Summary—The general algebraic equations of root loci for real
K are found in polar and Cartesian coordinates. A synthesis method
is then suggested which leads to linear equations in the coefficients
of the open-loop transfer function when closed-loop poles and their
corresponding gains are specified. Equations are also found for the
gain corresponding to a given point on the root locus.

A superposition theorem is presented which shows how the root
loci for two open-loop functions place constraints on the locus for
their product. With a knowledge of the simple lower-order loci, this
theorem can be used in sketching and constructing root loci.

I. INTRODUCTION

nique, points are found, by a more or less trial and
error procedure, at which the open-loop function is
negative real| The 180° locus of the open-loop function
is then sketched in the region of interest, and calibrated
in terms of gain. While this graphical approach is ef-
fective in many practical problems, it is of interest to
investigate the actual algebraic equations of the root
loci. First of all, these equations can be used to plot, or
to help sketch, thé loci. Also, the equations can be used
to synthesize prescribed closed-loop poles. The de-
velopment will be considerably expedited by allowing
the gain constant K to be both positive and negative.
This idea will lead to a kind of superposition theorem
for root loci, which can also be used as an aid in sketch-
ing the loci. In some cases, this approach provides exact
geometrical construction procedures.
We shall be concerned with the locus of the closed-
loop poles of] the single-loop feedback structure shown
in Fig. 1, although the results will be directly applicable

]’_[N the usual application of the root locus tech-

KG(s)
ERE! CONTROLLED
SIGNAL.

ig. 1—The basic single-loop system.

to any system where a parameter enters linearly into
the characteristic equation. The open-loop transfer
function will be assumed to be a real rational function
of s, such as is encountered in the analysis of linear,

lumped, finite systems. We shall assume that N(s), the:

numerator of G(s), is of degree n; that the denominator
D(s) is of degree d; and that N(s) and D(s) have leading

* Received by the PGAC, September 19, 1960; revised manu-
script received, February 3, 1961. This paper is based on a thesis
submitted in partial fulfillment of the requirements for the M.E.E.
degree at New York University, N. Y. T?\is research was supported
in part by the National Science Foundation, under whose auspices
the author was a fellow.
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coefficients of unity. Thus, we may write
N(s) Ks" + Gp-1s*! +
D(s) s¢ 4 ba_1s4t +
E aks"
k=0

4 )

Y bust

kw0

.-.+a°
"'+b0

KG(s) = K

¢y

where the a;, b; are real, and g.=bs=1.

We shall now define the root locus corresponding to
the open-loop function G(s) to be the locus of the poles
of the closed-loop system as the gain constant K takes
on all real values, —® <K<+ ». The closed-loop
transfer function is

C(s) _ KG(s)

R(s) 1+ KG(s)' @

so that the closed-loop poles for a given value of K are
given by the solutions of the equation

1+ KG(s) = 0, 3)

or

1
G@is)=——"

X (4)

Since K takes on all real values, any value of s for which
G(s) is real will be a solution of (4). Therefore, the root
locus is just the image in the s plane of the entire real
axis in the G plane, and the equation of the root locus
can be expressed as'?

Im [G(s)] = 0, ()

or

arg [G(s)] = 0°, 180°, 360°, - - - . (6)

We shall call those segments of the root locus for which
the argument of G(s) is 0°, or an even multiple of 180°,
the 0° locus; and similarly, those segments for which the
argument of G(s) is an odd multiple of 180°, we shall
call the 180° locus. Clearly, the 0° locus and the 180°
locus can intersect only at infinity, or at a zero or pole
of G(s). Eq. (5) will give us the equation of the entire
root locus, and it will remain for us to determine which
segments are on the 0° locus and which are on the 180°
locus.

1F, M. Reza, “Some mathematical properties of root loci for
control systems désign,” Trans. AIEE, vol. ggr( Commun. and Elec-
tronics), pp. 103~108; March, 1956.

t H. Lass, “A note on the root locus method,” Proc. IRE (Corre-
spondence), vol. 44, p. 693; May, 1956. :
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The well-k

tnown properties of root loci are susceptible

to obvious extensions under the more general definition.

For instance

segments of the real axis with an odd total

number of poles and zeros to the right are on the 180°

locus; and t
‘asymptotes

Ee other segments are on the 0° locus. The

t infinity are at angles

k360°
+

T n—d

E=01,2, - N

for the 0° locus, and

£360° 4+ 180°

E=01,2,--- 8
— (8)

for the 1807 locus. Furthermore, these asymptotes

radiate from

the asymptotic center

Gn_1 — ba_
= — . 9
7 d—n ©

We shall use the notation of Yeh,® and denote the
root locus for an open-loop function with # zeros and d
poles by T'(n, d).

II.

THE EQuUATIiONS oF Root Loci
IN PoLAR COORDINATES

We now turn to the problem of finding the general
algebraic equations of root loci. First, we shall find the
equations in terms of the polar coordinates shown in
Fig. 2. Substituting s=Re¥ into (1), we have for G(s)

Rationalizing

n
Z a, REeito
km0

G(s) = —-
E b Rigite

im0

(10)

Fig| 2—The polar coordinates, R and #.

10) by multiplying by the conjugate of

the denominator, we have

i i ach Ri+lgitk~0e

kom0 =0

RS
Z biRieilo

l=0

(11)

2

G(s) =

#V. C. M. Yeh, “The study of transients in linear feedback sys-

A map%ing and root locus,” Trans. ASME, vol.
i 4.
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We may now set the imaginary part of G(s) to zero as
in (5) to obtain the equation of the root locus '

n d
2 3 bR+ sin (B — 1o = 0.

k=0 w0

(12)

Since the real axis will always be part of the root locus,

R sin 0 will be a factor of (12). Removing this factor, we .

have as the equation of the nonreal root locus
A g sin (k — )0

Ll abh R T _
k0 =m0 sin 4

(13)

We may recognize the trigonometric functions in (13) as
Tchebycheff polynomialst of the second kind in cos 9,
defined by

sin n8

sin 8

Un-1(cos6) = (14)
Thus, the nonreal locus may be written in terms of these
polynomials as

n 4

20 2 abi R, 1 (cos 6) = 0.

kw0 lm0

(15)

If 8 is prescribed, tables will facilitate the numerical
evaluation of the Ui_;..(cos ), and the resultant poly-
nomial in R will have roots at the intersections of the
line 8 =const. with the nonreal root locus.

ITI. Tae EQuaTioNs oF Roor Loct
IN CARTESIAN COORDINATES

To find the root locus equation in terms of ¢ and w,
we shall use an idea that was suggested by Bendrikov
and Teodorchik.® The idea is that of expanding N(s)
and D(s) in a power series in jow.

N(s) is analytic everywhere in the s plane, and can
indeed be expanded in a Taylor series about any ¢ with
an infinite radius of convergence to obtain the identity

N'(o) N@)

N(o + jw) = N(o) + jw T

+ (ju)?

N(")(U) .

n!

+ (jw)» (16)

Grouping the real and imaginary components of this
expression, we have

N(o+jw) = [N(a) — W N;E”) 4. ]
+jw[N;(!”) — N,;'!(") + - ] 17)

* See, for example, “Tables of Chebyshev Polynomials Sa(x)
and Cu(x),” Natl. Bureau of Standards Appl. Math. Ser., no. 9,
Washington, D. C.; 1952.

* G. A. Bendrikov and K. F. Teodorchik, “The analytical theory
of constructing root loci,” Avtomat. i T elemekh. (Automation and
Remote Control), vol. 20; March, 1959, (English Translation.)




When this is also done for D(s), G(s) may be written

G(s) =

Multiplying by the conjugate of the denominator, and
setting the imaginary part equal to zero as before, we
have as the equation of the nonreal root locus
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N/l N’ NI/’
ECEPLCNE TIEE I
! . . ' .
D@ 1 D@ DG |
[D(") R TR ':|+]w[ TR TR ]
or
N6 D621 N(")] -0 26)
o) D(o = og @) =

N(&) D' (o) _N'(a)D(a)]
[ ot | 110!

\ N(o)D'""(¢) N'(¢)D"(0)
_w[ 03! 11

N" () D' (o) N"'((r)D(cr)]
2t 30!

0! 5!
= 0. (19)

+“P@m@“”l

This may be written
Q1(0) |~ @¥Qs(0) + w'Qs(es) — - - - =0, (20
where Qr(c) i§ a polynomial in ¢ defined by

k +N®(g) DE-7(g
0afe) = 3 (—1 2 (R_f)!)- (21)

In general, | Qr(¢) will be of degree d+n—R. The
author has not been able to find an interpretation for all
the polynomials Qr(¢). However, it is evident from (21)
that

Ontale) = (=1)~. (22)
It can also be shown that

Onia—r(@) = (=1)*[(@ — n)o — (8a1 — ba—r)],  (23)

so that if n#d,

Qnta-1(0) = (=D"(@—n)(o — 0.). (29)

Also, Qi(0) can be factored by observing that the zeros
of Q.(e) are the roots of the equation

Qu(o)|= N(o)D'(e) — N'(¢) D(s) = O, (25)

Therefore, Q1(¢) has zeros of appropriate orders at all
the zeros of the logarithmic derivative of G(s), whether
they are on the root locus or not, and at the multiple
poles and zeros of G(s). The zeros of the logarithmic
.derivative represent multiple points on the phase loci
of G(s), and will here be called critical points.s? By
writing out the first few terms in (25), it can be seen
that Qi(0) has a leading coefficient of (d—n), if n3d.
Hence, we may write

O1(0) = (@ —n)(o —s61)(0 — sk2) - - * (0 = Sktmpa—y), (27)

where the s may be complex and are solutions of
(25). Ur® has shown that the asymptotes of the root
locus for a system with no poles or zeros at infinity can
be obtained by considering the asymptotes of the sys-
tem (N—D)/D. Indeed, the root locus for (N—D)/D
is the same as that for N/D, since the root locus is
defined by

Im {%} = Im {N; D} = 0. (28)

The lower-order loci may now be written in terms of
the solutions of (26) and the asymptotic center with a
little more effort.

The locus for G is the same as that for 1 /G, so that
T'(n, d)=T(d, n), and we need only consider loci for
which n <d. The loci T(1, 2) and T(2, 2) reduce to

Wt + (0 — sp1)(o — sp2) = 0, (29)

which is in general the equation of a circle that in-
tersects the real axis at s;; and sis. The locus T, 3)is

3(0‘ - s“)(a' _— Skz) — w? = O, (30)

which is the equation of a hyperbola. The loci 7, 3)
and 70, 4) are the only cubic loci, and represent the

¢ J. L. Walsh, “The Location of Critical Points of Analytic and

gal;}noni% 5‘ unctions,” American Mathematical Society, New York,
. Y.; 1950. '

7 M. Marden, “The Geometry of the Zeros of a Polynomial in a
Corr‘xlplex Variable,” American Mathematical Society, New York,
N. Y.; 1949,

8 H. Ur, “Root locus properties and sensitivity relations in con-
trol systems,” IRE TRANS. ON AUTOMATIC ConTrOL, vol. AC-5,
pp. 57-65; January, 1960.
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next order of complexity after the quadratic loci. 7(1,3)

may be writ
w¥o —

and T(0, 4)
w¥o —

Iv. EQUAT
The basic

ten
0.,) + (0 - Su)(d‘ bl Sn)(a - Su) = 0,
may be written

0e) — (0 = si1)(0 — saa)(o — sxa) = 0., (32)

@31

IONS INVOLVING THE GAIN CoNnstaNT, K
equation for the root locus, (3), has a real

and imaginary part, and involves K as well as 5. The

equations fo
eliminating
up N(s) an
follows,

(3) may be

—

or

r the root loci given above are the result of
K between the two equations. If we break
d D(s) into real and imaginary parts as

N(s) = Ng(o,0) + joN1(o, w)

D(S) = DR(”} w) +ij1(0'1 w)’ (33)
written
Ng(o, ) + jwNi(s, w)
K = (, 34
+ Dg(o, w) + jwDi{c, w) (34
Dn(b', w) + KNR(U, w) =0
[ Dr(o, w) + KNi(o, w)] = 0. (35)

These last two simultaneous equations fully represent
the calibrated locus. In terms of polar coordinates,
these equations are

d

k=0

> b R*Ti(cos ) + K Y aR*T(cos 6 =0

kw0

d
jw[ 2 BRI,y (cos 0)

kw1

Here, T,(cos

+ K 2" & R0,y (cos 0)] = 0. (36)

Kl

0) is a Tchebycheff polynomial of the first

kind, defined by

Again, it m
polynomials

Tn(cos 8) = cos nd. 37

ght be mentioned that tables of these
can facilitate computation. In terms of

Cartesian coordinates, these equations are

5 -

, D"(a’)
. +]

N(o (o
+K[ ()—sz()+~":|=0

0! 2!

i D/(a) \ D'/I(a_)
]w{[ T IREY +:|

+ K[D’(a) _ N""(q) . ]} -0,

1 31 (38)
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These equations may be used to synthesize desired
closed-loop characteristics. Suppose, for example, that
we require the pole-pair s =R,e%# =g, jw; to be closed-
loop poles at a value of gain K =K,. Then these values
may be substituted into (36) or (38) to give two linear
equations in the coefficients. Thus, we may specify all
but two coefficients and have a closed-loop pole-pair de-
termine these remaining two. If we specify a real closed-
loop pole and its corresponding value of K, we need only
substitute in the first of (36) or (38). It can be seen in
fact that by specifying points in the space (s, K), we -
can determine any number of the coefficients by linear
equations. The resultant equations will be linear in the
coefficients, a; and b;, but will not be linear in the root
positions. Thus, while the use of synthesis procedures
based on (36) and (38) will lead to linear algebra in the
solution for the coefficients, it will remain for the de-
signer to bridge the gap between the unknown pole-
zero positions and the coefficients in the polynomials
N(s) and D(s).

Egs. (35) can be solved for K as follows:

(39)

Since w is a factor of the second of (35), the second of
(39) is necessarily valid only off the real axis, where
w70. This restriction also applies to the second of (40),
(41), and (43), which follow. We may now write K on
the root locus in terms of the coordinates in the s plane
and the coefficients in the open-loop transfer function.
First in terms of the polar coordinates, R and 6:

d
> b R¥T(cos 6)

k=0

> @R T(cos )]
2]

d
E by R¥1 Uk..l(COS 0)

kel

=~ (40)
> aR*1U,_(cos §)
kol
Or, in terms of ¢ and w:
D(o) o, D" (o) ) D% (q) _
X o YT T
M@ N | NG
o YT T g
D' (o) _ LD DV (o) o
T TR
= - - (41)

N@ _ V@) N
- w w
1! 3! S!

(R, 6) and (o, w) in these equations are points on the
root locus.
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It is often of interest to find the intersections of the
root locus with the jw axis. To find these crossover
points, we set |cos =0 in (15) or ¢=0 in (19). After
some simplification, we have
(dobl - albo) - w’(aoba - albz + a2b1 - a3b0)

+ n‘(aobs—alb4+ o) — oo =0, (42)

The real solutions of this equation will give the values

of w at which the locus crosses the jw axis. To find the

values of K corresponding to these crossover points, we
set cos §=0in (40) or =0 (41) to obtain

bo — baw® + byt — - - -

@y — 4w’ + gt — - - -

b1 — baw? + bt — - - -

dl~daw2+05w4—"‘

K =

) (43)

equation is an appropriate crossover

equations of root loci. We now turn to a kind of super-
position theorem for root loci; in particular, we shall
show how the [root loci for two open-loop functions
place constraints on the locus for their product.

Theorem: Let| Ty be the root locus associated with G,
and let T, be the locus associated with G,. Then inter-
sections of 7'y and T'; are on the root locus associated
with G,-G, Furthermore, the locus for G,-G, cannot
cross the remaining parts of T, and 7.

Proof: At any point which is on both T, and T, G,
and G, are both real, and hence, so is G,-G,. At a point
on T, and not pn T, G, is real and G, is not; so that
G1-Gs is not real and this point is not on the root locus
for G]_‘GQ. -

When a point on the root locus is found by this
theorem, the angle of G=G,-G; at this point can be
determined by ladding the angles of G, and G, Thus,
if a point is on the 0° locus of T and the 180° locus of
T, for instance, the point must be on the 180° locus of
G1-G,. On the other hand, if the point is on the 180°
locus of both T and T, it is on the 0° locus of G,-Ga,
and so on.

This theorem|is most useful when the total open-loop
function can be broken up into the product of two other
functions whose loci can be drawn immediately. It is
important, therefore, that the user of this theorem be
able to draw immediately as many loci as possible. For
70, 1), and T(1, 1), or for any function which has
simple poles and zeros alternating on the real axis, there
is no nonreal locus. T'(0, 2) is a line o =const. through

September

the center of gravity of the poles. As pointed out by
Yeh,! if the open-loop function consists just of an Nth
order pole, the root locus coincides with the asymptotes.
More generally, Lorens and Titsworth? state that the
locus coincides with an asymptote if the pole-zero pat-
tern is symmetric about the asymptote line extended
through the asymptotic center. The Loci T'(1, 2) and
I'(2, 2) are in general circles, and Fig. 3 shows these
cases with enough information so each locus can be
traced with a compass.

As an example of how this theorem can be used in
sketching a locus, consider the open-loop function
shown in Fig. 4. The asymptotes are drawn first: then
the zero and poles can be divided into various groups
for which simple loci can be drawn. The zero at —3 can
be associated with the double pole at —5 and a circle
drawn. The locus for the remaining two poles is a
straight line through —3.5, and the intersections of
these two loci give two points on the final locus. More-
over, this circle and line represent barriers for the final
locus. Another circle-line combination is possible, and
this gives two more points on the locus. When the zero
is associated with other pairs of poles, it lies between
them and produces no locus off the real axis, and the
lines for the remaining two poles represent barriers to
the locus. Thus, it is seen that the 180° locus cannot
come back to meet the real axis again between the
origin and the zero, and the general shape of the final
locus can be sketched.

VI. CONSTRUCTION PROCEDURES FOR Root Loci

With the device of introducing coincident pole-zero
pairs, the preceding ideas give rise to construction pro-
cedures for certain loci. The simplest example of this is
the hyperbolic locus T(0, 3).

Consider the three-pole open-loop function shown in
Fig. 5(a). Now introduce a pole and a zero which co-
incide, as in Fig. 5(b), so that the open-loop function
and the locus is unchanged. We may now take the two
real poles as one factor of G(s), and the zero together
with the complex pair of poles as the other. As shown
in Fig. 5(c), these produce a straight line and a circle,
whose intersections give a pair of points on the final
locus T(0, 3). By introducing another pole-zero pair
along the real axis, another pair of points may be found.
In this way, the locus T(0, 3) can be quickly sketched as
shown in Fig. 5(d). These loci may in turn be used to
sketch higher-order loci.

T(1, 3) can be constructed in a similar manner, as
shown in Fig. 6. Here, points are located by the inter-
sections of two circles. To constructa T° (0, 4) locus, such
as the one shown in Fig. 7, one might introduce a real

*C. S. Lorens and R. C. Titsworth, “Properties of root locus
asymptotes,” IRE TraNs. oN AutoMaTic CONTROL, vol. AC-S, Pp.
71-72; January, 1960.
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Fig. 5—A graphical procedure for constructing 70, 3). (a) The open-
loop funcu%n. (bs) The addition of a coincident pole and zero does

not change the locus. (c) The composite loci, 7(0, 2) and (1, 2).
(d) oo = [E Y p— . (d) The gnal locus constructed as above.
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pole-zero pair|and find the intersections of hyperbolas
and circles. The construction of hyperbolas can be
avoided, however, in the following way. Introduce a co-
incident complex pair of zeros and poles with the same
imaginary component as the poles in the original func-
tion. The four|complex poles are now symmetrical in the
line L, G is real on L, and so the line L must be part of
the locus T1(0, 4). The locus T2(2, 2) is a circle, and this
locates two points on the final locus.

VII. CoNcLUSIONS

The general algebraic equations of root loci have been
presented here in terms of the coefficients of the poly-
nomials N(s) and D(s). We have seen that the specifica-
tion of closed:loop poles, with their associated gains,
leads to linear equations in these coefficients. The neces-
sity of dealing with the coefficients rather than the pole-
zero locations| is evidently the price to be paid for
linear algebra in the synthesis of closed-loop poles.

It has also been shown how the root locus for a higher-
order system is restrained by the loci of its lower-order
factors. A familiarity with the simple circular loci will
enable the designer to use this idea as an aid in sketch-
ing loci. In certain cases, this idea leads to exact con-
struction procedures for root loci.

APPENDIX

To illustrate the use of the equations for the root
locus, we shall consider as an example the T'(1, 3) locus
constructed in |Fig. 6. If the zero is taken at the origin,
the function is ‘

s s

G(s) = = - (49
[(s+1)+1)¢s+3) s*+52+8s+6
Thus,
ay = 0 bo =0
a, = b=
bs =5
“bs=1. (45)
Eq. (13) then becomes
d sin (1 — )6 : in (—6
E bR ._m_(_)_ =64 Sstm‘( )
im0 sin @ sin @
sin (—26)
+R———=0. (46)
sin @
or
2R*cos 0 + SR* — 6 = 0. 47
Since R cos 6 =¢, this may be written simply as
6
R = , (48)
5+ 20

which can be plotted quickly on polar graph paper.
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Alternatively, we may find the equation of the root
locus in Cartesian coordinates. Then,

N(a)_ D(a’)_ 4 Sot4 8 6
o’ o ° Tt
N 4
@ _, @) 3+ 100+ 8
1! 1!
Dll(a_)
Y =304+ 35
D’/I(v)

and (19) becomes
[— (o + 50* + 80 + 6) + o(30% + 105 + 8))
— o)) — 13 + 5)] = 0, (50)
or
(51)

which is, of course, the same as (47). To plot this, we
may wish to solve for w?

204 502 — 6
2+ 5

20* + 50% — 6 + w¥[2¢ + 5] = 0,

(52)

w

The gain constant on the nonreal root locus may be

found by the second of (40) or (1) to be
K = 0? — 302 — 100 ~ 8. (53)

To find the crossings of the jw axis, for example, we
have, by (48) or (52), and (53), with =0

6

wl=—
and
(54)

Thus, these two crossover points are on the 0° locus.
This may be verified by substituting directly in the sys-
tem function

! ! 55
" 34/5 K (_ )
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