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Randomized Pattern Search

J. P. LAWRENCE, III, MEMBER, IEEE, AND
KENNETH STEIGLITZ, MEMBER, IEEE

Abstract—A random search technique for function minimization is
proposed that incorporates the step-size and direction adaptivity of
Hooke and Jeeves’ [1] pattern search. Experimental results for a variety
of functions indicate that the random pattern search is more effective than
the corresponding deterministic method for a class of problems with hard
constraints.

Index Terms—Direct search, optimization algerithms, randem search.

1. INTRODUCTION

In 1961, Hooke and Jeeves [1] proposed a direct search
method for function minimization that has step-size and
direction adaptivity. The algorithm is widely known [2]-
[4], and has met with some success on difficult minimization
problems. However, the method is known to run into dif-
ficulties at sharp corners and curving valleys or ridges be-
cause of the univariate character of its basic exploratory
search strategy [3]. As will be seen, constrained problems
that require movement along a boundary are especially
troublesome, and cause the deterministic pattern search
(DPS) of Hooke and Jeeves to get stuck on the boundary.
The purpose of this note is to propose a randomized version
of pattern search (RPS), which, to some extent, avoids these
difficulties. Considered as a random search method, RPS
incorporates both the direction and step-size adaptivity of
DPS, and is of interest in this regard as an extension of pre-
viously proposed methods (see [5]-[10], for example).

II. DESCRIPTION OF DETERMINISTIC PATTERN SEARCH (DPS)

DPS performs an exploratory univariate search at the
base point ¢ as follows: the function F to be minimized is
evaluated at the base point ¢ and at the point ¢+ Ae,, where
e, is a unit vector in the first coordinate direction, and A
is a step-size parameter that is reduced in an adaptive way
as the search progresses. If F(¢+Ae)<F(¢), the point
¢+ Ae, is adopted as a new, improved point. Otherwise,
F(¢—Aey) is examined, and if F(¢— Ae;)< F(¢), the point
¢—Ae; is adopted. This procedure is repeated sequentially
for each coordinate, yielding, possibly, a new base point at
which F has decreased. Acceleration steps are then per-
formed on the basis of successful steps from base point to
base point, with exploratory univariate searches performed
at each projected tentative base. When no improvements
can be found in this way, the step-size A is decreased to

Manuscript received July 24, 1970; revised April, 1971. This work
was supported by the U. S. Army Research Office, Durham, N. C. under
Contract DAHCO4-69-C-0012 and NSF Grant GJ-965.

J. P. Lawrence, III, is a part-time student in the Department of
Electrical Engineering, University of Maryland, College Park, Md.

K. Steiglitz is with the Department of Electrical Engineering, Prince-
ton University, Princeton, N. J.

pA, p<1;and the process is repeated. (See [1] for a complete
description.)

Fig. 1 gives the definitions of the variables used in the !
program and Fig. 2 shows a flow chart! of the algorithm
MAIN. This algorithm uses a subroutine EXPLOR (DETER-
MINISTIC), shown in Fig. 3, which performs the univariate |
search with base ¢ and step-size A. Algorithm MAIN ter-
minates when the function falls below a minimum, FMIN, or
when the number of function evaluations exceeds a maxi- |
mum, LIMIT. Whenever the step-size falls below a minimum, |
8, the step-size A is reset to its initial value A,. This feature
was introduced to give both DPS and RPS the opportunity
to continue its search with a large step-size after the step-
size has collapsed to below § in a difficult situation. ‘

ITI. DESCRIPTION OF RANDOM PATTERN SEARCH (RPS)

In the proposed algorithm the local exploration at each
projected base ¢ is performed by generating a random vec-
tor, £ uniformly distributed on a hypersphere of radius A.
The function is then evaluated at ¢ and at ¢+£. If F(¢+¢)
> F(¢), then a reversal step is taken and F(¢— £) is evaluated.
The new search base point is redefined as before. The proce-
dure is repeated once for each dimension of the space during
each exploratory search, so that the average number of |
function evaluations per base point will be the same as for
the corresponding deterministic method.

The algorithm MAIN is unchanged for the random search
method, and the subroutine EXPLOR (DETERMINISTIC) is re-
placed by the algorithm EXPLOR (RANDOM), shown in Fig. 4.
The random vector £ uniform on a hypersphere is generated
by a method described by Knuth [11].

1V. EXPERIMENTAL RESULTS

In all the examples described below, §=1.E—7, FMIN
=1.e—4, LiMIT= 1500, Ay=1, and p=13.

Example 1: This problem illustrates clearly the difference
in behavior between DPS and RPS at hard constraint
boundaries. It is the following linear program in two vari-
ables:

minimize F = —4x;, — 22,4+ 3
subject to T —2 <0
T+ x S 1

with solution x;=x,=0.5, F=0. The following starting
point was used (integer lattice points unfairly favor DPS
when the step size is integral):

! The style of programming and flow charting allows only two con-
trol statements: an if (condition) then A else B branch indicated by a
simple branching, and a while (condition) do A indicated by a junction
point with a cross inside a circle. The code to the right of the junction
is executed so long as the condition is true; the first time the condition
is violated, control continues downward. All variables are global.
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DESCRIPTION OF VARIABLES
N dimension of parameter space
4 step-size
) minimum step-size {for terminating search)
p gtep-size reduction ratio
FMIN minimum function value (for terminating search)
LIMIT maximum number of function evaluations (for
terminating search)
¥ current base value of parameter vector
) exploratory base value of parameter vector
8 previous base value of parameter vector
F() function to be minimized
Fy F(y)
Feo F (o)
KOUNT current number of function evaluations
i current number of successful steps
FNEW F( ) at exploratory point
JJ dimension index in-EXPLOR (DETERMINISTIC}
k counting index in EXPLOR (RANDOM)
13 random vector uniformly distributed on sphere
of radiug &
b, initial step-size
SAVE temporary storage location for coordinate or vector
Fig. 1. -Description of variables.
MAIN start

|
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l ¢ @28
EXPLOR FNEW <— F($)
| KOUNT <— KOUNT +|
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Fig. 2.

EXPLOR (DE TERMINISTIC)

/| savee ¢
/ $y—d +A
/
FNEW < F(¢)

/ KOUNT <— KOUNT + |

MAIN.

EXPLOR (DETERMINISTIC).
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EXPLOR (RANDOM)

N
/ ety
/ SAVE «— ¢
/ ¢t
FNEW <—F(¢)
KOUNT «— KOUNT + |
FNEW<F¢ FNEW2F¢
p—g¢-2¢
FNEW «—F(¢)
KOUNT+—KOUNT +1

IF¢<—-FNﬂI [¢<— SAE

Fig. 4. EXPLOR (RANDOM).

V2
Ty = —
10
V3
Loy = —
10

and the constraint was enforced by defining F=1.E+8 out-
side the feasible region.

DPS, after 208 function evaluations, became frozen to
the boundary at the point (0.3267959, 0.6732050), and
F=0.3464069. RPS converged to within FMIN in from 192 to
1496 function evaluations in ten starts using different in-
itializations of the random number generator. This wide
range of evaluations-to-convergence is typical of RPS, and
it is often worthwhile to start over if convergence becomes
slowed down.

Example 2: This problem is identical to the previous, ex-
cept for the fact that the function F is nonlinear:

F=—(@*+z)+1

and the additional constraints x,;, x,>0 have been added.
The solution is x;=0, x.=1, F=0.

DPS behaved in exactly the same way, freezing to the same
point after the same pattern moves (every feasible move up
and to the right is an improvement in both cases). RPS con-
verged to within FMIN in from 176 to 245 function evalua-
tions in ten random starts.

Example 3: This problem is the following three-variable
linear program:

minimize F=—z+1
subject to T1+ 2vs + 323 < 1
z.'ZO, 1=1,,3

and starting point

V2
Ty = ——
100
V3
o = ——
100
V5
Ty = - °
100

The solution is at (1, 0, 0), F=0.

DPS froze at the boundary with F=0.1017221 after 288
function evaluations, while RPS converged in from 434 to
653 function evaluations in ten random starts.

Example 4: This problem is identical to the previous, ex-
cept that the function to be minimized is

F=—(?+z2+a) + 1

with the same solution.

As before, DPS went through the same sequence of de-
cisions as in the linear program. RPS, on the other hand,
behaved differently from the linear case; converging to the
solution six times out of ten random starts in from 477 to
817 function evaluations. In one of the remaining four |
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 starts, it converged to the local minimum at (0, 1, 0), and the
other three times it became stuck or started to creep very
' slowly. Again, this variance in behavior suggests restarting
RPS with different random numbers if slow convergence is
- encountered.

Example 5: The remaining problems are unconstrained,
and are included to show that for this class of problems
RPS is effective but sometimes less efficient than DPS. Thus,
the price paid for more robust behavior on constrained
problems is slower convergence on some of the easier un-
| constrained problems. Example 5 is the helical valley of
b Fletcher and Powell [14], which is a three-dimensional
| function with a corkscrew type of valley leading to a mini-
mum at (1, O, 0). The starting point is

I = \/§
To = \/g
T3 = \/E_)

DPS converged in 269 function evaluations, while RPS
converged in from 285 to 552 function evaluations in ten
| random starts.

Example 6: This is Powell’s four-dimensional quartic
- function [13], with starting point

z; = v/ (¢ + 1) rst prime,

- DPS converged in 366 function evaluations, while RPS
- required between 303 and 670 in ten random starts.
. Example 7: This is the ten-dimensional function

10
PR
=1

 and starting point given by the formula in the previous ex-
k ample. This function is highly symmetric, and requires no
-radical changes in direction. Hence, we would expect DPS
to excel. In fact, DPS converged in only 271 function
 evaluations, while RPS required from 481 to 736.

t  Example 8: This is Rosenbrock’s banana-shaped valley in
f two dimensions [12]. This function has a narrow, curved
valley, and from some starting points may cause difficulty
L with either DPS or RPS. Then random starting points were
chosen uniformly within the square x,<|10|, i=1, 2. Both
t methods converged within LiMIT = 1500 function evaluations
from the first nine starting points. However, the tenth start-
ing point, given by

z; = —0.7241213FK 4+ 1
zs = 0.3670560F + 1,

caused both methods to exceed LIMIT, at which point the
runs were terminated.

Y. DiscussioN

The linear and nonlinear programming examples show
how the deterministic pattern search of Hooke and Jeeves
can become paralyzed at the boundary of a hard constraint
because of the univariate character of the exploratory search.
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Randomizing the exploratory search strategy leads to
marked improvements for these problems and results in a
more robust technique.

The authors have been in communication with Prof. E. J.
Beltrami about this problem, and further work along these
lines will be reported by him and J. P. Indusi in another

paper [15].
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Improved Procedures for Determining
 Diagnostic Resolution

JAMES C. BASSETT anp CHARLES R. KIME, MEMBER, 1EEE

Abstract——The definition of the generalized fault table [1]1 is ex-
panded to cover a representation employing more than one fault g cube
per fault pattern. On the basis of this expanded definition and simple
concepts from a cover algebra, a new procedure is developed for find-
ing first- and second-order diagnostic resolutions.

Index Terms—Cover algebras, diagnostic resolution, fault diagnosis,
generalized fault table, switching theory.
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