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branches. However, the graph in Fig. 4 contains more 
branch disjoint paths between a vertex in (vl, vz, v, 1, 
and a vertex in { v4, v5, v~) than the graph in Fig. 3(c). 

Example 3 

Given { di j = { 6, 6, 5, 4, 3, 2}, we want to construct a 
pseudosymmetric graph by using Algorithm C. The 
resulting graph is in Fig. 5. 

Example 4 
Given (rla, . . . , rsB} = (6, 4, 2, 5, 4}, we want to 

construct a pseudosymmetric graph by using Algorithm D. 
The resulting graph is shown in Fig. 6. 
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A New Planarity Test Based on 3-Connectivity 
JOHN BRUNO, MEMBER, IEEE, KENNETH STEIGLITZ, MEMBER, IEEE, AND LOUIS WEINBERG, FELLOW, IEEE 

Abstract-In this paper we give a new algorithm for determining 
if a graph is planar. The algorithm is based on Tutte’s theory of 
J-connected graphs, and provides a structural decomposition of 
the graph. Results are presented in the algorithmic form, and a 
computer program is described. 

I. INTRoDTJCTI~N 

1 

N THIS paper we present a new algorithm for deter- 
mining whether or not a given graph can be drawn in 
the plane without crossed edges [5], [8]-[ll]. The 

method used here reveals certain structural properties of 
the graph in the course of testing for planarity. More spe- 
cifically, the structural characterization of planar graphs, 
first given by Mac Lane [4], is used to decompose the 
original graph into smaller pieces that are simple and 
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triply connected. Thus the underlying triply connected 
structure of the given graph (planar or nonplanar) is 
obtained. 

Our Algorithm Planar is based on Tutte’s theory [l] 
of triply connected graphs and relies on the fact that 
a graph is planar if and only if all of its triply connected 
components are planar [4]. We use Tutte’s theory to 
obtain an efficient algorithm for determining if a simple, 
triply connected graph is planar. It will become clear 
that the uniqueness of the map of a triply connected 
graph is the key to the efficiency of this algorithm. 

In Section III we present Tutte’s theory in preparation 
for Section V, wherein we present Algorithm P (the 
determination of the planarity of a simple, triply con- 
nected graph). The case of arbitrary graphs is presented 
in Section VI. Lastly, we give the salient features of a 
computer program based on Algorithm Planar. 

There are two notational conventions that we use. 
If S is a finite set, then we use the notation a(S) for 
the cardinality of the set S. In order to avoid a dispro- 
portionate amount of subscripts (or superscripts), we 
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adopt the following notation, which is quite conventional 
in computer programming. Let f(S, T, U, . . . ) be some 
expression. Then by 

K t f(S, T, U, . ..) 

we mean that one calculates the quantity determined 
by the expression on the right-hand side of the ,arrow 
and then uses the letter K to denote the calculated 
quantity. This operation allows one to have the symbol K 
on both sides of the arrow. For example, let S, T, and K 
be three finite sets, and write 

K +- (S V T) A K. 

We first calculate the expression on the right-hand side 
of the arrow; that is, we determine the set (S U T) A K. 
Then this set is! subsequently denoted by the letter K. 
We can view this operation as one in which the elements 
in the set K are “changed” or “updated.” It is, of course, 
not necessary for the symbol on the left-hand side of 
the arrow to appear on the right-hand side also. 

II. TERMINOLOGY Example 1 

A graph G is defined by the following: 

1) E(G), a finite set of edges; 
2) V(G), a finite set of vertices; and 
3) a relation of incidence that associates with each 

Let G be the graph in Fig. 1. G op e and G cl e are 
also shown in Fig. 1. 

We define the union of two subgraphs H and K of G 
as the subgraph H W K of G, which satisfies: 

G op e =G, G cl e q G, 

Fig. 1. Graphs of Example 1. 

a) form G op e; 
b) if v, and v, are the ends of e in G, then we coalesce 

these vertices in the graph G op e and denote 
the resulting graph by G cl e. 

edge a pair of vertices, not necessarily distinct, 
called its ends. An edge with coincident ends is 
called a loop. 

1) E(H U K) = E(H) U E(K) and 
2) V(H U K) = V(H) U V(K). 

Let v E V(G). The valence of v is equal to the number 
The intersection of two subgraphs H 

of edges incident to v, where loops are counted twice. 
defined as the subgraph H A K of G, 

A graph G is called simple if it has no loops and no 
two edges have the same pair of ends. 

Two vertices are said to be adjacent if they are the 
ends of the same edge. 

A sequence v,, . . . , vk of vertices of a graph G is said 
to form a path from v, to v, if vi is adjacent to vi+1 for 
i = 1, . . . ) k - 1. 

1) E(H n K) = E(H) n E(K) and 
2) V(H r\ K) = V(H) r\ V(K). 

We say G is .%-separable if it is the union of two sub- 
graphs J and K with the following properties: 

A graph G is said to be connected if there exists a path 
between every pair of vertices in V(G). 

A graph H is called a subgraph of G if E(H) E E(G), 
V(H) s V(G), and the ends of the edges of H are the 
same as in G. 

There are two operations whereby we can obtain 
new graphs from a given graph. These operations play 
a central role in the following sections. Let G be a graph 
and e E E(G). 

1) By G op e we mean the subgraph of G with edge 
set (E(G) - {e]) and verte:x set V(G); that is, 

E(G Opel = (E(G) - bl>, 

V(G op e) = V(G), 

and G op e is a subgraph of G. 
2) By G cl e we mean the graph obtained from G by 

the following steps: 

and K of G is 
which satisfies: 

1) E(J) n -7-W) = 6 
2) a(V(J) A V(K)) _< 2, and 
3) each of the subgraphs J and K has a vertex not 

belonging to the other. 

A pair {J, K} satisfying the above conditions is called 
a &separator of G. 

A graph with at least 4 vertices which is not 2-separable, 
is called a triply connected graph. We will be very much 
concerned with the properties of simple, triply connected 
graphs. 

III. TUTTE'S THEORY OF SIMPLE, TRIPLE CONNECTED 
GRAPHS 

A wheel is a special hind of simile, triply connected 
graph and it plays a central role in Tutte’s theory [I]. 
A wheel of order n, where n is an integer 23, is a graph W, 
defined as follows: 
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Fig. 2. The wheel of order 4. 

9 

Fig. 4. Graph G1 of Example 2. 

lQyJG &j=JG2 
Fig. 3. Graph of Example 2. Fig. 5. Graph GZ of Example 2. 

1) V(W,) = la, b,, bl, . . . , b,-,J, 
2) E(WJ = I.&, A,, . . . , A,+ B,, K, . * * , R.-I\, and 
3) the ends of Ai are a and bi and the ends of Bi 

are bi and bi+l. 

The suffices are residues mod n. The wheel W, is shown 
in Fig. 2. 

It is easy to prove that every wheel is a simple, triply 
connected graph. There is, however, an additional prop- 
erty of a wheel that is extremely important. 

Let G be a simple, triply connected graph. We call 
an edge e E V(G) an essential edge if neither G op e nor 
G cl e is both simple and triply connected. It is easy to 
see that in a wheel every edge is essential. Tutte [l] has 
proved the converse statement: if G is a simple, triply 
connected graph in which every edge is essential, then 
G is a wheel. We state this important result explicitly. 

Theorem 1 [ Tutte] 

Let G be a simple, triply connected graph in which every 
edge is essential. Then G is a wheel. 

IV. REDUCTION SEQUENCES 

Let G be a simple, triply connected graph. Then the 
sequence 

Go, G1, G,, -. . , G, 

of graphs is called a reduction sequence of G if the following 
conditions are satisfied: 

1) G, is a simple, triply connected graph for k = 
1, .: * * ) T, 

2) Go = G, 
3) G, is a wheel, and 
4) either G,,, = G, cl e or Gk+l = G, op e, where 

e E E(GJ for k = 0, . . . , r - 1. 

Example 2 

Let G be the graph in Fig. 3. G is a simple, triply 
connected graph. According to Theorem 1, G is a wheel 

if every edge of G is essential. Since G cl 1 is a simple, 
triply connected graph, G is not a wheel. Set 

G1 = G cl 1.. 

G, is shown in Fig. 4. 
Again by Theorem 1, G, is not a wheel since G, op 3 

is a simple, triply connected graph. Set 

G, = G, op 3. 

G, is shown in Fig. 5. 
One can check and see that every edge of G, is essential 

and therefore G, is a wheel. In fact G, is W,, the wheel 
of order 4. 

The sequence 

G, G,, G, 

is a reduction sequence of G. 
Reduction sequences of G are easily constructed as 

in Example 2. There are, in general, many reduction 
sequences of a simple, triply connected graph G. The 
following algorithm can be used to generate a reduction 
sequence for G. The validity of the algorithm is a simple 
consequence of Theorem 1. 

Algorithm R: Generation of a Reduction Sequence 

Let G be a simple, triply connected graph. Set k = 0, 
G, = G, and go to step 1. 

Step 1 [Test for wheel]: If every edge of G, is an essential 
edge, then the sequence 

Go, . . . , G, 

is a reduction sequence of G. Otherwise go to step 2. 
Step 2 [Remove a nonessential edge]: Pick some non- 

essential edge e E E(GJ. The edge e is nonessential 
either because G, op e or G, cl e is a simple, triply con- 
nected graph. If G, op e is a simple, triply connected 
graph set 

G kC1 = Gk op e 

and go to step 3. Otherwise, set 
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v1 and v, are to be the ends of e in the graph G(op)-‘e, 
which is defined as 

a) E(G(op)-‘e) = E(G) U {e}, 
b) V(G(op)-‘e) = V(G), and 
C) the ends of the members of E(G) in G(op)-‘e 

are the same as in G, while the ends of e in G(op)-‘e 
are v1 and v2. 

The graph G(op)-‘e is defined only if G(op)-‘e is a simple, 
triply connected graph. 

2) Operation (cl)-‘: Let e be some element satisfying 
e @ E(G) and v a vertex of G. Let the edges of E(G) 
that have v as an end be partitioned into two sets L 
and R. Let vL and vB be two elements not in V(G). The 
element e is to have V~ and vR as its ends and is to be 
inserted into G by “splitting” the vertex v. This new 
graph is denoted by G(cl)-‘e and is defined as 

a) E(G(cl)-‘e) = E(G) U {e}, 
b) V(G(cl)-‘e) = (V(G) - (v)) U (vL, v,), and 
c) the ends of the members of E(G) in G(cl)-‘e are 

the same as in G with the exception of the edges 
in L and R. The ends of e in G(cl)-‘e are vL and 
vR. Each edge in L is to have vL as one of its ends 
and each edge in R is to have vR as one of its 
ends. The other ends of the edges in L V R in 
G(cl)-‘e are the same as in G. 

The graph G(cl)-‘e is defined only if G(cl)-‘e is a simple, 
triply connected graph. 

It is important to note that the notation G(op)-‘e 
and G(cl)-‘e does not give enough information to con- 
struct the corresponding graphs. Thus for G(op)-‘e, it 
is necessary to know the ends of e in V(G), and for G(cl)-‘e, 
it is necessary to know the vertex v in V(G) as well as 
the sets L and R. Accordingly, whenever we use this 
notation the appropriate information will always be 
supplied. 

Example 4 

Consider the graph G in Fig. 1. The operation G(op)-‘e 
is not defined for G since the addition of an edge between 
any pair of vertices of G causes G to become nonsimple. 

Consider the graph G, in Fig. 1. The operation G,(op)-‘e 
is defined, where the ends of e are v1 and v2. G,(op)-‘e 
is precisely the graph G. 

Next consider the ~graph G, in Fig. 1. The operation 
Gz(cl)-‘e is defined, where the vertex to be split is ,u, 
L = (e2, es}, and R = (e,, es]. G,(cl)-‘e is precisely the 
graph G in Fig. 1. 

We are now in a position to develop an algorithm 
for testing to see if G, a simple, triply connected graph, 
is planar. The first step is to apply Algorithm R to the 
graph .G and thereby determine a reduction sequence 

Go, G,, . - . , G, (1) 

c Q+, == G, cl e 
and go to step 3. 

Step 3 [Index k]: Set 

ktk+l 

and go to step 1. 

V. TESTING THE PLANARITY OF SIMPLE, 

TRIPLY CONNECTED GRAPHS 

Let G be a graph. Informally, we say that G is a planar 
graph if it can be drawn on the sphere without crossed 
edges. Mac Lane [4] gives the following, more precise, 
definition. 

A map u of a graph G is a correspondence which 
assigns to each vertex v E Y(G) a point (TV on the sphere 
and to each edge e E E(G) a Jordan arc a(e), on the 
sphere such that the ends of a(e) are the maps of the 
ends of e, while uvl # (TV* if v1 # v2 and two arcs u(el) 
and u(ez) with el # e2 do not intersect, except perhaps 
at their end points. 

A graph G is called a planar graph if there exists a 
map u of G on the sphere. The image u(G) of G on the 
sphere is called a plane representation of G. 

Let G be a planar, simple, triply connected graph 
and u(G) a plane representation of G. The sphere is 
divided into connected regions by u(G) and these regions 
are bounded by the maps of certain of the members 
of E(G) V V(G). The set of vertices that are on the 
boundary of a connected region is called a mesh. We 
denote by %X(G) the set of meshes of G. 

Example 3 

Let G be the graph in Fig. 1. This representation of 
G is a plane representation of G since G is finite and, 
consequently, the maps of G on the plane and on the 
sphere are equivalent. The set m(G) is given by 

mm(G) = {Iv,, vz, ~31, (~1, v3,v41, 1~2, v3, ~4, {vi, vz, v,)l. 

It would seem that the set of meshes of G depends 
on the plane representation of G, but the fact is that 
if G is a planar, simple, triply connected graph, then 
m(G) is independent of the plane representation chosen 
to calculate the set of meshes. This property of planar, 
simple, triply connected graphs follows from the work 
of Whitney [2], [3] and is also enunciated in a paper 
by Mac Lane [4]. 

Theorem 2 

Let G be a planar, simple, triply connected graph. 
Then the set m(G) is unique. 

Theorem 2 is a key result that enables us to obtain 
an efficient algorithm for testing whether a simple, 
triply connected graph is planar. Before presenting 
the algorithm we will consider two operations on a graph 
that correspond to the inverses, in a certain sense, of 
G op e and G cl e, respectively. 

Let G be a simple, triply connected graph. 
1) Operation (op)-‘: Let e be some element satisfying 

e @ E(G) and v1 and v, two vertices of G. The vertices 

of G. Corresponding to (l), there is a sequence 

el, e2, - - - , e, 



BBuNO et al: PLANARITY TEST BASED ON 8-CONNECTIVITY 201 

of distinct edges in E(G) such that either 

or 

G k+l = GOP ek+l (2) 

G k+l = Gk cl ek+, (3) 

for k = 1, .a+ , r - 1. 
Since G, is a wheel, it should be clear that G, is a planar 

graph and, consequently, there exists a map u, of G,. 
The basic idea of the proposed method is to work back- 
wards through the reduction sequence and at each 
stage determine whether G, is a planar graph for 
p = r - 1, . . . , 0. Fig. 6. Operation (cl)-‘. 

Since we already know that G, is planar and we have 
a map U, of G,, it suffices to show how one determines 
whether or not G, is a planar graph, given that G,,, is 
a planar graph. If G, is planar, then we also determine 
a map u, of G,. There are two cases to consider. 

A. Case 1: G,,,, = G,, op e,,, 

Let vl, vz designate the ends of eP+l in G, and let us 
consider the operation GP+l(op)-le,+l to be carried out 
with respect to v, and v2. It is clear from the definition 
of a reduction sequence that G,+,(op)-‘e,,, is defined 
and in fact 

G, = G,,+,(op)-‘e,+,. 

We must determine if Gp+l(op)-lep+l is a planar graph. 
Suppose there exists a mesh M E m(G,+,) such that 
v, E M and v2 E M, then clearly the edge e,,, can be 
added to G,,, “in a planar fashion” and, accordingly, 
G, is a planar graph. Thus the condition that vl and IJ, 
are in the same mesh M is sufficient to insure that G,, 
is a planar graph. The remarkable fact is that by 
Theorem 2 we can assert that this condition is also 
necessary. 

Fig. 7. Operation (cl)-‘. 

graph. Since G,, is a simple, triply connected graph, 
a(L) 1 2 5 a(R). Let 

L = {I*, . . . ) 1,) 

and 

R = Ir1, ... , rul, 

Theorem 3 

The graph G, is planar if and only if there exists a 
mesh M E m(G,,,) satisfying v1 E M and vz E M, 
where v1 and v2 are the ends of eP+l in G,. 

If G, is planar, then the map ul, of G, is a straight- 
forward extension of the map up+,. 

B. Case 2: G,+l = G, cl eP+I 

Let vL and v, designate the ends of e,,, in G, and 
v designate the vertex in G,,, that corresponds to the 
coalesced vertices vL and v,. The set L contains those 
edges in (E(G,) - (eP+1 ) ) that have vL as an end in 
GP, and the set R contains those edges in (E(G,) - {e,+I)) 
which have vR as an end in G,. Let us consider the 
operation Gp+l(~l)-le,+l to be carried out with respect 
to these quantities. It is clear from the definition of a 
reduction sequence that G,+l(cl)-le,+l is defined and, 
in fact, 

where p 2 2 < Q. Suppose that the map up+1 of G,,, 
is such that the images of the edges in L are located 
consecutively around the point u,,~v; that is, there exists 
an element li, E L such that if one moves in a clockwise 
direction around the point u~+~v beginning with the 
image of I,>, then the images of all the edges of L are 
encountered before coming to the image of a member 
of R. This situation is depicted in Fig. 6. It should be 
clear that the edge en+, can be added to G,,,, “in a planar 
fashion.” Therefore G, is a planar graph. The addition 
of e,+, to Gp+l is shown in Fig. 7. Thus the condition 
that the images under up+, of the members of L be located 
consecutively around the point u,+~v is sufficient to 
insure that G,, is a planar graph. Again, the fact is that 
by Theorem 2 we can assert that the condition is also 
necessary. 

Theorem 4 

G, = Gp+l(cl)-le,+l. 

The graph G, is planar if and only if the images under 
uP+l of the members of L are located consecutively around 
the point u,+~v. 

We must next determine if Gp+l(cl)-le,+l is a planar If G, is planar, then the map up is easily obtained 
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from the map u,,+~ by the construction shown in Figs. 6 
and 7. 

As we have seen in the previous considerations, the 
test for determining if G,, is a planar graph, given that 
G,,, is a planar graph, is extremely simple and, clearly, 
the reason for this is that %?(G,+,) is unique. Loosely 
speaking, it means that no redrawing of G,,+l can alter 
the meshes and, accordingly, if the conditions of Theorem 
3 [4] are not satisfied, the addition of the edge e,,, 
must necessarily cause G,+,(op)-leD+l [G,+l(cl)-‘e,+,] 
to be a nonplanar graph. It follows easily that if G,, is 
nonplanar, then G must also be nonplanar. 

We will now give an explicit statement of the algorithm 
which can be used to test to see if a given simple, triply 
connected graph G is a planar graph. 

Algorithm P: Planarity Test for a Simple, Triply Con- 
nected Graph 

Let G be a simple, triply connected graph. 
Step 1 [Obtain a reduction sequence of G]: Apply Algor- 

ithm R to G and obtain a reduction sequence 

Go, . -. , G, 

of G. Corresponding to (4), there is a sequence 

(4) 

of distinct edges in E(G) such that either 

or 

G k+l = Gk op ekcl (5) 

G k+l = Gk cl ek+l (6) 

for k = 0, . .- , r - 1. Let p = r - 1 and go to step 2. 
Step 2 [Test for G,,, = G:]: If p = -1, then G = Go 

is a planar graph, and u0 is a map of G. Otherwise go 
to step 3. 

Step 3 [Test G,, for planarity]: There are two possible 
bases. 

Case 1: G,,,, = G, op ep+l. This case is described 
above under Section V-A and consequently, G, is planar 
if and only if the conditions of Theorem 3 are satisfied. 

If G, is planar, then cP, the map of G,, is obtained 
from uP+l by the addition of a Jordan arc, corresponding 
to e,+,, with ends uP+l v1 and u,+~ v2. Go to step 4. 

If the conditions of Theorem 3 are not satisfied, then 
G is nonplanar. 

Case d: G,,, = G,, cl e,,,. This case is described 
above under Section V-B and consequently, G, is planar 
if and only if the conditions of Theorem 4 are satisfied. 

If G, is planar, then up, ,the map of G,,, is obtained 
from u,+~ by the construction shown in Figs. 6 and 7. 
Go to step 4. 

If the conditions of Theorem 4 are not satisfied, then 
G is nonplanar. 

Step 4 [Index p]: Set p c- p - 1 and go to step 2. 
In Fig. 8 we present a flowchart of Algorithm P. In 

the following sections we shall discuss how one makes 
use of Algorithm P in testing any graph for planarity. 

6 p+r-l 

4 NO 

I l- I 

I 
Fig. 8. Flowchart of Algorithm P. 

Specifically, we will use a structural characterization 
of planar graphs, developed by Mac Lane [4], to show 
how one can reduce the problem of testing a graph for 
planarity to the problem of testing a set of simple, triply 
connected graphs for planarity. Weinberg [5] has pre- 
viously discussed this possibility. 

We will also discuss Algorithm R in more detail. To 
obtain a reduction sequence it is clearly necessary to 
have some efficient way to test to see if a graph is triply 
connected. For this part of our work we use some recent 
results of Frisch [6] and Steiglitz et al. [7]. 

Lastly we will describe a computer program based 
on the algorithms and an example using this program. 

VI. TESTING THE PLANARITY OF ANY GRAPH 

In the preceding section we developed an algorithm 
that can be used to determine whether or not a simple, 
triply connected graph is a planar graph. Suppose, 
however, that G is an arbitrary graph and the problem 
is to determine if G is a planar graph. In this section 
we will show how Algorithm P forms the nucleus of a 
general algorithm for determining if an arbitrary graph G 
is. a planar graph. There are some obvious preliminary 
steps one can take before getting into a general algorithm. 
These steps are designed to reduce the overall work 
in testing the planarity of G. We give two preliminary 
steps. 

1) Let vl, . .. , v6 be a path in G, then an edge e is 
said to be on P if the ends of e are some pair of consecutive 
members of P. 

A path is called simple if none of its members are 
repeated and it is called closed if its first and last members 
are identical. 
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A simple, closed path is called a polygon. 
We define the equivalence relation - on the edges 

of a graph G as follows. 

a) ForalleEE(G),e-e. 
b) e - e’ if there is a polygon B of G such that e 

and e’ are both on B. 

It is easy to verify that - is an equivalence relation 
and, consequently, it induces a partition U on the edges 
E(G). Each block in this partition defines a subgraph 
of G, which consists of the edges in the block and all 
those vertices that are the ends of members in the block. 
Let the set 

6 = {G,, G2, - . - , G,} 

consist of the subgraphs of G induced by the partition II. 
The members of 9 are called the nonseparable components 
of G. Whitney [2] has shown that G is planar if and only 
if each of its nonseparable components are planar. Ac- 
cordingly, we could restrict our attention to graphs G 
that are nonseparable, since there are efficient algorithms 
that determine the nonseparable components of an 
arbitrary graph. 

2) We say that two edges ei, ei E E(G) are parallel 
edges if they have the same ends. 

Two edges ek, el E E(G) are called series edges if there 
is a vertex v E V(G) that is an end of both e, and ek 
and the valence of v is 2. 

Series and parallel edges are unimportant since they 
do not affect, in a certain sense, the planarity of a given 
graph. 

Theorem 5 

Let ei and ei be parallel edges of G. Then G op ei and 
G op ei are both planar graphs if and only if G is a planar 
graph. 

Theorem 6 

Let e,+ and e, be series edges of G. The G cl ek and G cl e, 
are both planar graphs if and only if G is a planar graph. 

In this preliminary step we “remove” all series and 
parallel edges from G. Suppose the edge e E E(G) is a 
parallel edge, that is, there exists another edge e’ such 
that e and e’ have the same ends. To remove the parallel 
edge we form G op e and set 

G +- G op e. 

We continue to look for parallel edges in G and remove 
them in the same manner as e was removed. If we can 
no longer find any parallel edges we then look for series 
edges. Suppose the edge err is a series edge of G, that is, 
there exists an edge et” such that en and e”’ are series 
edges. To remove the series edge e” from G we form 
G cl e” and set 

G + G cl e”. 

We continue to look for series edges in G and remove 
them in the same manner as erf was removed. When we 
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can no longer find any series edges, the process of removing 
series and parallel edges is not finished. We must go 
back and look for parallel edges once more, since the 
removal of series edges can cause some edges to become 
parallel edges. Also, when we can no longer find any 
parallel edges we must again look for series edges since 
the removal of parallel edges can cause some edges to 
become series edges. In this manner we continue to 
remove series and parallel edges until one can no longer 
find a series or a parallel edge of G. 

We will state the process of removing series and parallel 
edges from G as an algorithm since we will have occasion 
t,o use it again. 

Algorithm S-P: Series-Parallel Reduction 

Step 1 [Locate a series or a parallel edge]: If G has 
no series or parallel edges, terminate the algorithm. 
If G has a series edge go to step 2, otherwise go to step 3. 

Step 2 [Remove a series edge from G]: Pick some series 
edge e E E(G), set 

GtGcle 

and go to step 1. 
Step 3 [Remove a parallel edge from G]: Pick some 

parallel edge e E E(G), set 

GtGope 

and go to step 1. 
The two preliminary steps given above form the 

initialization stage of our general algorithm. We now 
state this initialization stage explicitly. 

Initialization of Algorithm Planar 

Let G be an arbitrary graph. 
Step i [Find nonseparable components]: Determine the 

set 

s = {G, G2, . . . , Gml, 

where Gi corresponds to the unique nonseparable com- 
ponents of G. 

Step 2 [Apply Algorithm S-P]: Let Hi be the graph 
obtained by applying Algorithm S-P to Gi for i = 
1, .a. ,m. Set 

x = (H,, ... , H,}. 

We have the following result, which is a consequence 
of the preceding remarks. 

Theorem 7 

Let G be an arbitrary graph. Then G is a planar graph 
if and only if each of the members of X, obtained by 
applying the initialization of Algorithm Planar, is a 
planar graph. 

The initialization part of Algorithm Planar results 
in a set of graphs that can be individually tested for 
planarity and by Theorem 6; these tests are sufficient 
to determine whether G is a planar graph. Let us first 
examine the kinds of graphs that can belong to X. It 
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should be clear that if G has any isolated vertices that 
they do not affect the planarity of G nor are they in 
‘any ,member of X. Moreover, no member of x consists 
of a single vertex. Also the lloops of G become singletons 
in the partition II and they survive Algorithm S-P to 
become members of X that are graphs consisting of 
one edge and one vertex. Conversely, any member of x 
that is a graph consisting of one edge and one vertex 
corresponds to a unique loop of G. Clearly, the loop graphs 
(a loop graph is a graph consisting of one edge and one 
vertex) in X are planar and, consequently, need not be 
examined further. 

Fig. 9. Graph G of Example 5. 

Some of the members of x may consist of a single 
edge with two distinct ends. We call such a graph a 
link graph. A nonseparable component of G that is a 
link graph is not affected by Algorithm S-P and so 
becomes a link graph in the set X. However, the converse 
is not necessarily true. The members of X that are link 
graphs do not necessarily correspond to nonseparable 
components of G that are also link graphs. Each member 
of x does correspond to a unique nonseparable component 
of G (i.e., a member of 6) and it is easy to construct 
nonseparable graphs that become link graphs when 
Algorithm S-P is applied to them. Such a nonseparable 
graph is planar by Theorem 7. 

a(E(H)) 2 6. If H is not 2-separable, then H is a simple, 
triply connected graph and Algorithm P can be applied 
to H to determine whether H is a planar graph. Therefore 
let us assume that H is 2-separable and that (J, K) 
is a 2-separator of H. We now describe a process of 
“splitting” H into two smaller graphs such that H is 
planar if and only if both of the two new graphs are 
planar. 

Since H is nonseparable it follows that 

a(V(J) n V(K)) = 2. 

Let 

V(J) n V(K) = {u, VI. 

Example 5 

Consider the graph G shown in Fig. 9. G is a non- 
separable graph and application of Algorithm S-P to G 
results in a link graph. Therefore, G is a planar graph. 
To obtain a map of G it is necessary to save enough 
information so that one may retrace the steps of Algorithm 
S-P. 

We form two graphs J’ and K’ by adding a new edge 
between the vertices u and v in J and K, respectively. 
Let e be some element not belonging to E(J) U E(K). 
Then J’ is defined as 

1) V(J+) = V(J), 
2) E(J’) = E(J) U {e), and 

Link graphs and loop graphs consist of single edges 
and it might well be asked if there are graphs in x con- 
sisting of two edges, three edges, etc. It is not too difficult 
to show that every member of x is a nonseparable graph 
and it follows from this that, besides the link graphs 
and loop graphs, every graph in X must contain at least 
six edges. To see this one can merely enumerate all graphs 
on five edges or less and check that, except for the link 
graph and the loop graph, none of these can be a member 
of x on the grounds that either the graph is separable 
or the graph contains a series or a parallel edge. The 
wheel of order 3 is a nonseparable graph on six edges 
that can qualify as a member of X. It is also not difficult 
to see that the wheel of order 3 is the only graph on 
six edges that can qualify as a member of X. Therefore 
we have the following result. 

3) the ends of the members of E(J) in J’ are the 
same as in J and v and u are the ends of e in J’. 

The element e is added to K in the same manner to 
form K’. It has been shown by Mac Lane [4] that the 
graph H is planar if and only if J’ and K’ are planar 
graphs. This splitting process is a basic step in Algorithm 
Planar. 

Theorem 9 

Let H be a nonseparable graph. Suppose H is split 
into two graphs J’ and K+ as described above. Then H 
is planar if and only if J+ and K’ are planar graphs. 

Theorem 8 

Let Hi be a member of X and suppose that Hi is not 
a link graph or a loop graph. Then Hi is a graph on at 
least six edges. Moreover, if Hi is on exactly six edges, 
then Hi is the wheel of order 3. 

Since H is nonseparable, both J’ and K’ are non- 
separable graphs. However, it is possible that J’ and 
K’ contain series or parallel edges as a result of the 
splitting process. Therefore, the next step is the application 
of Algorithm S-P to J’ and K’. The resultant graphs 
are nonseparable and without series or parallel edges. 
It should be clear now that the splitting process can 
again be applied to these new graphs in order to reduce 
the size of our test still further. 

The main thrust of Algorithm Planar will be to deter- 
mine if the members of x., which are on at least six 
edges, are planar. Let H be a member of X satisfving 

The process of alternately splitting graphs and applying 
Algorithm S-P beginning with the graph H results, 
in general, in a set of graphs that are either link graphs 
or simple, triply connected graphs. The graph H is a 

- , .I a planar graph if and only if the resulting simple, triply 



BRUNO et cd: PLANARITY TEST BASED ON %CONNECTIVITY 205 

ALGORITHM P 

pi 

Fig. 10. Flowchart of Algodhm Planar. 

connected graphs are planar. Thus we have the essential 
steps in Algorithm Planar. The idea is simply to keep 
splitting the graph H and applying Algorithm S-P in 
order to reduce the problem of determining whether 
or not H is planar to the problem of determining whether 
or not a derived set of simple, triply connected graphs 
is planar. Mac Lane [4] has described the above splitting 
process in some detail and has employed this technique 
in counting the number of maps of a nonseparable graph. 
We conclude this section with a formal presentation 
of the Algorithm Planar. (See Fig. 10.) 

Algorithm Planar: Planarity Test for any Graph G 

Let G be an arbitrary graph, Apply the initialization 
of Algorithm Planar to graph G obtaining the set 

x = (H,, ... , H,). 

Set L = 1 and go to-step 1. 
Step 1 [Check for a link graph or a loop graph]: If 

H, is a link graph or a loop graph set k t k + 1 and go 
to step 5. Otherwise set 0 t {Hk) and go to step 2. 

Step 2 [Pick. a new graph from 01: If 0 = d, set k t k + 1 

and go to step 5. Otherwise, pick some member of 0 
and designate this member by H. Set o +- o - {H}. If 
H is a link graph, go to step 2. Otherwise go to step 3. 

Step 3 [Apply Algorithm Planar]: If H is not triply 
connected go to step 4. Otherwise apply Algorithm P 
and if H is planar go to step 2. If H is nonplanar, then G 
is nonplanar and therefore, terminate the algorithm. 

Step 4 [Find a 5 separator]: Let {J, K) be a 2 separator 
for H and form J’ and K’ as described above. Set 

OcOU (J’, K*) 

and go to step 2. 
Step 5 [Terminate algorithm if k > m]: If k > m, 

G is a planar graph and therefore terminate the algorithm. 
Otherwise go to step 1. 

VII. DESCRIPTION OF A COMPUTER PROGRAM 

Algorithm Planar was programmed in Fortran IV 
and run on the IBM 360/65 computer. There is no room 
here to present the complet,e program, and we shall 
discuss only the important features of the implementation. 

Most crucial is the algorithm for finding the connectivity 
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(b) 

El 

(d) 

(4 
Fig. 11. A 2%vertex planar example. (a) Original graph. (b) Result 

of first split. (c) Result of second split. (d) A reduction sequence 
for each of the S-vertex graphs in (c). (e) A typical step in the 
reduction sequence for the 16-vertex graph in (c), showing the 
operation G cl e. 

between a given pair of vertices; that is, the number 
of node disjoint paths that exist between them. This 
is used to find a reduction sequence in Algorithm R, 
to test triple connectivity in step 3, and to find the 2 
separator in step 4. The labeling algorithm of Frisch [6] 
was used for this purpose, together with the economies 
described in [7]. A complete test for triple connectivity 
requires only 3n-6 applications of the labeling algorithm, 
where n is the number of vertices, and is used after 
each (cl) operation in obtaining a reduction sequence 
in Algorithm R. To test triple connectivity after each 
(op) operation, it is only necessary to apply the labeling 
algorithm once, between the two vertices that were 
previously adjacent before the (op) operation. The 
labeling algorithm is also used to identify 2 separators 
in the splitting process. The fact that only 3n-6 con- 
nectivity tests are required to determine triple con- 
nectivity, as opposed to the naive application of e) 
tests, greatly speeds up Algorithm R. 
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In order to perform the (cl)-’ operation, it is necessary 
to know which edges were connected to vertex vL and 
which to VR. Saving such information during the reduction 
process would entail too much storage space. Instead, 
the following method was used. A list that recorded 
the sequence of (cl) and (op) operations used during 
the reduction process was kept. When a (cl)-’ is to be 
performed, the preceding graph in the reduction sequence 
is reconstructed by performing all the (cl) and (op) 
operations leading to the desired graph. This takes much 
less time than the original reduction process, since no 
connectivity tests are required. This device is called a 
“quick collapse,” and trades a relatively small amount 
of computer time for a large amount of storage. 

Fig. 11 shows a 28-node planar graph that was run 
as an example. Execution time was about one-half 
minute on the IBM 360/65 computer, including time 
for printing intermediate steps. Note that as a result 
of the splitting process, the testing of a large graph is 
quite naturally broken down into a series of tests on a 
set of much smaller graphs, these graphs being a set of 
simple, triply connected graphs. 
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