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1. Introduction

There has been much recent interest in studying the implications of economic
behavior by simulating markets. For example, the group at the University of Arizona
used the PLATO computer network to conduct laboratory experiments with double
auctions using human participants'’”. More recent results from a double auction
tournament with computer trading programs is reported by Rust et. al.'® Smith!®
gives an overview of the literature on experimental economics. Work at Xerox PARC
uses market-based ideas to allocate computer resources (see Huberman and Hogg?,
Waldspurger et al.!6, for example). The term “computational ecology” has been used
to describe this emerging field. Finally, recent work at Cal Tech by Ledyard et.
al.!' and Porter and Rangel'? uses computerized exchange mechanisms to allocate
resources in a space exploration project.

Experimental markets with human subjects can lead to valuable insights into the
mechanisms of competitive price determination, but it has some disadvantages. First,
it is relatively expensive compared to computer simulations, and that limits the scope
of possible scenarios that can be explored. Second, since human behavior is so com-
plex, it is difficult to isolate the effect of one particular aspect of it. Of course we
ultimately want to understand the economic implications of just such complicated
behavior, but developing more controlled experimental techniques should yield addi-
tional insight.



The work described in this chapter is an attempt to provide a resource that lies
between strictly analytical models and experimentation with human subjects. The
approach provides a framework within which we can test theoretical results, and
within which we can also observe the effects of changing individual aspects of hypo-
thetical agent behavior. We will build a model of a micro-economy that is as simple
as possible, while at the same time reflecting certain commonly accepted norms of
behavior. For example, agents will have a need to acquire an essential commodity,
which we call food, either by producing it themselves, or by buying it with a second
commodity (gold) which they can produce. Our behavior-specifying algorithm is con-
structed so that an agent will bid higher if his inventory of food is low, and be willing
to sell at a lower price if his inventory is high. This is not to say that such behavior
always occurs in the real world; rather we argue that any valid economic model must
at least apply to such a situation.

Computer simulation of market models at the level of individual transactions is
not entirely new. For example, the role that computer models of economic agents can
play in studying economic questions is described by Holland and Miller®. Models of
markets in which human traders are replaced by computer programs are described
by Gode and Sunde® and Rust et. al.'® The work described here differs from this
previous work in that we attempt to construct a model of a complete albeit very
simple economy. That is, each agent produces a commodity, consumes a commodity,
and engages in trading. In this way we can study the interaction among prices,
production, consumption, and aggregate supplies and demands along with the effects
of speculators.

Our goal is to build (eventually more complicated) models that capture aspects
of economic reality based on specific assumptions about human behavior. The ap-
proach we take has the important advantage of being flexible enough so that these
assumptions can be changed or modified easily. In principle, we should be able to
simulate a model of a large economic community with thousands of commodities us-
ing (hopefully accurate) models for the behavior of individual agents. Such a system
could be used to study the effects of government policy, monopolies, and so on. The
real problem, of course, is how to construct this model. We are attempting to take a
first step in this direction.

The very simplest version of the model, with no prediction or history-based be-
havior by agents, results in the emergence of large-amplitude endogenous cycles in
price and volume traded. This reflects well known properties of systems in which cur-
rent action is determined by observations of past price, such as the cobweb model!.
Even at this point, however, it is not clear what aggregated analytical model could
be used and analyzed to predict cycle amplitude, frequency, and degree of regularity.
The system simulates the actions of 1,000 independent agents unless otherwise noted,
each with his own inventory and skills (at producing food and gold), and the agents
interact through an auction that establishes a commonly accepted transaction price.

We use this starting point to examine the effects of speculators on price stability
and market efficiency. The first result is that speculators, agents who simply try to
buy low and sell high, stabilize the price dramatically. The framework then allows



us to compare the efficiency of different speculation algorithms, and to study the
effects of speculation on overall market efficiency. As we expect, the stabilization of
price results in an overall increase in market efficiency and fluidity, in the sense that
individual production decisions are more closely matched to skill, and the numeraire
is more easily converted into accumulated wealth.

2. The Model

2.1. Basic Assumptions

Our approach is to build a minimal system that exhibits interesting economic
behavior. Such a system cannot possibly consist of only one good, because the concept
of price would have no meaning. Therefore, it must contain at least two distinct
commodities, which we call food and gold. We assume agents consume one unit of
food during each period.

Each agent is capable of producing both goods, at predetermined rates called skill
levels. We will denote the skill levels of agent i by skill[i] and skill,[i]. For example,
an agent with skill;[i] = 3.21, produces 3.21 units of food on a day in which he
decides to farm. (Throughout this chapter we will use the word day to characterize
the indivisible unit time period.) The skill levels of each agent are predetermined
by random numbers from a uniform distribution, and are constant for the duration
of the simulation. It follows that some agents will be more efficient than others in
producing food or gold. In addition, agents have the ability to maintain an inventory
of food and gold, at no cost.

Every day each agent must decide whether to produce food or gold. This decision
is based on the price at the end of the previous day. Since agents are assumed to be
wealth-maximizing, agent ¢ produces gold during day ¢ if and only if

skilly[i] > P(t — 1) - skill[i] (1)

where P(t — 1) is the most recent price; that is, if the value of his gold production
would exceed the value of his alternative food production.

Agents are also assigned a reserve level of food, representing the food inventory
which that particular agent wishes to maintain. These reserve levels are predeter-
mined by random numbers from a uniform distribution, just as are skill levels, and
also remain constant throughout the simulation. In our experiments, we used 20.0
and 40.0 as lower and upper bounds on reserve levels.

In our minimal economic system there must be a trading mechanism so that agents
can buy or sell food in exchange for gold if they so desire. The use of an auction for
this purpose emerges naturally. Ability to trade also implies the existence of a price
of food, in units of gold, which should adjust according to supply and demand. The
exact method of price determination will depend on the specific auction mechanism
used.

Finally, it is crucial to define utility for each agent. Indeed, in order to set bids or
offers, agents must act according to some utility function, which captures the degree
of their willingness to buy or sell.



The utility function, food reserve = 30

normalized bid

food inventory

Figure 1: The shape of the utility function, the normalized bid B vs. food inventory
for three values of gold inventory. The particular case shown is for the parameters
boo = 4,b91 = 8,bpse = 16, P = 2.0, and food reserve of 30.

2.2. The Utility Function

Every period, each agent submits either a bid to buy, or an offer to sell. (For
simplicity, we often use the term bidder to refer to a buyer or seller, and the term bid
to refer to a bid to buy or offer to sell.) Each agent’s particular bid is determined by
multiplying his particular utility function by the price P(t — 1), which resulted from
yesterday’s auction, and which is known to everyone. The utility function of an agent
depends on his food and gold inventories. For simplicity we take the utility function
to be the same for all agents.

The important characteristics of the utility function are that the bids increase
(resp. decrease) when food inventory is low (resp. high). We also want the utility
function to increase with gold inventory when bidding to buy, and to decrease with
gold inventory when offering to sell. That is, as the bidder gets richer, he is willing
to pay more for food when buying, and to sell food for less when he is selling. For
the examples considered it was found that the particular shape of the curve is not
critical, and the particular function was chosen as follows, parameterized by only
three quantities. Let f = f[i]/r[i], the food inventory of agent i normalized by his
reserve; and g = g[i|/(P - r[i]), the gold inventory normalized by the current value
of his reserve. We then choose the values of the bid function B(f,7) at f = 0 and
g =0,1, and oo as follows:

B(an) = boo
B(Oa ]-) = bOl
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B(O, OO) = bOoo

and define the bid function at f = 0 by the following exponential function of g:

B(0,7) = bpoo — (boso — bpo)e 7 (3)

where ; )
g M) A
7 (b()oo . 4)

The complete bid function is then taken to be the exponential function of f that
passes through the point f =1,9=1:

B(f,9) = (B(0,3))"" " (5)

Thus at the point f = 1, which corresponds to the food inventory being exactly at
reserve, the bid function is always one, which means that the bid is precisely equal to
the current market price P(t —1). When the food inventory is below reserve, the bid
function yields an offer price above P(t — 1), and when the food inventory is above it
yields an asking price below P(t—1). See Fig. 1 for an illustration. Again, we remark
that the details have proven not to be critical, and this function has been chosen for
simplicity and transparency. Finally, the amount bid is simply the difference between
the agent’s current food inventory, and his reserve level.

2.3. The Auction

There are many ways in which an auction can operate, and the literature on the
topic is voluminous. A comprehensive review can be found in Engelbrecht-Wiggans
et al.? For the purpose of this model we considered two forms of auctions. The first
is a sealed-bid auction, such as the one attributed to Martin Shubik, and described
in Smith et al.!* The advantage of this auction is that it leads to a clearly defined
procedure with few arbitrary choices. A central auctioneer collects bids and offers
from agents, and determines the market-clearing price. Subsequently, all transactions
occur at this price. An example of sealed-bid auctions are call markets which set the
price to maximize the amount traded, as reported by Harris’.

The second form is a double auction, where buyers and sellers are matched up in
some way, and trade at different prices. In the most common type of double auction
the highest bid to buy and the lowest offer to sell “hold” the market. Participants may
then either raise the current highest bid, lower the current lowest offer, or accept one
of the two. This process is described in Friedman* in the context of financial markets,
and was actually implemented by Williams and Smith'® in laboratory experiments.
For some examples of the theoretical literature on double auction models, we refer the
reader to Williams'® and Friedman®. Another type of double auction is characterized
by buyers and sellers matching up either randomly, or in some other distributed
fashion (see Wolinsky??).
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Figure 2: Illustration of the sealed-bid auction. Price is determined by mazimizing
volume. This maximum volume is achieved for prices in the closed interval [A,C],
whereas in the semi-open interval (B, C] the Bidder C has no competition.

The majority of our experiments assume a sealed-bid auction, in which an intelli-
gent auctioneer finds and announces the unique market-clearing price for the day. The
auctioneer receives two lists each day: a list of bids to buy, along with the amounts
desired, plus a list of offers to sell and the corresponding amounts available. This pro-
cess of communication between agents and the auctioneer is described in Hurwicz!®
using the concept of “languages.” In the case of a Walrasian tatonnement process,
“messages are the proposed prices and commodity bundles.” Later we describe ex-
periments which assume a distributed double auction.

For a reasonable market, we must first ensure that the following constraints are
satisfied:

(a) No buyer pays more than his bid.
(b) No seller sells for less than his offer.

Next, as mentioned above, we assume that the auctioneer operates to maximize the
total quantity of food traded. One motivation for this is the fact that an auctioneer
is likely to be rewarded for high sales volume, but the auctioneer does not own and
trade commodities in this model. From the point of view of the agents, this strategy
attempts to satisfy the maximum number of participants in the auction. We enforce
a third constraint:

(¢) The maximum amount of food is traded, subject to constraints (a) and (b).



Supply and Demand vs. Price of Food (at t=1993)
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Figure 3: Price determination in the auction for an example with 1,000 agents. Max-
imum volume is traded subject to the bid/ask constraints. The price increases when
demand exceeds supply, and vice versa.

These three constraints determine a range of possible prices each day. To see this,
consider for each price P the amount that would be available for sale at that price, and
the corresponding amount that would be bought, as shown in Fig. 2. For purposes of
discussion, the figure shows the case where total demand exceeds total supply on the
day of the auction, but the following comments with appropriate changes also apply
to the case where supply exceeds demand. We call these curves supply volume and
demand volume respectively, and emphasize that they change from day to day with
inventories and price. The supply and demand curves associated with a particular
auction are monotonically non-decreasing and non-increasing, respectively, and are
piecewise constant with discontinuities at prices corresponding to the bids of agents.
The closed interval of prices [A,C] in Fig. 2 represents the range of prices that
satisfy Constraints (a)-(c). At prices below A total amount of food for sale is less
than aggregate demand; at prices above C total amount of food for sale is greater
than aggregate demand. Further, in the range [A, B| there is more than one buyer
willing to meet the price, so it is only in the semi-open interval (B, C] that the set
of buyers and sellers is determined uniquely. That is, in [A, B] there is competition
between the buyer whose bid is B and the buyer whose bid is C', which is resolved by
raising the price above B.

The choice of a single price in the range (B, (] is somewhat arbitrary, and we
choose the upper limit C'. This has the effect of raising the price fastest when demand
exceeds supply in a particular auction. That is, when demand exceeds supply we
choose the highest price consistent with Constraints (a)-(c). Symmetrically, when
supply exceeds demand we choose the lowest price consistent with the constraints. In



practice these choices are not critical because in a simulation with many agents, the
piecewise-constant intervals are quite small (see Fig. 3). If maximum supply should
equal maximum demand precisely, we set the price equal to that of the preceding day.

To resolve the remaining special cases, when the supply is zero but the demand
is not zero, the new price is set equal to the highest bid. When the demand is zero
but the supply is not zero, the new price is set equal to the lowest asking price.

2.4. Speculators

Our model includes two different classes of speculators, who differ mainly in the
trading rule they use. Speculators are not directly engaged in production activities, do
not consume food, and start the simulation with a fixed inventory of gold. Speculators
in both classes offer their entire inventory of food for sale when they sell, and try to
purchase as much as they can afford when they buy.

The first class of speculator (named DER) uses a trading rule based on the esti-
mated second derivative of the price curve. They post a bid to buy when the slope
of the price curve is increasing, and an offer to sell when the slope is decreasing. If
speculator j decides to buy, he posts a bid of P(t — 1) - (1 + margin[j]). Conversely,
if he decides to sell, the offer is P(t — 1) - (1 — margin|[j]), where margin[j] is specific
to each individual speculator. In this way, DER speculators can profit from price
fluctuations, because of the additional information they possess on how the price is
changing.

Speculators in the second class, which we name AVG, use adaptive expectations
to predict the average price. Adaptive expectations are described in Carlson (1967),
in reference to the cobweb model. The price forecast is given by

P(t)=8-P(t—1)+(1-5) P(t—1) (6)

where f’(t) is the expected price at time ¢, and 3 is a weighting coefficient. A decision
to buy is made by speculator j when

P(t—1) < P(t) - (1 — margin[j)) (7)

in which case a bid of P(t—1)-(1+margin[j]) is posted. The use of the same margin to
trigger trade decisions and to set the bid is arbitrary, but adopted for simplicity. The
logic is quite simple: if the previous period’s price is sufficiently below the forecasted
average, then the speculator should buy. Conversely, speculator j sells when

P(t—1) > P(t) - (1 + margin[j]) (8)
in which case an offer of P(t — 1) - (1 — margin|j]) is posted.

2.5. Competitive Equilibrium Price

Within this model, the long-run competitive equilibrium price can be computed
at the beginning of the simulation. It is simply the price at which just enough agents
produce food to satisfy the needs of all nonspeculating agents.



Price of Food vs. Time (no speculation)
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Figure 4: Price of food vs. time, in the absence of speculation. The price curve
displays endogenous oscillations. The equilibrium price is represented by the dashed
line.

3. Simulation Results without Speculators

In the absence of speculation, the price history is oscillatory with an amplitude
that depends on the simulation parameters (see Fig. 4). These price movements
can be explained by the fact that the market reacts to excess supply or demand by
“overshooting” the competitive equilibrium level. As the price increases, agents start
shifting from the production of gold to the production of food, which is becoming
more profitable. Eventually, food accumulates in the system, due to overproduction,
leading to sell orders in the auction, and driving the price down again. Experiments
show that the magnitude of price oscillation is reduced if the agents use memory or
prediction. Rather than pursue that path we choose to incorporate forecasting by
introducing speculators, as described in the next section.

In systems without speculation, the volume traded also oscillates considerably
(see Fig. 5). This is a direct consequence of the price fluctuations, which determine
the actions of the agents. From the figure it is clear that the volume traded is highest
at price turning points. This is due to the fact that these turning points represent
close matching of supply and demand (see Fig. 6), which leads to more trade. When
one side of the market is short, the volume traded is correspondingly low.

In the model without speculation, the market’s behavior seems reasonable. Agents
stay as close as possible to their reserve levels of food, and the price oscillates con-
siderably, due to the inertia in market adjustment to excess demand (or supply).

We now turn to another interesting question: what factor is primarily responsible
for an individual agent’s net worth? We use gold inventory at the end of the simulation
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Figure 5: Volume traded and price of food vs. time, in the absence of speculation.
Periods of high volume occur at price turning points.
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Figure 6: Supply and demand in the auction, and market-clearing price vs. time,

in the absence of speculation. Turning points in the price curve correspond to “well-
balanced” markets (supply and demand match).
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Figure 7: Net worth as a function of food and gold skills, in the absence of speculation.
The data represents 10,000 agents after 5,000 days of simulation. Food and gold skills
are normalized so that the maximum value is 1.

as a measure of net worth. This seems reasonable, since each agent attempts to
accumulate gold. Figure 7 shows net worth as a function of agent food and gold skill.
Note that food and gold skills are given in normalized terms, in the sense that a
skill level of “0” means that the corresponding agent is at the lowest end of the skill
spectrum, whereas a skill level of “1” means that the corresponding agent is at the
highest end of the skill spectrum. It appears that there exists a strong correlation
between skill in the production of food, and ultimate wealth. In contrast, gold skills
seem to have no significant influence on final net worth. Also, net worth increases in
an approximately linear fashion with food skill between 0.2 and 1, but agents with skill
levels below 0.2 do not accumulate wealth. What appears to happen is that agents
with relatively high gold skill tend to mine more readily than those with lower gold
skill, with the expectation of buying food at the price when the mine/farm decision
is made. But on the average purchases of food must be made at higher prices. It is
clear that lack of foresight puts agents with a high temptation to mine at a relative
disadvantage to those who are more inclined to farm.

4. Simulation Results with Speculators

Williams and Smith!® report that introducing speculators in laboratory experi-
ments on double auctions reduces price fluctuations, and we observe the same effect
in our system. Figure 8 shows the results of introducing speculators of both classes
at t = 1,000 days. The stabilization is dramatic. In fact, after introduction of specu-
lators the price stays very close to the equilibrium value, oscillating generally within

11



Price of Food vs. Time (speculation at t=1000)
15

10 1

5 -

||| —

0 1000 2000 3000 4000 5000

Price of Food (in gold terms)

Time (days)

Figure 8: Price of food over time, with the introduction of 100 speculators of each class
at t = 1,000. The introduction of speculation greatly dampens price fluctuations.

a range of 5-10% (see the detail in Fig. 9). Price movements also become less regular.

We observe that speculators also have a stabilizing effect on the volume of trade
(see Fig. 10). Specifically, speculative activity maintains a certain minimum level of
trade, close to 800 units of food per day, whereas the volume of trade regularly dips to
zero or near zero in the absence of speculation (see Fig. 5). This clearly demonstrates
that speculation has made the market more fluid.

We define the concept of Gross Domestic Product within our system as the total
gold-equivalent value of productive output. Since nominal GDP is subject to price
fluctuations, we define real GDP as constant-unit GDP, using the equilibrium price
of food P,. Thus, at any given point in time ¢, real GDP is defined in a system of n
agents as

GDP =Y stock,[i] + P, - > stock[i] 9)
i=1 i=1
where stocky[i] and stock[i] are gold and food inventories of agent i, respectively.
It appears that real GDP grows linearly, with a discontinuous change in slope at
t = 1,000 corresponding to the introduction of speculators (see solid line in Fig. 11).
The dashed line on the graph represents GDP growth, in the absence of speculation.
This result shows that speculation increases the efficiency of the market, since GDP
(which is a measure of aggregate wealth) grows more rapidly after speculators are
introduced. Williams and Smith'® come to the same conclusion in their experimental
market:

Using observations from two cyclical market designs, we have shown that
the inclusion of a class of speculative agents tends to reduce significantly

12



Price of Food vs. Time (speculation at t=1000)
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Figure 9: Price of food over time, with speculation. Prices tend to oscillate within
5-10% of the equilibrium value.
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Figure 10: Volume of trade over time, with speculation at t = 1,000. Speculative
activity has made the market more fluid.
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Gross Domestic Product vs. Time (with and without speculation)
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Figure 11: Constant-unit Gross Domestic Product, with speculation at t = 1,000.
The dashed line represents the GDP in the absence of speculation. Increased slope of
the GDP curve after the introduction of speculators, relative to the dashed line, is a
sign that the market is more efficient with speculation.

the observed magnitude of cyclical price swings relative to those observed
in markets without intertemporal speculation. Including speculators also
results in a significant increase in market efficiency.

The GDP discussed here includes the wealth accumulated by speculators, but if
we were to plot the GDP of the productive agents only, the difference would not be
discernible. The speculators do not absorb a significant fraction of the extra wealth.

We can now investigate net worth as a function of skills, as we did in Section 3,
where we discussed a system without speculation. Figure 12 displays final net worth
as a function of food and gold skill, and shows clearly that the relation is now well
described as the intersection of two planes. If we consider a particular food skill level,
say 0.6 (in normalized terms), and scan along the gold skill axis in the increasing
direction, there are two distinct segments: first a segment of constant net worth, and
then a segment of increasing net worth. The transition point is that gold skill at
which agents with the particular food skill of 0.6 switch to the production of gold,
and thereby accumulate greater net worth. A similar argument can be made if we
scan along a given iso-gold-skill line in the direction of increasing food skill. The
intersection of the two planes is in fact determined by the condition that a day’s
production of gold buys a day’s production of food at the equilibrium price; in other
words, skilly - P, = skill,,.

The economic interpretation of this phenomenon is straightforward. More stable
prices allow agents to specialize in their good of comparative advantage: agents who
are highly skilled miners now find it easier to accumulate gold while trading enough

14
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Figure 12: Net worth as a function of food and gold skill, in system containing spec-
ulation. The data represents 10,000 agents after 5,000 days of simulation. Food and
gold skills are given here in normalized terms.

gold for food to maintain desired inventories.

5. Robustness of the Model

Until this point, we have introduced a market model based on very specific as-
sumptions, and described its behavior. It could be argued that the results obtained
from our system are not sufficiently general in scope, since many seemingly arbitrary
decisions were made in the model design process. We now attempt to demonstrate
that the results are insensitive to what is perhaps the most critical modeling decision,
the choice of auction.

Although most of the experiments were conducted using a sealed-bid auction,
a system was also simulated containing a distributed double auction. Specifically,
buyers and sellers are matched up in the following manner: first the seller with the
lowest offering price is allowed to trade with the buyer bidding highest. When one of
the agents has been satisfied, the next lowest seller (or next highest buyer) is allowed
to trade. This process continues until either the buyer or seller list is exhausted. The
price of each individual transaction is determined as the midpoint between the offer
and bid prices. This means that in general each transaction occurs at a different
price. We define P; as the average of these individual transaction prices, weighted by
the volume traded at that price. That is,

P, =
' mLQ;

(10)
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Price of Food vs. Time (speculation at t=1000, double auction)
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Figure 13: Price of food over time, with the introduction of 100 speculators of each
class at t = 1,000. In this experiment, a distributed double auction mechanism was
used. Note that price movements are similar to those in Fig. 8.

where P; and (); are respectively the price and quantity associated with transaction
i, and m is the number of transactions. An alternative definition of the daily price
would simply be the average of bids posted for the day, weighted by the desired
quantity of food traded associated with that bid. This procedure defines a price P
in a way that does not depend on transactions that actually take place. In a model
containing n agents, the daily bid of agent i is denoted as bid[i], with an associated
quantity gty[i]. Then by definition

iy bid[d] - qtyli]
i qtyli]

Clearly, P; is an accurate measure of the “real” price of food, if the volume actually
traded is high. However, on low-volume days, there may not be enough transactions
to make P; a meaningful price; on such days, P, becomes a more reasonable estimate
of the value of food. This leads to the following price definition:

PI:Oé'P1+(1_O{)'P2 (12)

where « represents the fraction of agents who engage in trade on any given day.

Using this model, we obtain results similar to those in the sealed-bid situation (see
Fig. 13). Other price-setting mechanisms were also tested, and did not significantly
alter the system’s behavior. The general issue of the influence of price-estimation
algorithms on the behavior of distributed auctions is an interesting topic for further
research.

16



DER Speculator Wealth vs. Time (system with DER speculators only)
400000

300000 4

200000 -+

100000 -

DER Speculator Wealth (units of gold)

T T T T
0 2000 4000 6000 8000 10000
Time (days)

Figure 14: DER speculator wealth over time (in a system where DER speculators
operate alone).

6. Performance of Speculation Rules

An interesting issue is how well each class of speculators performs in our system.
For this purpose, we experimented with systems containing only DER speculators,
only AVG speculators, and finally both together.

Figure 14 represents DER speculator aggregate wealth over time. Note that for
speculator j, wealth is defined as stock,[j] + P, - stock¢[j], where P, is the equilibrium
price in the system, as defined earlier. From Figs. 8 and 13 it is clear that the trading
rule based on changes in the estimated derivative of the price curve is quite profitable,
in the absence of other types of speculators.

AVG speculators also become increasingly wealthy when they operate alone in the
market (see Fig. 15). However, they do not accumulate as much aggregate wealth
as do the DER speculators in Fig. 14. In the case corresponding to Fig. 15 (for
AVG speculators) prices oscillate more closely around the equilibrium level, and that
considerably reduces opportunities to make arbitrage profits.

We turn next to the most interesting case: DER and AVG speculators operating
within the same system. Figures 16 and 17 show how both classes of speculators
perform. DER speculators do not generate much profit: they rapidly lose the gold
they were credited with at simulation start, and do not accumulate more than 100
units of gold for the remainder of the simulation. In contrast, AVG speculators
perform consistently well (Fig. 17). In the early phase of the simulation, there seems
to be a transfer of wealth from DER to AVG speculators, as reflected by a sharp rise
in AVG speculator wealth as DER wealth drops rapidly.

These results indicate that DER speculators need large price fluctuations. When
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AVG Speculator Wealth vs. Time (system with AVG speculators only)
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Figure 15: AVG speculator wealth over time (in a system where AVG speculators
operate alone).

DER Speculator Wealth vs. Time (system with both classes of speculators)
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Figure 16: DER speculator wealth over time (in a system containing both classes of
speculators).



AVG Speculator Wealth vs. Time (system with both classes of speculators)
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Figure 17: AVG speculator wealth over time (in a system containing both classes of
speculators).

AVG speculators are added, the magnitude of price oscillations is greatly reduced,
ruining all DER speculators except those with the smallest trading margins.

Finally, we examine how wealth is distributed among AVG speculators, in a system
where both classes of speculators are present. In particular, Fig. 18 shows a plot of
speculator wealth vs. the margin assigned to each speculator. Speculators with higher
margins tend not to make as much profit as those with lower margins. This is caused
by two factors. First, speculators with high margins trade only when there is a large
gap between the forecasted and actual prices. Second, speculators with high margins
submit bids to buy that are lower than those of their counterparts with low margins,
and offers to sell that are higher, and the auction algorithm gives priority to more
competitive bids. If the other side of the market is not large enough, it can happen
that speculators with high margins do not trade at all, which explains their lack of
success.

7. Conclusions and Discussion

Can the dynamics that emerge in our system be analyzed within a manageable
theoretical framework? A clear candidate for such a framework is the cobweb model
and its variations. Unfortunately, it does not appear that cobweb theory can add to
our understanding of the behavior of our system, mainly because supply and demand
functions change daily, as agents update their production decisions. The underly-
ing assumptions of the cobweb model are simply not satisfied by our system. The
introduction of speculation further complicates any attempt to analyze the system
theoretically. Future work with this approach can introduce even more complicated
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Aggregate AVG Speculator Wealth vs. Speculation Margin (system with both classes of speculators)
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Figure 18: AVG speculator wealth as a function of speculation margin.

mechanisms, and we view the simulation as an experimental testbed, rather than a
fixed structure which is susceptible to mathematical analysis.

Economists have observed chaotic or other complex dynamic behavior in simple
models. For example, Chiarella? shows how chaotic behavior can emerge in a cobweb
model assuming a fairly general non-linear supply curve. Our system is more compli-
cated than his, and so the irregular behavior illustrated in graphs like Fig. 10 is not
surprising. We have in fact observed boundaries between sets of skill parameters that
demark periodic and seemingly chaotic behavior. This subject is worthy of further
study, but has not been addressed in this chapter. The recent book edited by Creedy
and Martin?!' provides introductory material and presents some recent work on chaos
in economics.

Enormous computational resources are becoming available at very low cost, and
we hope the approach described in this chapter is a start towards using such resources
to gain insight into real economic problems. In fact the program we describe barely
begins to use even what is available today; a 1,000-day simulation of 1,000 agents and
200 speculators runs in 73 seconds on a DEC 5000 workstation. We view simulation
at the agent level as a third way to study the economic consequences of individual
behavior, complementing theory and experimentation with human subjects.

The succeeding chapters of this book deal with a variety of ways to use market
mechanisms for distributed resource allocation. The simulations we have described,
apart from providing a tool for general economic inquiry, tend to confirm the following
generally accepted characteristics of such systems:

e Competitive price determination can be used to “control” or “stabilize” price,
volume, and other system variables;

e Still, for certain systems at least, there may be large fluctuations that look
quasi-periodic, and have chaotic characteristics;

e Artificial speculators (also called traders) can further stabilize price to a great
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extent, leaving a much smaller residual component, and resulting in more effec-
tive resource allocation.

Oscillations without speculators may be large in amplitude, and it may be that certain
parameters must be tuned to achieve nicely damped behavior. This behavior is closely
analogous to that of classical feedback control systems. For example, in the energy
control system described by Clearwater in Chapter 10, an inappropriate gain can
cause the system to oscillate in response to a sudden change in sunlight distribution
on the building. This suggests trying to use artificial traders to stabilize behavior
further or eliminate the need to hand-tune parameters.
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