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The  control law as specified in (9) is open-loop in  nature. I t  may  be 
converted to  a closed-loop control law by using the principle of opti- 
mality.  Let  the  optimal  control  be  given  by 

C o  = G.S I *  0 for j = 1: 2,  3, ' . . (. 10) 

where 
- Gi = - (HjT l l j ) -1H,T~(A7 ,  O)Xo forjm < n 

FjT(FiFJT)- 'Xo for jm 2 n. 
Let gim be  the ( m X n )  matrix which consists of the first m rows of Gj.  
Direct  application of the  principle of optimality  gives  the  desired 
optimal closed-loop control law. 

Cko = g*v-k*.Xk for k = 0, 1, 2, . * . , S - 1. (11) 

11:. NKMERICAL EXAMPLE 

The  system  under  study  is  governed  by  the  second-order  differen- 
tial equation 

- + - = E(!). 
d2c dc 

dt? dt 

If  the  input, U(t ) ,  is constrained to  be  constant  over one-second inter- 
vals, the  system of (12) is  characterized by  the  discrete  state  repre- 
sentation 

Se+l = d S k  + B l T k  

where 

1 at t = K seconds 

and [ ' ( t )  = rk a constant  for k F t < k + l .  

Problem 

Find  the  control  inputs CO, L',, c.'?, LT3 which will drive  the  system 
of (12) from any initial state to  the zero state in four  sample  periods. 

S012lti0R 

Apply  the  results of Section 111, Case n r S > n .  The  vectors fk 
which form the columns of F a r e  given by 

1;, = - A-k+'B for k = 0, 1! 2, 3 (13:) 

since  for  time-invariant  systems 

+ ( K , j )  = -4L-j. 

Evnluatingfo,fl,f2  andf4  by  means of (13): one  obtains  (note nzLT>7z, 
i.e., 1 X 4  >2). 

11.6965 33 5126 
"=[-12.696j ] '   j3=[-34: j126].  

Since f o  and f l  are linearly  independent  vectors,  this  system is com- 
pletely  controllable [l]. 

From ( j j ,  for N=4,  F is given by 

F = [  
0.i183 3.6708 11.6965 

-1.i183 -4.6708  -12.6965  -34.5126 . 

Thus 

F F T  = [ 1253.8934  -1323.4916 
-1323.4616 1377.0897 1 

therefore 

( F P ) - '  = [ 0.5225 0 .SO22 
0.5022 0.4833 1 

The open-loop optimal  control law as given  by (7 )  becomes 

-0.4876  -0.4698 
-0.42i5  -0.4143 

(14j 

0.1794  0.1473 

Given any initial  stateXoT=[C(O), dC(O)/dt ] ,  the  optimal  control  is 
determined  by  performing  the  matrix  multiplication  given  in (14). 

v .  CONCLCSION 

A method  has been presented which synthesizes the  minimum 
energ); regulator  using  elementary  inverse  matrix  theory. An  open- 
loop control law results which may  be  converted to a closed-loop 
control law by  applying  the  principle of optimality.  The  optimal 
control  given  by (11) requires mnxn multiplications which in man!- 
cases may  be  rapidly  made on existing  digital  computers. A real-time 
controller is therefore possible. 
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Power-Spectrum  Identilication in  Terms 
of Rational  Models 

S. A .  TRETTER AKD I(. STEIGLITZ, MEbiBER, IEEE 

Abstract-A technique  is  described for the  identscation of un- 
known  power-spectral  densities  from  sampled  data in terms of a 
rational  function of z. The  problem is reduced  to the minimization 
of a  function of Kparameters,  where K is  the  order of the  numerator 
of the  model. This criterion,  called  the "minimum residual'!  cri- 
terion, reduces  to  the maximum likelihood  criterion  when  the ob- 
served  signal is Gaussian. A computational  technique  is  described 
for  minimizing this function  which  uses  filtering  and  correlation to 
obtain  the  gradient  and  an  iterative  descent  method  due to M. J. D. 
Powell  for  minimization.  Some  computational  results  are  given in 
which  the  method is compared  with  all-pole  and  conventional 
spectrum  estimation  techniques. 

I. IKTRODUCTIOS 

The problem of estimating  the  power-spectral  density of a signal 
from a finite  record is of considerable  interest to  the  engineer and 
statistician [1]-[3]. The  methods  developed  center on estimating 
the power of the signal in narrow  frequency  bands.  In  the  continuous 
case, this  can  be  accomplished  by passing the  signal  through a band- 
pass filter and  measuring  the  average power of the  output.  In  the 
discrete  case, a spectral window  which corresponds to  this  bandpass 
filter is used to  obtain  spectral-density  estimates  from  the finite  cosine 
transform of the  estimated  correlation  function. 

The final product of these  methods is a plot of the  estimated spec- 
tral density  as a function of frequency.  This is analogous to determin- 
ing  the  transfer  function of a linear  system  by  measuring  its  response 
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to sinusoidal  inputs at various frequencies. In  many  applications,  this 
approach yields the desired  information. In  adaptive  control, com- 
munication, or detection  systems,  where  the law of adaptation  may 
depend  on  the  spectral  densities of s p t e m  signals, simple  parametric 
models of the  spectral  density  are  more useful, just as parametric 
models  for  plant  transfer  functions  are needed in  adaptive  control 
systems. 

Heretofore  the  only  sampled spectral-densit).  model that  has  been 
investigated to any  extent is the all-pole function of z [4]. This 
spectrum model is  equivalent t o   an  autoregressive model  for the sig- 
nal [l]. In  this  case,  the inversion of an  estimated  covariance  matrix 
yields the  maximum likelihood estimate of the  unknown  parameters 
if the  signal  is  Gaussian.  The  behavior of the all-pole model  has  been 
investigated in the  adaptive  matched filter  problem [5] and in the 
adaptive  reconstruction problem [ 6 ] .  I t  has been found,  however, 
that  when the  actual  signal  spectrum  has  influential zeros, quite a 
few poles are needed in the all-pole  model to  achieve a good approsi- 
mation. The  introduction of zeros in the model  would therefore allow 
a more efficient representation  and a more effective identification. 

In  this  short  paper, a method is described for the  identification 
of the  sampled  power-spectral  density in terms of a rational  function 
of 8 with preassigned numerator  and  denominator orders. The corupu- 
tational  procedure  involved  combines  surface-searching  for  the 
numerator coefficients with all-pole identifieation  for  the  denom- 
inator coefficients. Computational  results  are  presented \vhich illus- 
trate  the  utility of the  rational model. 

11. MIXIXLX RESIDUAL FORXLLATIOX 
IYe shall  assume  that  we  have  available a sequence ~(11,  . . . , 

n ( M )  which is a record of samples  from a discrete,  aide-sense  sta- 
t i onav ,  ergodic  random process with  rational  spectral  densit>- of 
the form 

where 

are polynomials  in z-l of order K and L,  respective1)-, with a0 = bo = 1 
and  with  roots  inside  the  unit circle. b2 is a positive  constant.  This 
model  can  be  justified in many  physical situations-it represents  the 
result of filtering white noise through a digital filter with a rational 
transfer  function. 

If we  assume  that  the  random process is Gaussian,  the  method of 
maximum likelihood can  be used to  estimate  the coefficients of 3- ,  
D ,  and 6 2  in the following u-ay. Suppose  the  signal x is passed through 
a digital filter D ( s ) ) X ( z )  to give  the  output g. The  spectral  density 
of y is 

If one  could choose the coefficients of and D so that  auus(zl =b2 ,  
the  spectral  density of x would be given  by (1). IVhen this is the  case, 
y is  white  Gaussian noise and  the  joint  probability  density of the 
obsewed  output  sequence u-ould then  be 

%here 

wil l  be called the residual. The maximum likelihood parameter esti- 
mates  are  therefore  given  by  the  solution  to  the following set of 

equations [TI :  

Thus  the problem is equivalent  to finding the  minimum of a function 
of several  variables. The conditions (3) \vi11 be called the  minimum 
residual  criterion.  This  condition,  which,  intuitively,  tries t o  "whiten" 
s as much as possible, appears to be meaningful even when  the  signal 
is not  Gaussian. 

111. SOLCTIOS IS THE ALL-POLE CASE 

-4s mentioned  above,  when  the  order of :\'(z) is zero,  the  minimum 
residual  criterion  yields a set of linear  equations  for  the b,. IVe now 
summarize  the  results  in  this  case. 

Let f; be  the  mean lagged products of s defined by 

let F be  the  estimated  covariance matri.. {Ai-?, ;  i. j = 1 .  . . . , L } ,  
let f b e   t h e  column  vector {fi; i = 1. . . . , L )  . and  let b be  the  column 
vector { b,;  i =  1, . . . , L ] .  Then  the  minimum  residual  criterion 
leads to  the  estimates 

which requires besides the calculation of the  mean lagged products 
only the  inversion of one L X L  matrix. 

IV. CASE WHES 8 ( z )  IS OF SOSZERO ORDER 

IVhen there  are  unknou-n  parameters in the  numerator,  the mini- 
mum  residual  criterion  leads to nonlinear regression equations which 
cannot  be solved  explicitly. This  suggests  the using of an  iterative 
technique  to  optimize  the  free  parameters of the model.  Many  such 
techniques are  available,  ranging  from  steepest  descent  to  the  Sew- 
ton-Raphson  algorithm. An algorithm  due  to hl. J. D. Pou-ell [8]-  
[lo] was  found  by  the  authors to be  quite satisfactor). for  this 
problem. 

-1lthough it is possible to perform a direct  (K+L)-dimensional 
minimization  for  the  unknown a n  and b., only a K-dimensional  search 
for  the ~ 2 "  is necessTn-. This is so, because for any given S ( z )  of order 
K ,  the  optimum D(z)  of order L can  be  found  directly  bl-  applying  the 
all-pole estimation  procedure specified by (4) to  the signal X(:) /:V(z). 
-4 t\\-o-stlge  estimation  procedure  was  therefore  programmed  with 
:\'(z) and D(;) being  estimated  alternately  by Poxvell's method  and 
by matrix  inversion, respectively. 

1:. CALCLXATIOX OF THE GRADIEST BY FILTERISG 
The majorit)- of the  more efficient extrema1  seeking  algorithms, 

including Powell's method,  employ  the  gradient of the function 
whose extreme  value is being sought. IVhile it is alwal-s possible to use 
finite differences to  estimate  the  gradient,  it  has  been  found  that  the 
method of sensitivity filters [11 ] is  more  accurate  and efficient. 

From (3) we have 
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Fig. 1. Second-order  all-pole  estimate  compared  with  the  nominal  density  and 
the  Hamming  estimate. 
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Fig. 2. Sixth-order  all-pole  estimate  compared  with  the  nominal  density  and 
the Hamming  estimate. 
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Fig. 3. Rational  estimate for K = 2  and L = 3  compared  with  the  nominal  density 
and  the  Hamming  estimate. 

Hence 

where  the signal 

is obtained by filtering  the  observed  signal  by  the  indicated  linear 
filter. Thus  the  gradient of R with  respect to  the ai may  be  obtained 
by filtering and correlating  appropriate signals. The  gradient  aR/abi 
may  be  obtained  in a similar  manner but is not needed  here. 

VI. CHOICE OF MODEL ORDER 

Vnless  some a priori  knowledge is available,  the choice of K and 
L presents a serious problem, as in  all  identification  problems. Nor- 
mally,  the effect on  the  minimum  residual of increasing K or L by 
one will provide  some  guide as to  the  appropriateness of the  model. 
Various  schemes  have been  proposed for  testing  the significance of an 
additional  parameter  in  the all-pole (autoregressive) case. These 
are discussed in Bartlett  [12]  and  b'hittle  [IS].  To  the  authors' 
knowledge, no results  are  available  in  the  rational case. 

VII. COMPUTATIONAL RESULTS 
I n  this  section,  some  typical  results of a computer  simulation are 

described. Five  thousand  independent  normal  random  numbers  with 
zero  mean  and  unit  variance were  passed through  the  digital filter 

H ( z )  = 
(1 - 03-')(1 - 0.8z-I) 

(1 - j0.5z-1)(l +jO.%l)(l - 0.h-I) 

to  generate a sequence  with  the  nominal  spectral  density  H(z)H(z-l). 
This  nominal  density is compared  with a second-order all-pole esti- 
mate  and  the  Hamming  estimate  using 21 mean lagged products in 
Fig. 1. The  estimated all-pole parameters  were 

B2 = 1.115678 
D(s)  = 1 + 0.446992' + 0.398878~~.  

The nominal  density is compared  with a sixth-order  all-pole  estimate 
and  the  Hamming  estimate in Fig. 2. The  estimated  parameters  were 

B2 = 1.013372 
D(a) = 1 + 0.598049~-l + O.628833zr2 + 0.404799~--3 

f 0.270027~-~ + 0.165984P f 0.091338~--9 

Finally,  in  Fig.  3,  the  rational  estimate  for K = 2  a n d   L = 3  is  shown 
together  with  the  nominal  density  and  the  Hamming  estimate.  The 
estimated  parameters in this  case  were 

p2 = 1.002461 
6 ( z )  = 1 - OSi8249z-' - 0.135121~-~ 
D(z)  = 1 + 0.034511~-' + 0.170013~--" - 0.012531~-3. 

The  values for f i 2  for various  order  models  are listed  below: 

K 

0 
n 

0 
0 
2 

L 

1.002803 
1.001860 
1.001234 
1.002461 
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On  observing  Fig. 1, it is clear that   the second-order all-pole est I -  

mate is a relatively  rough  estimate of the  nominal  densit>-.  The  sixth- 
order all-pole estimate is substantially  better  but  still  tends  to  er- 
hibit  ripple. The K = 2 ,  L=3 estimate, which is from a priori informa- 
tion  the  correct  model, fits the  nominal  density  quite \veil. Taking  the 
residual as a measure of the qualit). of the fit, it  appears  that at least 
a tenth-order all-pole model  is needed to surpass the K =2,  L= 3 
model estimate. For all-pole  estimates of order  greater  than  ten, 
plots of the  estimated  densities  compare well with  the  nominal  den- 
sit>-. This  illustrates  the usefulness of all-pole  models of sufficientl>- 
high order even in the  case of spectral  densities  containing zeros. 

R i t h  fewer sample  points in the  input  record,  the statistical fluc- 
tuations  in  the  spectral  estimates  become  more  pronounced  and  tend 
to swamp  out  the model error.  In  one  example with the &?me nominal 
density as above  but  with 01111- 250 data points, a sixth-order  all-pole 
approximant, while more oscillator>- than a K = 2 ,  L=3 approximanr, 
seemed to  be  quite  adequate. 

VII I .  coKcLusIoKs 

X method has been described  for  identifying  spectral  densities  in 
terms of rational  functions of B. The special case of all-pole  identifica- 
tion has been extended to  include zeros in the model. This problem 
is typical of many which have  become  practical  to  do only with 
digital  computers. 

Experimental  results  have  indicated  that, for  models of appropri- 
ate  order,  the  quality of the  estimation is a t  least equivalent  to  that 
obtained from bandpass filters and  Hamming windows. Furthermore, 
the  results in a simple  parametric  form  are  more useful in nlany 
applications, especialll- in the design of adaptive  systems.  The  ques- 
tion of how to  choose the model order  remains  unsettled,  although 
the  behavior of the  residual for various model orders  gives some  indi- 
cation of the  appropriateness of the model. Similar  problems  arise in 
conventional  spectrum  analysis. xvhere one  must choose the  number 
of mean lagged products  and  the  bandwidth of the  spectral \vindo\\-. 
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Measurements for the Control of a Randomly 
Time-Varying Linear  System 

G. E. POLLOK 

Abstract-Measurements  are  presented  which,  performed on a 
stationarily-randomly  time-varying h e a r  system,  yield  sufEcient 
information  about  the  system  to  enable  one  to  design  linear  time- 
invariant open-loop compensation.  The  measurements  are  demon- 
strated on an electronic  randomly  time-varying  linear  system and 
the  design  technique  is  applied  to  an  example with interesting  results. 

IKTRODCCTIOS 

hIuch of the  literature on the  measurement of time-variant  linear 
systems  is  concerned  with  the  time  and  frequency  spread  character- 
istics of radar  targets  and  communication  channels  (scattering  func- 
tion.  two-frequency  correlation  function,  and  tap-gain  correlation 
function). ?Jethods by which these  characteristics  can  be  measured 
have been considered  by  Green [2], [6]. Hagfors [1], Gallagher [j], 
Levin [la],  and  others.  Theories  for  the  measurement of the statis- 
tics of a general stationaril?--raIldonlIy time-van-ing linear system 
exist,  but  being  aimed at a complete  characterization,  they  contain 
great  complexity [I]. [7]. 

The  measurements  presented  here  are  directed at obtaining  just 
sufficient data on the  system  to  enable  one to proceed analytically 
to  determine  the  optimum  (mean-square-error  criterion)  linear  time- 
invariant open-loop controller.  Since i t  is asked  only  to  control  the 
system.  not  to  uniquely  characterize i t ,  the  measurements  required 
are  relatively simple. The only additional  restriction of physical sig- 
nificance is that  the  system vary in a stationan-  manner. Signifi- 
cantly,  there  are  no  restrictions on the rate at which the  sl-stem  may 
var>-. On the  contrary,  the  utility of the design procedure  advocated 
here  is  the  greatest for systems whose parameters  fluctuate  rapidly, 
since if the  system  varies slowly, an adaptive  approach is preferable. 

.4 randomly  time-varying  linear  system (RT1-U) will be defined 
as one \\-hose input-output  relationship  can  be expressed as, 

rft) = J-:h(l, a)zr(t - ajda: h ( l ,  a) = 0 for u < 0 (1) 

where h( t ,  a) is a sample  from a two-dimensional stochastic process, 
stationar). in  the  t-direction,  and  independent of the  input u(t) .  b ( t ,  aj 
is the  system response at time f to an impulse  applied at time t-a. 
I t  is  further  assumed  that ~ ~ R l z 2 ( t ,  aids< x .  

I t  can easil5- be  shown  that  the design  problem shoxn in Fig. 1 (a) 
is identical to  the one  depicted  in  Fig.  lcb),  nhere f(aj is a linear 
time-invariant  svstem  with  impulse response, 

j(u) = w ,  a) (2) 

where (- ) denotes  ensemble  average,  and o(.j is a (minimum 
phase) linear  time-invariant  system n-ith autotranslation  function, 
related to  the  “spectrum” of the  variations  that  the  system  under- 
goes, given bl., 

However,  the problem in Fig. lib) is the  same as Sewton’s  satura- 
tion  tendency  constraint problem [3]. Thus once the  h?-pothetical 
systems j i u )  and via) have been determined.  the  mathematical solu- 
tions for wo(a) are  identical. 
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