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KENNETH STEIGLITZ

Summary:- This paper describes a method
for identifying the parameters of a class of
' power spectra. In contrast to conventional
methods of spectral analysis, the method
assumes a particular form for the power
spectrum and gives direct estimates of un-
known parameters. Thus the method is
faster than ordinary spectral analysis and
can be easily implemented by a digital com-
_puter for use in an adayptive loop.

The derivation of the estimates assumes
that the power spectrum has no zeros, and
is based on well-known results in the theory
of autoregressive schemes. Some. ways of
extending the results to the case where zeros
are present in the spectrum are suggested.
The method can also be used as a prewhiten-
ing technique in conjunction with ordinary
spectral analysis.

KEY PROBLEM in the design of
self-optimizing and adaptive sys-
tems is the real-time estimation of un-
known structural parameters of a stochas-
tic signal. In particular, there is a need
for methods of identifying parameters in
the power spectral density of system
signals. This makes possible the design
of signal-adaptive and plant-adaptive
controllers when signal or system param-
eters are slowly changing.
The usual methods for measuring power
spectral density, such as described by
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Blackman and Tukey, do not involve any
assumptions about the form of the power
spectrum and do not give direct estimates
of structural parameters.! This paper
presents a simple method for estimating
the parameters of a class of sampled power
spectra. In contrast to conventional
methods of spectral analysis, the method
assumes a particular form for the power
spectrum and gives direct estimates of
parameters. For these reasons, the
method described in this paper requires
less time ‘to obtain tolerably accurate
results, and is better suited for use in
an adaptive loop.

Nomenclature

xq =discrete-time signal whose power spec-
trum is of interest

N=number of points of x, that have been
observed

@rz(n)=autocorrelation function of signal x,

®,2(2) =power spectral density of x,

Jfy=mean-lagged product of lag j of the signal

Xn
D(z)=assumed denominator polynominal of
®,.(2); also a digital filter
p=assumed order of D(z)
as=assumed coefficient of z~! in D(z), ap=1
B*=assumed constant multiplier of &;,(z)
a¢=estimated value of a4
B 1=estimated value of 8*
ya=signal obtained by passing x, through
digital filter D(z)

Statement of Problem

It is assumed that the power spectrum
of a discrete-time signal {x,} 5w — o is of
interest and that a finite length of this
signal, say

X1, X2, ..., XN

has been observed. The aliasing problem
when the x, are samples of a continuous
signal will not be considered here. In-

stead, the problem will be formulated in
terms of the sampled power spectrum

®r2(2) = Z Pzz(")z-" (1)
where .
erx(n)=Ex(xsn : (2)

is the autocorrelation function of lag #.
Furthermore, the following assumptions
will be made:

1. The number of points N of the sample is
large so that end effects can be neglected.

2. The signal is normally distributed with
zero mean and is stationary and ergodic so
that equation 2 can represent either an
ensemble or time average.

3. The signal has a power spectral density
which can be closely represented by the
following equation:

®odz)= = (3)

ﬁ .
D(z)D(z~1)
where
D(z)=14+az" 't ass™?+...+aps ? (4)

has all of its zeros inside the unit circle in
the z-plare.

Assumption 3—that the unknown spec-
trum has no zeros—is rather restrictive.
The possibility of relaxing this assumption
will be discussed later.

The problem, then, is to estimate the
parameters aj, as, .., ap, and B3, given N
observed points of the signal.

Most Likely Estimates

The problem as just stated is equi-
valent to a well-known problem in mathe-
matical - statistics:. that of estimating
the coefficients of an autoregressive
scheme. The solution to this latter prob-
lem can be found in the literature; a good
discussion is given by Hannan, for ex-
ample.? The solution given here will be
essentially the same as Hannan's, ex-
cept for the fact that the argument will be
in terms of power spectra.

. Define a new signal y; by passing x,
through the digital filter D(g). That is,
put

ye=xitaxiotatist. .. taprip  (5)




or, in z-transform notation,
¥(z)=D(z)X(s) (6)
The stochastic variable ¥¢ is normally

distributed. Furthermore, its power spec-
tral density is

Pyy(2) = D(2)D(3~1)do(z) = 5*

so that signal y, is Gaussian-distributed
white noise with a mean square value g2,
The joint probability density function of
the observed sample (y1, 35, ..., yx) is
then

1
(2’_)N/2BN

1 N
exp<-—27, Z ‘y:’) n

T=1

P ye .., )=

The maximum likelihood estimates of
the unknown parameters, denoted by &,
&, ..., &, and 3’, are obtained by maxi-
mizing this probability. Thus, the fol-
lowing set of equations must be solved:

al Y2 e,

DL g jorg i (®)
;7]

and

3 log (yuys, .. .,yxn)

et = [+
a8 ©®

When equation 5 is substituted in equa-
tion 7 and the indicated operations are
carried out, the most likely estimated
result is

-
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(10)
and

1= i &8, 114 =fot+d&\fi+

1.j=0

&fat. .. +daf, (11)

where the f; are the mean lagged products
N—4

XiXt4g, 720 (12)
fmm]

1

f1=E

The mean lagged products are unbiased

estimates of the autocorrelation function .

¢zz(7) and represent - the bulk of the
computations involved in almost any
spectral measurement problem. N

In summary, then, the following com-
putations are performed:

1. From the N sample points of the signal,
the mean lagged products fo, fi, ..., fp are
calculated in accordance with equation 12.

2. The pXp matrix (f ij; 4,5=1, ..., p)
is formed and inverted,

3. a; (j=1, ..
equation 10.

, p) are calculated from

4. f%is calculated from equg.tion 11.

These computational steps are shown
diagrammatically in Fig. 1.

Variability of Estimates

If this identification method is to be
used in an adaptive loop, some knowledge
is required about the accuracy of the
estimates fora given N. It can be shown?
that the vector a— & defined by

-

ay —agq
az —ay
N
x—a=
ap—ap

is asymptotically normally distributed
with zero mean and covariance matrix

-1

Yo Y1 ¢2 ... @po
®1 v 1 ... Pps
3’ P2 1L P ... Ppas
N—p, - . . (13)
| $p-1 .- ©o

This can be estimated conveniently by
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~ | S o fra
B |f .fl foo ool foa

(14)
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which does not use any quantities which
have not already been calculated. .
The distribution of the estimate B2 is
difficult to calculate since it is a more
complicated function of the fy’s. It is
easy, however, to derive distribution of

1
= yit=

asaf g (15)
N =1 1.7=0

and this will give some (optimistic) in-
dication of the variability of 8% With
this in mind consider the random variable

N
D /ey

tml

This is the sum of squares of independent,
normally distributed random variables
whose means are zero and whose variances
areone. This random variable is x2-dis-
tributed with N degrees of freedom.
Cramér? shows that with increasing N the
x*-distribution becomes asymptotically
normal with mean N and standard devia-

2

tion v/2N. Therefore, the random var-
iable of equation 15 is asymptotically
normally distributed witﬂ mean $* and
standard deviation /2/NB? and hence

© v/2/NB* can be used as a low estimate

of the standard deviation of 3’4

Extension to Spectra With Zeros

As mentioned previously, the assump-
tion that the unknown spectrum does
not have any zeros is rather restrictive.
It would, therefore, be desirable to extend
this method so that it is applicable to
more general forms. Unfortunately
there seems to be an essential difficulty
in doing so, and the solutions to the more
general problems become very involved
and are not suited for real-time computa-
tion. There are some general situations
where something can be done, however,
and these will now be discussed. ‘

Suppose that the signal of interest has
an unknown power spectrum of the form

N@NG)
D(z)D(z"1)

and that the locations of the zeros are
known (at least approximately). - Then
the signal can be prefiltered by a digital
filter 1/N(z) (or an equivalent analog
filter). The resultant signal will then be
of the requisite form and the method
described in this paper can be used to
determine the pole locations and 8.

As another example, assume that the
signal of interest, x4, is the sum of two
independent signals, one of whichh as a
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Fig. 1. Estimation of power spectrum param-
eters
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Fig. 2. Comparison

of actual and esti-
mated power spectra
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known power spectrum (such as white
noise of a given amplitude), and the other
of which has only poles in its power spec-
trum. That is, assume

]

8
= * —_—
Prz) =@, (z)+D(z)D(z“)
The autocorrelation function of the signal
is, then, the sum of known and unknown
components:

erdn)= orr*(n)+oz:'(n)

Subtracting known components from the
computed f, yields mean lagged products

fo—wn‘(o).fl "‘P:z'(l). .. .,fp 4—1021'(?)

can that be used to estimate D(s) and g2

Other situations suggest themselves.
Some pole locations may be known in
advance, for example. These poles can
be removed before analysis by a digital
or analog filter. Alternatively, the maxi-
mum likelihood equations 8 and 9 can be
reworked.

Conclusions

The following method of self-optimizing

control is propoesed in this paper: A con-
troller is designed whose optimum opera-

el

;E

tion depends on the knowledge of the
parameters ay, as, ..., ap, and g2 of the
sampled power spectrum of some system
signal. From a record of this signal of
length N the estimates &, ds, .. , &5, and
p? are periodically calculated by a digital
computer and used to adjust the con-
troller. In a particular application, the
choice of N is a critical and difficult prob-
lem. N must be chosen large enough so
that the estimates of the power spectrum
parameters are accurate enough to be
useful. On the other hand, N should not
be so large that the system reacts to
obsolete information.

The method described in this paper may
also he used as a first step in a conven-
tional spectral analysis. After D(s) is
estimated, the original signal can be
passed through a filter D(g) and subjected
to further spectral analysis by conven-
tional methods. If the form assumed for
the spectrum was appropriate the output
will be nearly white, and this method
will amount to an “‘automatic” prewhiten-
ing technique which can be used in con-
junction with conventional spectral ana-
Ivsis. (See Tukey for a discussion of
prewhitening.!-4)

Finally, it might be mentioned that the

3

“method described in this paper can be

used with the adaptive information pro-
cessing method described by Chang.®

Appendix

" To demoustrate the method, a sequence
of 210 independent normal random numbers
was passed through the digital filter 1/(1—
0.5271).- The resultant time series then had
a power spectrum

1/252
(1-0.55"1)(1-0.52)

Thus for this signal, assuming p=2,

a=—05
a =00
Br=0.00397

Mean lagged products were computed -
fo=0.000024

£, =0.00307

f2=0.00147

and equation 10 used to give the estimates
A& = —0.495

&;=0.0070

Br=0.00473

The estimated covariance matrix of the &,

" was calculated from equation 14:

0.0048 —0.0024]
-0.0024 0.0048.

and it is seen that the &; are well within one
standard deviation of the a«; Optimisti-
cally estimated standard deviation of B is

V/2/N Br=~(1/10)8*

so that 169, actual deviation is reasonable.

Fig. 2 shows plots of the actual and the
estimated power spectrum. Also shown
are the results of a conventional spectrum
analysis using a Hamming window and seven
mean lagged products.! Note that more
than twice as many multiplications were
required by the conventional method to
produce similar accuracy, and that the re-
sults are not in a form that is suited for adap-
tive control.
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