ2+γ」)⊂ γす+γJ.Thus the lelnma holds forた =2.

Assume that the lemma holds for た<′, then γ†+γ」+…・+γ脊=
(γl U γ2 U・ …∪γη l)*+γ斉=(γl∪ γ2∪ ・…Uγ

")*.Note that we used the caseた =

“
-l for the flrst transformation andた =二 2 for the latter.   □

LEMMA 3.13.Lα  α,β,α
“

グγb`εθ′υ
`χ

′θレgο4S劉り
`′

αU(β +γ*)=(α Uβ )+γ
*.

Prοげ For the proof sce Fig.3.Since α⊂α+γ*,we have

α∪(β +γ *)⊂
(α +γ *)∪

(β +γ*)=(α ∪β)十 γ
*.

We now prove the opposite direction; that is,(α Uβ )+γ
*⊂ αU(β +γ*). Since

β+γ *⊂ α∪(β +γ *),We only have to prove that α tt γ
*⊂ α∪(β +γ*).Lct p=α +g

be a pointin α+γ *with α∈α and g∈ γ
*.Let b be an arbitrary pointin 

βo Let ρ"be
a point obtained by the foHowing equation when、 ve regard P4,α,ら,and g as points
in the χ―y plane:′

“
=(1-1/4)α 十(1/4)(b十

“
g).Then′″is On the line segment

α,(b+g"),and thus Pη ∈α∪(β tt γ
*).Note that′

∞=limη→∞′η is also in α∪(β tt γ
*)

and Pcc=α  tt g=′.Therefore α+γ *⊂ α∪(β +γ*).  □
LEMMA 3.14.Ij`r αi,γi∈ Sメ♭″ブ=1,2,… ・,4.r77ι ′

(α l+γ F)∪ (α2+γ」)U…・U(α″十γ斉)

=(α l∪ α2U… ・Uα′)+γ†+γす+・ ・・十γす.

PraρF Denote the left‐ hand side ofthe above equation by An,and the right_hand

side by B4. We prove this by induction on 4 and useた for the index of induction.

The lemma holds trivially for た=1. When た=2, fronl Lemma 3.13, ス2=
((α l+γす)U α2)+γ】=(α l U α2)+γ†+γ」=B2・ Assume that the lemma holds for
た<′.From the induction hypothesis forた =4-1,A燿 =B“ lU(α

“
+γ斎).We then

obtain   Aη =((α l∪ α2U・ ・・Uα
"_1)+(γ l U γ2 U…・U771_1)*)∪ (α′十γ斉)  by

applying Lemma 3.12 to B"_1.From the basis of the induction (た =2),
ス″=(α l∪ α2∪ ・… U α4)+(γ l∪ γ2∪ ・… Uγ′1)*+γ 斎.From Lemma 3.12,we get
ス
“
=Bη . □

We can nOw prove Theorem 3 11.

Prοげ げ ηら
`ο

rθ

“
3.11.From Lemma 3.12 and 3.14,we have

(β l+γす)∪ (β2+γす)U…・U(βη tt γ芳)

=(β lU β2 U…・∪βη)+γす十γす十・・・+γ薔

=(β lU β2 U・ …∪βη)+(γl U γ2∪ …・∪γη)*.

LetンL(respeCtiVely 3)be the left― (respeCtively right‐ )hand side ofthe cquation in the
theorem.From Lemma 3.10,|ス |≦ lβ l∪ β2U・ …∪β

“
)|+1=IBI+1. □

THEOREM 3.15.Lθ ′lα l十 lβ l=4.動 θ9′θrα ″ゴο4s+,∪ ,α 4α *`α′α′″bθ グθ4`′ 4

0(4)Sr"s.

889
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Prοげ We assume that t、vo edge sequences(α )ε and(β )F are available.From
Corollary 3.5,wc know thatthe+operation takes O(4)time.Given thc cdgc‐ sequcnces

oftwo convex polygons,the convex huH can be found in O(77)time.ThCre is also an

algorithm in[4]that COmputes I∩ α in O(10g(α ))StepS WhCre′ is a line segment

and α is a convex huH Thercfore the*operation takcs O(10g(lα ))time.  □

4. Application of the closed senliringo ln this section,we dennethe doubly weighted

zero―sunl cycle problenl and solve it by using thc closed senliring denncd in§ 2

0ur instance is a doubly weighted digraph C=(z tt T)Wherc v is its vertcx

set,E is its edge sct,and r is atwO_dimensional labeling such that T(`)=(θ x,ら )∈

Z× Z for every`∈ E.We use 4(respect� ely,“ )to denOte thc number of vertices

(reSpCCtiVely,edgcs)in a graph.We also use O to denote(0,0).A path P in C is a
sequencc of vertices P=υ 。,υ l, ・・,υたWhere θi=(υi l,υi)∈ E and υ′∈y lf all vertices｀

υO,υ l, ・・,alた _l are distinct,a path P is s′

“

ρ′
`.A path P such that 

υ。=υたis caned a

cァε′θ.Givcn a path P=υ。,υ l,・
・・,υた,WC denne the cθ s′ げ rル ′αル T(P)by the

置 IT:露
ittiT珊

よ∵ 犠 諸 ∵洲 1°
n�江 爾 二 ぬ江 ヽ Ц め =洋 1■の =

=O is called a zθ″ο―sltrrl cッ
`′

ι Vヽc can now

dennc the′。夕brl・ wcigλ rθ J zθ rο―s“
“

9cた ′″οbル71t as follows:

Problem ZSC. Doubly Weightcd Zero― sum Cycle Problem.

ルsrα 46θ :A doubly weighted digraph C=(ス ニ T)Where r is atw。‐dimensional

labeling such that T(`)=(`.,ら )∈ Z× Z fOr every θ∈E.

Qツ
`S″

θ4: Does C havc a zero― sum cyclc?In other words,is there a cycle lう /such

that T(7)=0?
By using the fact that thc two operations deflncd on convex polygons forin a

closed sellliring,、 ve can ans、ver this question with the Floyd― Warshan algorithln[2],

[3],[10],[23].
Algorithm ZSC.

17tp夕′:A doubly weighted graph C with y={υ l,υ 2,・
・・,υ

“
)・

0ッ rpッ′:This algorithm answers“ Yes''if the digraph C has a zero‐ sum cycle;

other、visc thc algorithnl answcrs``No."

Mcルο′: Let PArH(υ ぉり,た )denOte the set of all paths from υ,to%Such that
aH vertices on the path,cxccpt possibly the endpoints,are in the set{υ l,υ 2,・

・・
,υた}・

We compute the convcx hull αi fOr l≦ ′,ブ ≦r and O≦ た≦
“
,which is the convex hull

of costs of all paths in PATH(υ i,0,た )・

procedure zero― sum cyclc

.     begin

・
 b動 ≦′叫 =拶 Q劇

烹俳革IE
2.

3.

4

5

forた =lto η
do

for l≦ ′,ブ ≦′dO

r:l昌 :ちl.マ
∫l妬

1よ

`;里

f+α
ケ1);

then exit(``Yes'');

.         Od

6.   exit(“ No'');

.     end

THEOREM 4.1.Arg。 ″′rrl“ ZSc″ 。r・ks cο rr`c″ヶ

Before proving Theorern 4.1,we need the foHowing leminas.
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LEMMA 4.2.1/′ λθ
“

ブsα z`Ю _s2“ りεJθ

":′
みθ
““"s′

bθ α υθrra● s“ελヵα′0∈ αl.
Proρ/ Lct υi be a vertex thatis On the cycle li4 Since the cOnvex huH α″lncludes

aH costs Of paths frOIn υi to υi,we have O∈ αl.   □
LEMMA 4.3.JO∈ αl,rλθ″θ

““
sr bθ α zerO_s“

“
りε′ι

":α
4グ ル

`υ
θrたχυ′お ο′

′あιcノ
`′

ι N、

Prθげ Suppose that O∈ αl.Let(α l)ν ={sl,s2,・ ・・
,S′ }Such that s7∈ z× 21 Since

ill:i≦tl遭税電
11[IIЪ

lliiIIiil:ム
:%:lVI:lex]|「∫(1子」J私警:ちIftflil
gral c00rdinates,ち can be chosen ratiOnal,

評[`:IIlll:ilサ硬 [::撃考:「

11111[lil辮

鰭:=:l[lill豊

iち

'lli露

ま
Now we prove Theorein 4.1.

Praげげ ηりθοrθ

“
4.1.From Lemma 4.2 and 4.3,in ordertO nnd a zer。 _sum cycle,

we only have tO check whether Or nOt there exists some ブsuch that O∈ αl. we can
proveぬ江α与ヽCoredycomp�ed byぬ e;愕

鶏賞考〃T"朋〕ふ舞り競を
・
cぁs』THEOREM 4.4.ス JgοrJrあ

“

zsc夕 s`sC
sc“ Jrれgαり,4θグαbουθ,″力c“

“
お′あθ′

““
レrげ υθrιた

“
ゴ
“
G

Praげ Line 4 is executed“
3 tiines in total.   

□

5. Special cases Of the zero‐ sum cycle problem. In this section, wc discuss the
special cases Ofthe zerO_sum cyclc problem where(1)the graphs have one_dimensiOnal

labels,(2)the graphs are undirected,(3)the graphs have labels with magnitude at

mostルl and(4)we are looking for a sJ“′た cycle with zero_sum.The nrst three cases
have 10w Order polynonlial algorithms,whereas the fOurth is NI》 ―complete.

(1)The One_dimenζ lOnal zerO_sum cyclc problemo we can solve the prOblem
emciently in the one‐ dil■ensional case as fOHOws.

THEOREM 5.1.動 θ‐α′
“
θ4sブο′α′z`rο _s“

“
のノC″θ′ЮbJι

“
θα

“
b`sο JυθグJ“ 0(43)′ J“ら

″んθrθ ″お′あθ″
““

bθrげυcrrjιθs.(動な
“

s“ rrぉ J“′′たJr j“ Or″ゴ′[22].)
PraQノ We can apply our algorithm ZSC by ignOring the second labels.Note that

in the One― dimensiOnal case,every α与has at most twO vertices,since it is either a
point,a line segment,or a line On the χ_axis.Thus lα

:|≦ 2.From Theorem 3.15,cach
operation U,+,or*takes cOnstant time.Hence from Theorem 4.4,the algorithm ZSC

takes ο(43)time. □

(2)The two― dimensional undirected zero‐ sum cycle problem.We assume that C
is cOnnectedo We will shOw that thc undirected versiOn Ofthe zerO― sunl cycle problem
Can le S01Ved in O(“ log“ )time,where“ is the number of edges.In the undirected
case,a path can traversc an edge in either directiOn.

An instance of the undirected problem is as fOHOws:

Iη srα

“
c`:A connected undirected graph C=(ME)with y={υ

l,υ 2,・ ・・
,υ"}andE={θ l,`2,・ ・・,θ

"}・
A two_dimcnsiOnal labeling r from E tO z× z with T(θ )=

(`χ ,ら )for every`∈ E
Now we have the fol10wing lemina:

LEMMA 5.2.Lα  Gα
“
″T bθ ′ゲ

“
α αbουθ.Lα lfc_b″ルεο″υαヵ

“
″げ {T(`)θ ∈

E}.4“εθssαッα
“
∂sιttcゴθ″εο

“
′ゴ″′0′ /0″ ′ルαお′θ4ι

`げ
α ZθЮ‐s"“ の6′asrあα′αα

`′

ヶ
ο4θ

`′

′あθルJJO″j4g″″ο
`ο“

′ゴι′ο4s力οJJs:
(1)動

`ε
ο″υα PO″gο

“
I・Ic Pr"`r″

`0“
′αゴ4s′力θ θrなj4.

(2)動θο′なj“ おο4α
“`′

gθ あげルθ εο
“
υα′0レgθ4 Hc.Lθr y={`∈ EIT(`)ゴ s

ο
“
力}.動θ

“
′乃θ

“
θχJsrs αれ

`″
gθ

`∈

ys“ε乃′Йα′T(`)=0,ο r′λθ″θ αr`′″οθグgas`1,`2∈ y
s“ cみ 力α″θl ακグ

`2α“
αのα6θ

“
″J“ Gα

“
グrr2`θ rigJ“ ゴs οκ″あθ力

“
θs鱈

“
θ
“
rT(`1),7(`2)・

891
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Bebre pro� ng Lemma 5.2,we need somc denni� ons.Let X={(lθ ∈E}Such that

Cc is thc cyclc υ→″→υ whcre θ=(2W).Then T(Cc)=2T(`).
Wc caH a set of cycles A={LIた I}4ガ′αbr′ if there exists a set of nonnegative

integers Az={“ i∈ Z+∪ {0}j∈ I}Such that the ri are not a11 0 and Σicr“iT("1)=0.

If(∪ ic r"1)iS COnnccted,we say that A is cθ ′′
`cた

法

Notc that we can construct a zero― suln cycle fronl a connected nunable set.No、 v

wc have the follo、 ving lelninas.

LEMMA 5.3.L`′ Q■ α
“
′X bθ ′グ 4βグαS αらου

`.L``ス
={%た I}bθ α 4ツ′Jα bた

S`′ げ りε′
`S.動 `′

″ι εα′ノ′″α Cο 4“
`ε

″
`′ “

ツJJα bJ`scr B.

Prοぼ  Since A is nullable, there exists a set of nonnegative integers Az=

{4,∈ Z+∪ {0}lj∈ I}Such thatthe 4i are not al1 0 and ΣたI″ ,T(":)=0.IfA iS Connected,

ス is thc desired set.Suppose A is not connected.Let υi be an arbitrary point on lル :

for every′ ∈二 Sincc C is connected,thcre is a cycle R that passcs through υl and υi

for every j∈ I― {1}.Letた be a large positive integer.Let Qi be a cyCle consisting of

た copies of"i and onC COpy of 3 fOr evcry'∈ I一 {1}.Let Ql=Ⅵ 4.Then

Since the convex hull of{T("i)IJ∈ I}COntains o,the convex hull of{T(Q)|′ ∈I}

contains O for some largeた .Therefore B={Qi j∈ I}iS nullable for largeた .Sincc

υl∈ ∩ ic′ Q,3 iS COnnected.Thus B is the desired set. □

Now we provc Lemma 5.2.
PI・οげ (プ L`“

“
α 5.2.Suppose(1)h01dS.Note that T(Cご )=2T(`),WhCre Ce iS

thc cyclc for cvery`∈ E dcaned as abovc.Since A={2T(θ )|`∈ E}iS a nullable sct,

wc can flnd a connected nunable set,by Lemlna 5.3.Thus thcre is a zcro― sum cycle

in 61恥Zhen(2)holdS,it is ob� ous that thcre is a zcro― sum cycle in C.

Conversely,suppose thcre exists a zero― suln cycle l″ l Froln the dennition,there

exist positive integers 4c for θ∈l1/such that Σccw 4cT(`)=0.This means that thc
convex huH of{T(`)`∈ E},dCnOted by Hc,contains the origin.If Hc contains thc

origin properly,(1)holdS.Otherwise,there must be an edge θ∈E such that T(`)=0,

or the origin must be on an edgeあ of″G.Now we assume that T(`)≠ O fOr every

θ∈E.Let y={`∈ EIT(C)iS On the edgc力 }.SinCC W iS nullable,every cdge in W is

in γ Let a be an edgein Y Then forevery cdge c c 14 there existsた cand T(θ )=たθT(a).

Let N_={`∈ lyl T(`)=た θT(a),たc>o},andlet W ={θ ∈ I1/IT(θ )=一 たcT(ε ),た`>0}.
From the dennition of{′ ご},We haVC Σcc w 4cT(`)=(Σ θ∈w+′θたご―ΣgCW-4cたc)T(a)=o.

Note that"「 +≠ ② and lir_≠ o since W="`+∪ II`_is connected,thcre must be

connected edges`1∈ N、 and`2∈ l″「 ・Thus(2)holdS.    □

THEOREM 5.4. T」 l`rwθ―′′
“

θ77SJ077α ′tr″′j″

`6′
θ′z`″ο―s,“ cッ C′θprο b′θ

“ `α
′bθ sο′υθグ

J“ 0(771 10g rPI)′ ′
“`,W力`r`“

,s′力
`″

ν
“
b`rげ θグg`S.

Prοげ  We Only have to chcck condition(1)and(2)in Lenllna 5.2,which can be
done in O(“ 10g712)time.  □

(3)Graphs with bounded labels.A doubly weightcd digraph G=(К E,T)iS

caHed an n_b。
“
′′θ′grαPあ if cach dilncnsion of every labclis an integer in[― 一M〕 J｀イ].

In many VLSI applications,the colninunication between regular cens is made

locaHy: that is, interconnections are made only to neighbors. For example, 79× 4

multipliers can be constructcd from arrays of one― bit fuH adders with carry and sum

signal connections to the neighbors of each ceH[12],[13],[14],[15].Paranel adders

can also be constructed fronl one― bit fun addcrs、vith carry connections to thc neighbor

of eaCh cell[13].Many Systolic arrays are also implemcnted with interconnections to

，
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ncighbors. In such VLSI applications,the associated static digraphs Of the regular

structures arc aH l―bounded graphs[12].
We have the foHowing lelnina about the numbcr of edges Of a convex polygon

includcd in a bOunded rcgion.

LEMMA 5.5.L`′ Rb`α r`crα 4g′θげ ″′αrЙ ″ α4グ み
`な

力′力.L`′ ″ b`α′αrb′ rrα ク
CO′υ

`χ
′0ケgο 4ブ′6J“′θ′げ4Rコリ

`′
|″ |≦ 2 max(″,あ )+2.

PI・θの4 WithOut loss Of generality,we can assume that max(w,あ )=″.Lct〃
“
be

the sct Of edges in″ from its highest leftmost vertcx tO its highest rightinost vertcx

in clockwise order.When we traverse an edge in L「
“
,we lnove at least one unit in thc

χ―direction.Thus the number of edges in Hν  is at mOst 14.There are at most twO
vcrtical edges in H Thus II≦ 2 max(″,あ )+2. □

LEMMA 5.6.Ij`′ G bθ α4 M_らοッ
“
J`′ grq7Й ″ゴル ηυ

`rrた `s,′
ル

“
″θ Йαυ

`lα )|≦
4′ハイ+3.

PrοQ′ Let β:be the convex hull ofthe costs Of」 l simple paths in以 77f(υ i,り ,た )

(See the previOus section for the deinition).Note that the length of a silnple path is
at most 4M h each dmendon.Thus βiヽ bOunded by the rcctan」 c[′払 ηM]×
[―′■44M].Thercfore,■ om Lcmma 5.5,lβ 与≦2・ (24M)+2=44M+2.From
Theorem 3.11,α :≦ β:|+1≦ 44■イ+3.  □

THEOREM 5.7.777θ  αJgθガ′あ
“

ZSC rαた
`sO(44几

ィ)″′
“

θル rJビーbο
“
′′

`′
gr9ρあs ltlJrカ

77 υθrricθ s.

Pr・θぼ From Theorem 4.4 and Lcmma5.6,the algorithm ZSC takes O(43.4ル ィ)=
0(44ハィ)time. □

(4)The zcrO_sum simple cycle problcm.
THEOREM 5.8.771β  zθrθ―sッ

“
SJ“ノθqッ6Jθ PrοbJ`777(ZSSC)ゴ s NP― cο

“
ノα

`.P″οoバ Here、ve use a variant ofthe reduction from the subsct sum tO the directcd

path problem in thc one― dilnensional dynanlic graphs discussed in[22].It iS Obvious

that ZSSC isin NP.We use rcduction from the subset sunl problenl SS tO ZSS(〕 ,where
the problcrll SS is denned as fOHO、vs:

I「2p“′:{α j∈ Z+J∈ f}where f={1,2,… 。,4}and B∈ Z+
Q2`S′ゴθ4:Is there a subset J of l such that Σた′ら=B?
Given an instanceム s OfSS,we construct an instance 4ssc Ofthe zero― sum simple

cycle problem as follows:A directcd graph C=(zE)is shown in Fig.4 where

y={υ
l,υ 2,・ ・,υ′,″ 1,II・ 2,・ …,″η},

E={β,=(υ,1,υi)j=1,2,… ・,4}

∪{メ =(υ,1,It・′)|′ =1,2,―・,4}

∪{g,=(″′,υ i)|′ =1,2,・ …,4}

∪{`。 =(υ
“
,υ l)}.

Lct T be atwo_dimensional labeling from E tO Z× Z as follows:

for′ =1,2,… 。
,4,

for J=1,2,― ・,4.

Supposeム s haS a s01ution J such that Σノc′ 1,=B.Thcn fzssc has a solution of
a simple cycle consisting of θ。,メ and g7 fOrブ ∈二and`i for jだ エ
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W2

(al. (0.0)

fi=(ai.0)

Wi

gi=(0.0)

Vi

ei=(0,0)

FlG 4 つ
`g′

αρ力αbο υ
`力

as α zθrο―s″
“

り
`た

√α″グο″ケ び′あarι ιχisrs a sα  J C r={1,2,…  ,″ }S,Cカ

`力

α′Σ,こ
al=B

Conversely,suppose that lzssc has a solution;that is,there exists a simple cycle

W such that T(7)=0.Note that W must use θl.Let J={ブ |万 ∈W}・ Then ΣブcJら =B・

Thus lss has the solutionエ    ロ

6.Backedged two― terminal series‐parallel multidigraphs.Two‐Terrninal S,ries‐

Paranel(7‐rSP)graphS have been wOn studied:the undirected verslon in[1],[8],[25],

[27]becauSe Of its relationship to el,Ctricai networks and the directed version in[26]
because it provides an algorithm to recognize general series― paraHel digraphs.

A digraph is called a“ ッJ′ ,α igrapあ if we allow multiple edges between the same

two vertices.The dennition Of the class of´
「

TSP multidigraphs appears in[26]as

follows:

(1)A digraph consisting of two vertices joined by a single edge is in´「
TSP.

(2)If Gl and c)2 are l‐rSP multidigraphs,so too is the inultidigraph obtained by

either of the foHowing operations:   ‐

(a)Tシツο ′θ′
“
れα′′α″′Jθ J cο

“
′οs,′

'04:identify the source of Gl With thesource of 62 and the sink of Gl with the sink of《 32・

(b)T■lο ″r“ J′αJ sι rjθs cθ

“

′OSjrjO“ :identify the sink of Gl with the source

Of G2・

Let TTSP(“ )be the class of TTSP multidigraphs that have“ edges.

From this deinition,al‐「 SP Inultidigraph has a single source,denoted by s,and

a single sink, denoted by ′。 Lct C be a π SP graph. A lnultidigraph, obtained by

adding any number of bα
`た`′

gθs to a´
「

TSP graph Cら is caned a BI‐ rsP(3α cたθaga′

Tシッο‐Tθ r“ J4α′Sθrた s‐ Pα ra〃
`′

)multidigraph.An edge(χ,ッ )iS Called a bα
`た`′

gι if there

is a path fromノ to χ inく■ The graph C is calledルι
““

グθrレ′4g l‐rsP grα′Й Qf GB.

Lct BTTSP(“ )be the class of BTTSP multidigraphs that have 
“
 edges.Fig.5(a)

shows an example of a B7~rSP graph GB that consists of a backedge indicated by
dotted lines and the underlying TTSP graph a

Let G=(ι E,T)be a dOubly weighted multidigraph with y={υ l,υ 2,・・・,υη}・

Then for al1 2,衛 in V andた ∈(1,2,… ・,4},We denne the convex polygon α:(T)in

←80)
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FIG 5(a)A BTTSP 777ン ′′jグrgrαρ力 Gβ ;α bαεた。グg`Js j″′jεα″グ by′力
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FIG 5(d) .Aゎ =α Sら α
“
′r=グ

″pα ss′ s′力″ο′g力 ′=c
Eυ′rl pα

`Й

力ο
“

υ′οXて ■′αSSas r力 Ю′g力 c

Tw

Eυarl pα ′″Frο

“
χ(■

`ο

FIG 5(c)A′ ιグg``rlS r力
`′

αSr bacたιグg′ ′ο

“

″あiC力 ′Йa“ ls α ρar力 rο ″1 動
`′

ll`神pヶ ′力′ j″グ,c′ jο′

カノ′οル
“

js′ο rrt`′α′ヵムッBッ r

the same way as in the previous section:that iS,α ,(T)iS the convex hull of all costs

;,鷲

th『
ぷ∬絆ぽL熙ぷF:「器堵∬』1:」2計メ〔〔准徴llil祈桁

and similarly for a class of graphs we write A({G}).That iS,A(C)iS the ma� mum
number of edges in α与(T)Whenち ユt and T are arbitrary and C iS nxed.we then

have the following theorem.

THEOREM 6.1.Lα  G bθ α αο
"blyI″`な

わrι′
““

Jr,α igrapλ ′び
“̀′

αS αbου
`.Fθ

r α″ノ

ちユ Lαれ′二 ′あθrθ ιχ
'srs 

α″″οイj“θ4sfο
“
αJ Jα b`Jj“ gT′ s“εあ′乃α′α:(T)=α J(7′ )・

割りιrcわrg,A(C)=maXり ,Tlα J(T)|・

Prορ/ 1n Order to prove the flrst part ofthe theorenl,we only haveto denne T'(ι
)

as fonows:(1)if C iS On a path in PATH(υ :,り ,た ),then deflne T′ (ι )=T(a),and(2)

otherwise denne T′ (`)=0.We then have lα :(T)|=lαJ(T′ )|・

From this result we can restrict attention to αヴ(T)instead Of α;(T)in what

follows.We now have the following theorenl:

THEOREM 6.2.ス (l‐「
SP(“ ))=“・
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Before proving the theorenl,、 vc need somc lenllnas.Let」 L′

"be the TTSP Inultidi―
graph consisting of two vertices s and r,and“ edges from s to r.(See Fig.5c)

LEMMA 6.3.A(L")=7PI.

Prοげ Let`′ for J=1,2,… ・,“ be thC edges of L“ ,and let T(ら )=υ′∈Z× Z
Then α,is the convex huH of{υ ,},WhiCh can clcarly have r,sidcs,and no lnorc than

“
sidcs. □

LEMMA 6.4.L`rCら
`れ

7‐rSP(“)″たぁ sθ

“
rcc s α″グ sブ4た

`,α
ηグ ′α Tb`α

′″ο_′ J771`“ s′ο4α J ttb`′ブ4gげ GL`′ χ,ァ bθ αrb′′″αク υθ″J``S′η C sacカ ルα
`(χ

,夕 )≠ (S,`).
T77`′ ′あ

`r``χ
′srs α r″ο_′ゴ

“`η
s,ο4α ′rab`Jブ 4g T′ s夕 cみ ′力α′lα。(r)≦ lα,(T′ )|

Before proving Lcmma 6.4,we denne the graph cxッ =(ス qν ,Ex,,)fOr為 ッ∈y by

thc foHowing operations on a TTSP graph C=(ME):(1)First,wc delete an incoming

cdges to χ and aH outgoing edges from y.(2)We then delete aH“ s`J`ss vertices and

their adiacent edgcs.A vertex υ is canedッ sθ′
`ss whenthereis no 

υ―χ path orッ ーυ path
Prοげ げ Ij`/P1/PIα 6.4.If there is no χ一y path in(■ we have α,(T)=0.Thus

lα,(7)|=0≦ lα。(r)|.Ch00se r as T′ .

Otherwisc there exists an χ――夕path in C.Since there exists an s――χ path and a
ノーr path,lct具、(ら.)bC an arbitrary s― χ path(ッ ー′path).Let Cl=(Vl,El)be thc
graph consisting ofスx,Cχルand 3..WC denne a tw。 ―dimensional labeling T′ as

follows:

Then lα ,(T)=lα s′ (T′ ).  □

Wc can now provc Theoren1 6.2.
Prοげ げ 罰ら

`ο
r`7716.2.ヽre nrst provcス (TTSP(“ ))≦

“
by inductiOn on“.It is

clcar that A(TTSP(1))=1.Assume that the inductiOn hypothesis is true forた く rll Let

C=(ME)be in TTSP(/PI)With sOurce s and sinkた From Lemma 6.4,we only havc
to show α.(7)|≦ /77 fOr any τ From the dennition of TTSP,C must be constructcd
either in scries or in parallcl from Gl∈ TTSP(“ 1)and G2∈ TTSP(7712)SuCh that

“
=“ 1+“2 and“ 1,/2o2>0・ Thcn we have A(C)≦ ス(Gl)+A(G2)≦ 7721+“2=rll.Notc

that the nrst inequality uses Theorems 3.7 and 3.8,while the second uses the induction

hypothesis.Thus A(7~「 SP(“ ))≦
“
.Since L“ ∈TFSP(“ ),frOm Lemma 63,ス (L″ )=

″1,which shows this bound is achievable。     □

We will show the samc result forthe class of BTTSP multidigraphs.The foHOwing

lelllllla says that every backedge in an s― r path in a BWSP graph lies on a cycle that

lies on thc s― r path.

LEMMA 6.5. L`′ GB b`α BWSP grα′あ″J′Й sο
“
rc`sα

“
グsブ4た ″,α 79′ Jθ′Pら

`α
 pα′あ

ルθ
“

S`ο r′οssめ″
“

sブ4g Sο

“`bα `た
θ″gβsげ4 GB.5助

`4 Pcα
′b`′υ r`Sθ 4r`″ αsル′′ο″S:

P=Pl Cilら C夕 … 。aC》 whcrc Pl島 ・… ■
'Sα

Pαル/rο
“

Sονκβ″O Si4た ′″rル
“
′グθrヶJ4g

WSP graprl C,rrl`ci's are cyclcs in CB,and 4≧ ≧O fOr l≦ J三≦た。

Pr・οぼ  For the proof sec§ 7.   □

THEOREM 6.6.A(BTTSP(“ ))=“
Pr・οげ Since  TTSP(“ )⊂ BWSP(“ ),  We  have  

“
=A(TTSP(/71))≦

A(BTTSP(“ )).ヽVe nOw prove that for an arbitrary graph CB∈ BTTSP(“ )With at
least one backedge,ス (GB)≦

“
.Let C=(yl,El)be the underlying TTSP graph of

GB,and let r be a two_dimensional labeling of GB Lct PB(S,r)bC the set of s― r

paths in GB,and lct P(s,r)be the set of s― r paths in C Let P be an arbitrary path

in′3(S,r).Then from Lemma 6.5,P can be expressed as P=Pl C争 ら C夕 …・acか ,

897

』戦与

∈

　

∈

　

∈

０

０

Ｔ

ｒ

ｌ

り

ヽ

―

に

〓Ｔ



898                  K IWANO AND K STEIGLITZ

where PlP.・ ・・IRk iS a path from source to sink in the underlying TTSP graph c the

Ci's are cycles in CB,and為 ≧ O for l≦ :≦ た。Lct βP=T(P122・ … Pk)and γR=T(Ci)

=c神
易it.ュ」出P=属醜 1.γ常飢 ,↓鳥ld 4き,十∪ごし

1≦ J≦ た
}。 Let T(P*)be denned as T(P*)=∪ QcP*T(Q).SinCc P*⊂ PB(s,r),we have

r(P*)=β P+(γPI U γP.U… ・Uγ.)*⊂
+ ∪  T(P).
Pc P3(s,′ )

Note that T(P)⊂ T(P*).TherefOre∪ Pc P3(s,r)T(P)=U Pcち (s,r)T(P*).ThuS We nOw
have

隠劉=|ぷm・01=1製001
=|』

m pP・
lL Uし い…Uプ

|

≦
IPc躍(劇

み
1判

画 TheoК m刷

≦
1馴 竃゙めIH

≦ lα,(C)|+1 (from the dennition)

≦A(7‐rsP(IEll))+1

=IEl+1(using Theorem 6.2)

≦
“

because lEll≦
“

-l by the assumption that C has a backedge.Thus
A(B7‐rsP(“ ))≦

“
. □

COROLLARY 6.7.Fο ′BTTSP,″ λθ αJgο r′′Й
“
ZSC″

“
sj′ 0(43“ )′J“θ″あθrθ

“
is

rあ

`“““
bθr O/υθ″たθS α4α

“
,srあθ

“““
b`r`ノ θαg`s.

Prοげ The prOofis clear from Theorems 4.4 and 6.6.   □

7.Proof of Lemma`.5。 Let C=(ZE)bea T「 SP multidigraph with source s and

sinkム A bJ′αッ グ26ο

“

′οsj″0′ rκθメ9r(l denOted by BDT(C),WhiCh was discussed
in [26], represents the construction proccss of G by a binary tree. A binary tree

BDT(C)can be created by following the sequcnce of series and parallel compositions

that construct C.Initially we have a set of singletons{ι l`∈ E}.Suppose we apply a
two terminal parallel(respectively,series)COmposition to two TTSP graphs cχ ν and
C)“υ and obtain the new TTSP graph Gab Where χ, ッ,α are sources and y,υ,b are
sinks.Then we create BDT(Gα ゎ)by creating thc root αPb(respect�ely,αSb)and make
BDT(cxソ )a left Subtree and BDT(G“ υ)a right Subtree.Thusin BDT(G),eVery leaf
represents an edge in C and each internal node aPb(respectively, aSb)represents a

parallel(reSpect� ely,series)composition.Fig.5(b)shOWS an example.Note that every

path in C has a corresponding route in BDT(G).For example,the path

P=υ -3-b-5-`-7-グ ー8-θ -9-喝
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shown in bold lines in Fig.5(a),haS thc foHowing corresponding route in BDT(G):

PBDT: (V,b)=3-υ Pb― αSb― αSc― α2c― sSc― ζL一 、S`― dS′

―d鳥 ―d亀 ―d島 一eP/― eS7-9

=(e,W)

Note that the vertices shown in bold face in thc path PBDT,(b,ら 4 and`),appcar in
P in this order.

Let Lw bC the smallest subtree in BDT(C)that includes vertices υ and w(Find
the nearest colllinOn ancestor and include the appropriate subtree.)Lct l%(respcctively,

71)be the subtrcc of■ ,w in which υ(reSpectively,″ )eXists as shOwn in Fig.5(d).
Vヽe use αAゎ for rcprcsenting cither αtt Or a2b.Let αスぁαスc,and′スゎbe the root Of

the subtrecs■ w,■ ,and τ",rcspect� ely.Then wc have the following lemma:

LEMMA 7.1.Sィ ′′οs`.スッα′′
`α

β ブ4 PBDT・ JxAソ 9′′
`α

tt j′ ■ ),′λ
`“

ッ プSれ Pゲ
(Aν ⊇pβαぉ j4コ%,′ЙC′ χ JS j′ P

Prθげ  Suppose./Lソ appears in 5島 .The Vertex υ is in thc TTSP graph with sOurce
χ and sinkノ .Thus cvery path frolll υ tO a Vertex that is not in■ must pass through

ッ.ヽVe can provc the other case in the same way.    □

COROLLARY 7.2.Sttpθ s`′あ
`rθ

′sα υ一 ll pα

`Й

′4Gα ″グ

="=",α
′グ ■ w αr`ググ ′θグ

αs αbουθ.L`′ αノ生め,α/1c,α 4グ ど/1ゎ bθ rあ

`rο
οrs 6りrr」l`s夕 brr``s71,ll・ ■,αη″■ ,″

`ψ `crゴ

υ
`rll.

動
`“

″θ力αυ
`′

ル ル ′′θ″ブ′g:

(1)α Aゎ =α .Sb;′みαrゴ s,′力θ″οο′げ■"`ο
rr`ψο′′Srο α s`″′θs cO“′οs′′′ο4,α′′

`=′
(2)Eυθク′αルタοrll υ′0′ ραsS`Srかθッgλ r"υ

`″

′
`χ

ε.

(3)Eυθり′αrヵ ルο
“

S rθ ″′αssCS r/2rο
“
gあ

`ル
υθ″たχc.

(4)A4yυ ―r′α
`Й

 α4″ α
“
ys― ltl pα ル j“たな

`α
 αrsO“β υθrたχ.

P″οo/ (1)If the rOot of■ w COrrcsponds tO a paraHcl composition,therc is no
path fl・ om υto″.Thus αAゎ =:島 .And thc series composition identines the sink Of ac

and the source of′ Ab,thus c=グ .

(2)Sincc there is a w一 r path,′ だ71 TherefOrc,from the proof Of the above
lelnlna,every path from LltO r passes through the vcrtex 6.

(3)Wc can prOve this in the samc way as(2).

(4)This is obviOus from(2)and(3).  □

Prοげ げ L`“
“
α6.5.Letた be the number of backedgesin P Letム ソ(■ソ)dcnOte

an χ―ッpath in CB(G).We prove the lelnllla by inductiOn onた

Supposeた =l and let θ=(″ ,υ )be the backedge in P Notc thatthcrc must bc a
υ―″path in the underlying T「 SP graph C.P can be representcd as P=R.,`=υ r.R″
and Pυ′are paths in Gら sinCeた =1,sO that from Coronary 7 2,they pass through thc

samc vcrtex 6 Therefore,we can express P as P=ム (Rw`鳥 (え′.ThuS wc obtain thc
cycle Cl=2ぃ

`民
.(

Suppose thc lemma holds for numbers less thanた Lct EB={θ l,θ 2,・ ・・,O}be
the backedgcsthat appearin P in this ordcr.Let θ.=(″ぉυ,)for l≦ J≦ ムLct`/=(叫 ,ν′)

bc the last backedge in fB such that there is a path froln ν′tO Wlin C.Assume that

`′

≠θl・ (When`/=θ l,We can easily modi～ the n011。 wing proO■ )Then as shown in
Fig.5(e),P Can be representcd as P=」、.ド lBυ :.′

`′

B彎 ′・Let fヽ
P′

be an arbitrary s― ν/

path in C,and let Pl=f■
′
3./・ Then Pl has′ backedgcs wherc′ ≦た-1,bccause al

is not on Pl.From the induction hypothesis,Pi can bc fOrmed from an s― r path」
rヽ

and cycles{qブ ∈J}.Note that R.iS part ofム r;that is,there e� sts a彎 ―J path ftr

such thatス′=民.ら′“
Suppose not.Let θ=(χ,ッ )bC the nrst edge inス ,Such that

ッだR′ .Then there cxists a backcdge(ろ χ)in 3.r and a cycle c suCh that(z,χ )∈ q.
Since thcre exists an χ――ν′path and a彎 ―″l path in C,there exists an χ―141 path

899
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in C This cOntradicts the deflnition of ν/,since the backedge(z9χ )iSin 3.lr,and thus

appears after cr in EB・

嬌 β i.笛 町 襲 巧零 崎|みギ ∴ ∬
跳 ∴ .lif宝 :轟

「

I
Tr輝

=・

年 瀧 LTl惚 1:宵iiル禁 fTh∝eb∝ ぬe ptth P CO面 飩s Ofぬ e ptth

Rc鳥′,Cycle a and cycles{qlプ ∈J}・  □

8。 Conclusiono We showcd that the two operations of vector summation(+)and

convex hull of union(U)deflned on the set of cOnvex polygons form a closed semiring.

We then investigated some properties ofthese operations.For example,the+operation

can be doncin O(“ )time,where“ is the number of edges involved in the operation.

we then obtained the algorithm ZS(〕 by using Kleene's closure algorithm on the

above closed sclniring.The algorithm ZSC solVes the two‐ dilnensional zero‐ sun■ cyclc

problenl,ヽ Ⅳhich has a close relationship to the problenl of acycHcity in two‐ dilnensional

regular electrical circuits.The colnplexities of our algorithm ZSC in some special cases

are ο(43)time fOr the one‐ dimensional labeling case,0(44ル ィ)time fOrルイ‐bounded

graphs,and O(“
3“

)time fOr BTTSP graphs,where r is the number of vertices and

“
is the number of edges.We also showed that the undirected version ofthe zero―

sum

cycle problem can be solved in O(“ 10g“ )time and that the zero― sum s'“ P′θ cycle

problem is NP‐ complete.

we make the following coniecture about the number of edges of the convex

pdygons that appear in the」 go�thm ZS『
;げ 4θグ加′ルsα“ι″αy αs加 ′力θたχム動̀″CONJECTURE.Ij`′ (■ ■ α″グ α,(T)b(

A(C)=■鸞
αJ(T)|≦ “'

where“ is the number of edges in C

If this conieCture is truc,then algorithm ZSC runs in O(43“ )time On general

graphs.

After the extended abstract ofthis paper appeared in[16],Kosaraiu and SuHivan

[18]showed that the zero‐ sum cycle problem for any dimension can be formulated in

terms of linear programlning, and thus is solvable in polynonlial― time; Cohen and

Megiddo[6]proved that the zero‐ sunl cycle problen■ for any nxed dilnension belongs

to the class NC and can be solved in the two‐ dimensional case in serial time O(4“ ).

As rnentioned in the lntroduction,we hope the results in the prcsent paper are of

interest as a new connection between cOnvex polygons and senlirings,and as a novel

application of Kleene's closure algorithm, even though faster algorithms are now

available for the zero―sum cycle problem.
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