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Phase Unwrapping by Factorization

KENNETH STEIGLITZ, FELLOW, IEEE, AND BRADLEY DICKINSON, MEMBER, 1EEE

Abstract—An algorithm for the numerical factorization of very high
degree but well-conditioned polynomials is developed. This is used to
factor the z-transform of finite-length signals, and the zeros are used to
calculate the unwrapped phase. The method has been tested on signals

up to 512 points in length. A complete Fortran77 program is given for -

the case of a real-valued signal,

Two related analytical issues are treated. First, the interpretation of
phase unwrapping as an interpolation problem is discussed. Second, an
explanation is given for the observed numerical difficulties in the method
of phase unwrapping using adaptive integration of the phase derivative.
The trouble is due to the clustering of the zeros of high degree poly-
nomials near the unit circle.

I. INTRODUCTION

N a number of signal processing applications, the task of
Iphase unwrapping, namely, the determination of the argu-
ment of a signal’s transform, must be performed. A widely
used algorithm for this purpose, due to Tribolet [1], is based
on adaptive integration of the phase derivative, The FFT al-
gorithm is used to evaluate the phase derivative on a grid of
points on the unit circle in the complex plane. The grid is suf-
ficiently fine to (presumably) allow the correct integrated
value to be obtained. However, there is no certainty that a
finer subdivision will not change the answer. (An interesting
new algorithm described by McGowan and Kuc [15] is based
on a noniterative method, but its computational practicality
on realistically large examples has not yet been established.)

The difficulty encountered by Tribolet’s algorithm can be
attributed to the presence of zeros in the signal transform near
the unit circle, and we will argue that as the signal length in-
creases, it becomes more and more likely that such zeros ap-
pear. In the context of evaluating the complex cepstrum of a
signal, we proposed to use numerical factorization of the asso-
ciated polynomial (essentially the z-transform) to evaluate un-
wrapped phase [2]. The computation of unwrapped phase
may be performed easily and accurately given the roots of the
polynomial, so our main effort is directed toward an appropri-
ate algorithm for factoring high degree polynomials to the
limit of machine accuracy. Ultimately, the success or failure
of a phase unwrapping algorithm will depend on its ability to
place a root inside or outside the unit circle, and we therefore
attack directly the problem of determining a root’s position.

Most literature dealing with numerical factorization of poly-

nomials places great emphasis on the difficulties caused by ill -
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conditioning. A principal source of ;oor conditioning is the
clustering of roots, but this is far from the only possibility.
Wilkinson [3, ch. 2] presents a comprehensive overview of the
numerical analysis of polynomials. It has been our experience
that the polynomials determined by the z-transforms of finite
records of signals are almost always adequately conditioned.
This agrees with the observation in [3, p. 47] that polynomials
with complex zeros arising in practice generally have well-con-
ditioned zeros. As another example, in their empirical study
of techniques for finding the zeros of linear phase FIR digital
filter transfer functions, Schmidt and Rabiner {4] found that
class of polynomials to have well-conditioned zeros.

(Analogously, 18th and even 24th order linear prediction
polynomials are routinely implemented in direct form without
numerical difficulties even though recursive filters—especially
narrow-band varieties—may require extraordinary coefficient
accuracy in such implementations [S]. The linear prediction
filters are “nice” in the sense that their poles are well spread
out in angle in the z-plane.)

In this paper, we first develop a numerical factorization al-
gorithm for high-degree polynomials and give some examples
of its application to phase unwrapping. We then take up two
related theoretical topics. An interpretation of phase unwrap-
ping as an interpolation problem is presented, and we show
that Tribolet’s, algorithm, based on a sufficiently fine grid,
yields the same unwrapped phase function as one based on fac-
torization.  Finally, we give a theoretical explanation of the
observed clustering of polynomial zeros near the unit circle in
the z-plane.

II. OUTLINE OF THE ALGORITHM

Our philosophy in constructing a factorization algorithm
useful for our special purposes is as follows: We largely ignore
the problems which usually absorb the attention of most root-
solvers—the treatment of repeated roots and saddle points—on
the grounds that severe instances of these problems are very
rare and can be circumvented by perturbing the problem
slightly. (For a discussion of the problems of testing root-find-
ers see [13]. For examples of such programs, see its references,
and [14].) On the other hand, we give very careful attention
to over- and underflow problems, which are unavoidable when
dealing with polynomials of degree 250 or 500, say. Our goal
is to produce an algorithm that is not necessarily efficient, but
is easy to use and very robust with respect to over- and under-
flow problems, and therefore can deal with very high degree
polynomials.

Fig. 1 shows the an informal outline of the algorithm, which
is based on the quadratically convergent Newton-Raphson
method. The iteration kernel is therefore
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INFORMAL DESCRIPTION OF
PROGRAM DPROOT

initialize kount := 0
m := mm (=original degree of polynomial)
(beginning of main loop)
10: if m < 0, we are done, return
let z be a point on unit circle at angle kount
ktry=0
rl := amin**(1/m)
r2 := amax**(1/m)
(m is current degree of polynomial)
(beginning of inner loop)
20: if |z| < rl1 or|z] > r2, go to restart
if ktry = ktrym, go to restart
ktry :=ktry + 1
if kount > kmax, exit with error message
kount := kount + 1

p := f(2)
if [p| > amax, go to restart
pp := df(z)/dz

if |[pp! < amin, go to restart
if |p| <= & go to deflate
z:=2z-p/pp
go to 20
(end of innner loop)
(end of main loop)

300: restart
let z be a point on the unit circle at angle kount
ktry :=0 :
go to20

500: deflate
polish z in original polynomial to get root w
stop polishing and deflate if w leaves original annulus
stop polishing and deflate after kpolm tries
go to restart if jp| > amax or |pp} < amin
501: deflate current polynomial using z; m := m-1 or m-2
goto 10

Fig. 1. Outline of the root-solver subroutine dproot in an informal
language. The statement labels correspond to statement numbers in
the Fortran77 program.

2z~ f2)If'(z)

where f is the polynomial. As is standard practice in root solv-
ing, after a root z is found, we go back to the original poly-
nomial and “polish” it, refining it by Newton-Raphson itera-
tions using the original polynomial to get the declared root w.
The current reduced-order polynomial is then deflated (by z
and not w, more about this in the next section). The main

_structure of the program consists of two nested loops: The
outer one counts the number of roots found, and the inner
one searches for a root using the Newton-Raphson iteration
on the current (deflated) polynomial.

The two main interuptions in the main loops are shown at
the bottom of Fig. 1. The first is the restart section, which
can be reached from several points in the algorithm. Whenever
(1) we have reached a point where an over- or underflow con-
dition is likely, or (2) the number of Newton-Raphson itera-
tions in the inside iteration loop.from the current starting
point (ktry) exceeds a preset limit (ktrym), we restart the iter-
ation from a new point on the unit circle. The new starting
point is determined simply by

zee V-1 *kount

where kount is the total number of iterations so far. Thus, no
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starting point is ever repeated. The second interruption of the
main nested loops occurs at convergence to a root, and is
shown in the deflate section.

Synthetic division using complex arithmetic is used to eval-
uate the polynomial and its derivative, and double precision
complex arithmetic is used throughout. When a complex root
is found, its conjugate is also extracted. (The case of complex
coefficients is discussed later.)

HI. NUMERICAL CONSIDERATIONS
It is clearly very important in dealing with high degree poly-
nomials to keep close to the unit circle. We do this by first de-
fining the “large” number amax, and the “small”” number amin;
these numbers should fit very easily in a computer word and

not cause over- or underflow. In our case (64-bit double-preci-
sion words) we have used

~ amax =2%
and
 amin = 1/amax.

We then demand that the current candidate root z be within
the annulus defined by

amin'/™ < |z| < amax!/™

where m is the current degree of the polynomial. Thus, the
annulus expands as the polynomial decreases in degree, allow-
ing the search for roots far from the unit circle only when the
degree is low. The iterations during the polishing phase are
done only within the original annulus, and we might therefore
mistakenly reject valid roots far from the unit circle by restart-
ing. To avoid this, we do not restart if the root leaves the an-
nulus during polishing, but only if the magnitude of f(z) or
f'(z) violates our tests. :

We also require that the values of the polynomial and its
derivative satisfy -

|7} < amax and |f’| > amin.

By this means overflow is prevented during the Newton-Raph-
son iteration step in which f is divided by f".

The reason why we deflate by the *“unpolished’ root z, and
not by w, is really simple. As we deflate, the roots of our cur-
rent polynomial will drift (hopefully slightly) from those of
our original polynomial. The polished roots will therefore
tend to differ more and more from the roots of the current
polynomial, and deflating by the polished root will mean ex-
tracting a relatively incorrect root. On the other hand, if we
do not drift too much, each root of the current polynomial
will be close enough to a root of the original to be “captured”
by it, and the second-order convergence of Newton-Raphson
will allow the polishing to take place to full precision in a few
iterations—usually 1 or 2 in our experience. For some further
discussion of deflation and polishing, see {3, p. 55-67].

In iterative algorithms of this sort it is always necessary to
specify the tolerance used to determine convergence, the vari-
able €. We have been careful to base the operation of the en-
tire algorithm on the one parameter e (possibly with some sac-
rifice in overall efficiency that might be obtained by “tuning”
¢ at different places in the algorithm). In general, if € is too
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large, the roots found will simply not be accurate enough. On
the other hand if € is too small the algorithm will take too long
to converge (or not converge at all). Thus there is usually a
range of values of ¢ for which the algorithm will work well.
Within this range the results seem to be quite insensitive to the
particular value of ¢, but the range will depend in general on
the class of polynomials being worked on. For example, in the
511-degree example discussed below, the algorithm worked
well in the range ‘

1078 <e< 1078

on a machine with 64-bit double-precision real numbers, the
VAX 11/750.

Besides € we also must specify the maximum number of
Newton-Raphson iterations per start before restarting (ktrym),
the maximum number of such iterations for polishing before
the polishing attempt is abandoned (kpolm), and the total
number of iterations before we quit entirely (kmax). We have
been successful with the choices

kmax=Q  m
ktrym = kpolm = Q

where m is the degree of the original polynomial, and Q = 20
for the program that factors polynomials with real coefficients,
and Q = 40 for the complex polynomial program. '

There are several ways of checking the operation of the pro-
gram. First, we can simply substitute the value of each root
back into the original polynomial and verify that this residual
value is small. Extreme care must be exercised here in dealing
with roots far from the unit circle, however. These roots have
necessarily been found near the end of the algorithm, when
the polynomial has been deflated to low degree, and substitu-
tion in the original polynomial of high degree will very often
cause overflow. For this reason, the residual value calculation
is skipped when the root lies outside the annulus corresponding
to the actual, original, degree of the polynomial. The largest
residual value among the roots tested is reported.

Another test of the program operation is to compare the
principal value of the phase computed from the root positions
with that obtained from the FFT. This test is not included in
the programs given here, but has been tried in several cases of
degree 127 with better than 10-place agreement.

Yet another test is of course to factor a polynomial with
some or all known roots. For example, the polynomial

p(z)=2z"-1

has well-conditioned zeros [3, p. 46], and is very easy to fac-
tor, the zeros being nicely spread out and on the unit circle.
Many similar examples have been tried, including some with
almost repeated roots. Such examples can easily provide cases
in which our program fails; the cube of the polynomial above
with n =100, for example, should stop any root solver in its
tracks. We repeat: Our goal is not to factor the most difficult
polynomials, but only the average ones, which constitute those
'we are likely to meet as signals.
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IV. DESCRIPTION OF THE PROGRAM

Fig. 2 shows Fortran77 source code for the real-coefficient
version of the program. (Note that we compute the phase of a
polynomial with ascending, positive powers of z.) The program
consists of three parts: 1) A main program that calls sus-
ROUTINE FACTOR, and then computes the unwrapped phase
from the returned root positions; 2) SUBROUTINE FACTOR
that calls the actual root-finder DPROOT and then finds the

_residual values at the roots, the largest and smallest radii, and

the smallest distance of a root from the unit circle; and 3)
DPROOT, the root-finder itself. As mentioned above, all the
arithmetic is carried out in double precision (real or complex).
An effort has been made to write the program to be as portable
as possible—for example, the code
z = dcos(rkount) + jay * dsin(rkount)

is used instead of using a complex exponential function, The
functions DREAL and DCOMPLEX are not used.

Input/output always presents a portability problem. The
particular version of the program given here was run under the
UNIX operating system, and four files were used: File 0 for
screen output during runs, file 1 for teletype input during runs,
file 5 for standard input (usually piped from another program),
and file 6 for standard output (usually piped to another pro-
gram). For simplicity, all arrays are assumed complex, a lux-
ury made possible by the fact that storage requirements are
modest. Furthermore, the i/o is labeled. Input coefficients
and output unwrapped phase are labeled with the character
“#,” and output radii (for making histograms of radii, for ex-
ample) are labeled with a “*.” The user will no doubt want to
use his own i/o conventions.

V. COMMENTS ON THE CASE OF COMPLEX COEFFICIENTS

We mention here the changes that are necessary to allow the
polynomial to have complex-valued coefficients. Obviously,
we need to use real arrays for the coefficients in the one case,
and complex arrays in the other. In the real case, zeros occur
in conjugate pairs, and some code is necessary to distinguish
between real and complex roots. This distinction is not neces-
sary in the complex case, so in this sense the complex-coeffi-
cient version of the program is simpler. However, the phase
function is odd-symmetric in the real-coefficient case, and not
in the complex, so that the actual computation of the un-
wrapped phase from the zero locations is more complicated in
the complex case, where the calculation can be broken down
into 8 cases, depending on where the zero is with respect to
the real axis and the unit circle.

VI. EXAMPLES

The first example is physically generated; it was provided to
us by Dr. Michael A. Rodriguez [10]. The signalisa 128-point
Hamming-windowed sample of an electroencephalogram re-
sulting from a sudden visual stimulus. (For a discussion of de-
lay estimation in visual evoked potentials using unwrapped
phase, see [11].) The algorithm used 1503 iterations (118
per root), and 38 restarts with e=10"!3, The unwrapped
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factors real polynomial and finds phase function:

sigma coefI(i)*z**(i-1), i=1.k4

the coefficients are in ascending order, are not normalized

implicit double precision (a-h, o-z)
signal length<=1024
double complex z(1024),jay
double precision y(1024),rootr(1023),rooti{1023)
jay=(0.40,1.40)
open a flle for tty input
open(1.file='/dev/tty’)
pi=4.d0*datean2(1.d0,1.d0)
tpi=2.d0*pi
call input(k4,z)
~ite(0,1800)k4
.. crnat('executing phaser with k4= ',i4)
do 1601 ii=1,k4
y(ii)=z(ii)
find out if we want to suppress printing
write(0,1667)
format('type O/return to suppress printing')
read(1,1668)kk
format(i1)
kprint=1
if(kk.eq.0)kprint=0
call factor(y.k4,rootr,rooti,kinsid kprint)
write(0,918)kinsid
format('there are',i5,'roots inside the unit circle’)
get npts, number of phase points desired
write(0,1615)
format('type npts, number of phase points desired’)
read(1,1614)npts
format(i4)
arg is phase of coefT(k4)
partr=y(k4)
parti=-jay*y(k4)
arg=datan2(parti, partr)
do 803 k=1,npts
Z i8 point on umt cu‘cle
reali=k-1
real2=npts-1
freq=pi*reall/real2
zr=dcos(treq)
zi=dsin(freq)
sum=arg
k4m=k4-1
do 901 j=1,k4m
w is root
wi=rooti(j)
wr=rootr(j)
r2=wi**2+wr**2
phi=datan2(zi-wi,zr-wr)
if(zr.ge. wr)gotoB01
if(zi.lt.wi .and. r2.1t.1.d0)phi=phi+tpi

_if(zi.ge.wi .and. r2.gt.1.d0 .and. wi.gt.0.d0)phi=phi-tpi

sum=sum+phi
2(k)=sum
call output(npts,z)
stop
end
subroutine factor{b,k4,rootr,rooti kinsid kprint)
sets up problem, calls dproot,
and checks residual values at roots
implicit double precision (a-h,0-z)
double complex z.res,jay
double precision b(1).rootr(1).rooti{1),coe(1024)
jay=(0.d0,1.40)
pi=4.d0*datan2(1.40,1.d0)
do 550 i=1,k4
coe(i)=b(i)
k4m=k4-1
call dproot{k4m,coe,rootr,rooti kerr kprint)
write(0,800)kerr
format(’ return from dproot with kerr=",i5)
if(kerr.gt.0)stop
kinsid=0
resmax=0.d0
rmax=0.d0
rmin=2.40**(32)
dist=2.d0**(32)
mark radii with '*
write(8,1000)k4m

1000

1001

712

711

705

713

701

702

703
704

o000

700

987

format('* /i4)
amax=2.40**(32)
r2=amax**(1.d0/k4)
do 701 j=1,k4m
z=rootr(j)+jay*rooti(j)
r=dsqrt(rootr(j)**2+rooti(j)**2)
write(6,1001)r
format(d=20.10)

skip residue calculation if root is too big
if(r.1t.r2)goto711
write(0,712)r
format('skipping residue calculation at this root, r='d20.10)
goto 7183
res=b(k4)
do 705 k=2 k4
res=res*z+b(ké-k+1)
partr=res
parti=-jay*res
resmag=dsqrt(partr**2+parti**2)
if(resmax.le.resmag)resmax=resmag
if(kprint.eq.1)write(0,702)r resmag
if(rmax.lt.r)rmax=r
if(rmin.gt.r)rmin=r
if(r.1t.1.d0)kinsid =kinsid+1
distr=dabs(r-1.40)
if(dist.gt.distr)dist =distr

continue
format(’ r= ',d20.10," res= ',d20.10)
write(0,703)resmax

write(0,704)rmax,rmin,dist
format(‘resmax= ',d20.10)
format(‘'rmax= ‘,d20.10/'rmin= ',d20.10/'dist=",d20.10) -
return
end
subroutine dproot(mm,a,rootr,rooti, kerr kprint)
mm=degree of polynomial
a=coeflicient array, lowest to highest degree
kprint=1 for full printing
kerr=0 is normal return
implicit double precision {a-h,o-z)
double complex b(1024),c(1024).p.pp.z. W,
‘double complex bb(1024),cc(1024).jay
double precision a(1),rootr(1),rooti(1)
double precision save(1024)
jay={0.d0,1.d0)
mmp=mm+1
m=mm
mp=mmp
do 700 i=1,mp
save(i)=a(i)
kount is number of iterations so far
kount=0
kmax is maximum total number of iterations allowed
kmax =20*m
newst is number of re-starts
newst=0
ktrym is number of attempted iterations before re-starting
ktrym=20
kpolm is number of attempted iterations before polishing is stoppec
kpolm=20
amax is the largest number we allow
amax=2.d0**(32)
amin=1.d0/amax
rrl and rr2 are radii within which we work for polishing
rri=amin**(1.d0/m)
rr2=amax**(1.d0/m)
eps is a tolerance for convergence
eps=1.d-13
sqteps=dsqrt(eps)
main loop; m is current degree
if(m.le.0)goto200
new 2, a point on the unit circle
rkount=kount
z-dcos(rkount)+Jay’ds1n(rkount)
ktry=0
r1 and r2 are boundaries of an expanding annulus within which we w
ri=amin**(1.40/m)
r2=amax**(1.d0/m)
inside loop

Fig. 2. Fortran77 source program for phase unwrapping. The param-
eter “‘eps” is fixed at 10713, but should be adjusted for a particular

application.
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20

30

776

775

530

560

partr=z
parti=-jay*z
size=dsqrt(partr**2+parti**2)
if(size.lt.r} .or. size.gt.r2)goto300
it{ktry.ge.ktrym)goto300
ktry=ktry+1
if(kount.ge.kmax)goto400
kount=kount+1
get value of polynomial at z, synthetic division
b(mp)=a(mp)
do30j=1.m
kem-j+1
b(k)=2*b(k+1)+a(k)
p=b(1)
partr=p
parti=-jay®p
if(dsqrt(partr**2+parti**2).gt.amax)goto300
get value of derivative at z, synthetic division
¢(mp)=b{mp) :
mdec=m-1
do 60 j=1,mdec
k=m-j+1
e{k)=z*c(k+1)+b(k)
pp=c(2)
partr=pp
parti=-jay*pp
if(dsqrt(partr"2+partl"2).It.amin)gotoaoo
‘test for convergence
partr=p
parti=-jay '
size=dsqrt(partr**2+parti**2)
if(size.gt.eps)goto775
nroot=mm-+m+1
it{kprint.eq.1)write(0,776)kount.nroot
format('kount=",i5," root no.=",i5)
goto500
continue
=2-p/pp
goto20
end of main loop

normal return
kerr=0
goto800
new start
rkount=kount
z=dcos{rkount)+jay*dsin(rkount)
ktry=0
newst=newst+1
goto20

too many iterations
kerr=400
gotoB00
root z located
polish zto get w
w=z
kpol=0
partrsw
parti=-jay*w
size=dsqrt(partr**2+parti**2)
give up polishing if w is outside annulus
if(size.lt.rr1 .or. size.gt.rr2)goto501
give up polishing if kpol>=kpolm
if{kpol.ge. kpolm)goto501
kpol=kpol+1
if{kount.ge.kmax)goto400
kount=kount+1
bb{mmp)=save(mmp)
do 530 j=1,mm
=mm-j+1
bb(k)=w*bb(k+1)+save(k)
p=bb(1)
partr=p
parti=-jay*p .
if(dsqrt(partr*>2+parti**2).gt.amax)goto300
cc(mmp)=bb(mmp)
mdec=mm-1 -
do 560 j=1,mdec -
k=mm-j+1
ce(k)=wroc(k+1)+bb(k) .
pp=cc(2)
partr=pp

100

110

130

150
151

10
1000

1001
1003 -

Fig. 2. (Continued.)

parti=-jay*pp .
if(dsqrt(partr®*2+parti**2).It amin)goto300
partr=p
parti=-jay*p
size=dsqrt(partr**2+parti**2)

test for convergence of polishing
if(size.le.eps)goto501
w=w-p/pp
goto510

deflate
b(mp)=a(mp)
do 830 j=1,m
k=m-j+1 :
b(k)=z*b(k+1)+a(k)
p=b(1)

rootr(m)=w
rooti(m)=-jay*w
m=m-1
mp=mp-1
parti=-jay*w
it(dabs(parti).gt.sqteps)goto140
real root

rooti(m+1)=0.d0
do 100 j=1,mp
a())=b(j+1)
gotol0

complex root
partr=z .
parti=-jay*z
2=partr-jay*parti -

. ¢(mp)=b{mp-1)
do 110 j=1,m
k=m-j+1
c(k)=z*c(k+1)+b(k+1)
rootr(m)=w
rooti(m)=-(-jay*w)
m=m-1
mp=mp-1
do 130 j=1,mp
a(j)=c(j+1).
goto10

report and return

reall=kount
real2=mm
temp=reall /real2
write(0, 150)kount, temp
format(’ kount=",110,’ kount/root=",115.5)
write(0,151)newst, kerr
format(’ new starts='i10,” kerr<',i10)
return ¢
end

subroutine input(nc,y)

double complex y(1)

character z,z1
¥ 21

data zl/'#'/
default options

ne=1

¥(1)=(0.d0,0.d0)

read(5,1000,end=50)z -

format(a1)

i#(z.eq.z1)goto1

gotol10

read(5,1001)nec

read(5,1008)(y(i).ii=1,nc)

gotoll .

format(i4)

format(2d20.10)

return

end

number of complex poirits, nc and y

subroutine output (nc,y)
double complex y(1)
write(8,1007)nc, (y(ii).ii=1,nc)
format('# /i4/(2d20.10))
return

end
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Fig. 3.

Unwrapped phase for example 1, a 128-point electroencepha-

~ logram signal. The linear component has been removed.

phase function with the linear component removed is shown in
Fig. 3. The apparent jumps are not malfunctions of the pro-
gram; they are in fact caused by zeros near the unit circle, and
can be correlated with the angular position of those roots. The
smallest distance of a root from the unit circle is 0.98e -3.

We next generated a 512-point signal using the random num-
ber generator UNI [12] with seeds 12345 and 23456. The sig-
nal values were taken to be 2.0* [ran -0.5], and were there-
fore uniformly distributed between -1.0 and +1.0. The 511th
order polynomial was factored on the VAX 11/750 in about
13 minutes, using 5737 iterations (11.2 per root) with
€ =103, (A problem of the same size took about 13 seconds
on the IBM 3033, FORTH compiler.) There were 177 restarts,
and the smallest distance of a root from the unit circle was
0.54e-5. A plot showing the position of the roots is shown in
Fig. 4; the clustering at radius 1 is quite pronounced.

Finally, we factored the polynomial formed from the DFT
of the N = 128-point complex-valued signal

(k)= (1 + cos(1.4 *k »2n/N)) e V-1 *2-52k*27IN
fork=0,---,127
using a version of the program modified for complex coeffi-
cients. If F(i) is the DFT of f(k), f(k) is a polynomial whose
coefficients are F(i)/N, and the phase of the DFT is in fact the
phase of the complex signal f(k) itself, as a function of the
time variable k.

This signal is a complex exponential modulated by an enve-
lope that actually becomes zero at some point—we might say it
is a “fading” signal. (See [7], [8] for an example where such a
phenomenon arises in ocean acoustics.) Fig. 5 shows the cal-
culated unwrapped phase at the 128 time points (connected
by straight lines); except for two features it is precisely linear.
When the envelope approaches zero the complex-valued signal
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Fig. 4. The 511 roots for example 2, a 512-point signal.

approaches the origin in the complex plane, and the unwrapped
phase suddenly changes rapidly in the vicinity of this point, as
can be seen from the figure. What actually happens in this re-
gion is that the unwrapped phase increases by an extra 2 at

-several successive sample points, and this is caused by the in-

terpolated continuous phase curve oscillating in the region near
the origin and encircling the origin between sample points. The
same phenomenon occurs near the end of the time interval, at
which point the phase must be made to meet the phase at the




IEEE TRANSACTIONS ON ACOUS’!‘!CS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-30, NO. 6, DECEMBER 1982

990
100 ﬂ_’J/
/
"
F
<
-3
z
W
0
-4
Z
° 0 v so oo
-
o( -x= 150 -50 -y- 150

SAMPLE NUMBER
Fig. 5. Unwrapped phase for examplé 3, a complex signal modulated by a fading envelope.

beginning of the time interval in principal value. When the
phase function is evaluated between the discrete time points, a
continuous phase function results which ripples slightly between
the points shown. The next section will take up the question
of precisely what continuous function results from our phase
calculation.

VIL. PHASE UNWRAPPING AS INTERPOLATION

In the definition of the phase unwrapping problem [6}, a real
signal {x, 0 < k <o} having a z-transform X (2) with no poles
or zeros on the unit circle in the z-plane, is given. The function
O(w) =arg (X(¢/“’)) may then be uniquely defined in such a
way that ©(w) is continuous and odd on [-m, #]. By phase

.unwrapping we mean the determination of 6(w) from {x; }.

For signals which are finite in extent, so that X is a poly-
nominal in z™!, the principal value of the phase function (w)
at any sufficiently fine uniform grid of points on [-7,1] may
be obtained from the DFT. However, the determination of the
correct multiple of 2« to be added to the principal value in order
to give the actual values of the phase of the signal at these points
is of course not trivial. ‘

By assuming that the z-transform of the signal is a polynomial,
Wwe are assuming that the phase of the signal at any point
zg=e/“o may be obtained from the zeros of the polynomial
according to well-defined rules. In essence, we are assuming
that the phase function is an interpolant of the known princi-
pal value function from a restricted class of functions: Namely
the phase functions of finite signals.

It is clear that Tribolet’s adaptive integration technique for -
phase unwrapping generates interpolants from this class. How-
ever, because it is not possible to bound the phase derivative
without restricting the class even further, it is not possible to
set an upper bound on the number of grid points on [-,x]
which may be required to get correct phase functions. But we
can say that for sufficiently fine grid size, the result of Tribolet’s
method will coincide with that obtained by factorization (ig-
noring numerical error).

VII. AsympTOTIC THEORY OF ZERO DISTRIBUTION

By introducing a suitable mathematical model, we developa
theoretical justification of the empirically observed distribution
of zeros of high order polynomials associated with finite sig-
nals. To avoid technicalities arising from existence of real roots
of polynomials with real coefficients, we assume complex-
valued signals and thus polynomials with complex coefficients.

As a tentative signal model, we may propose a sequence of
identically distributed, independent random variables. With
mild conditions on the underlying distribution function, the
asymptotic distribution of the roots of the polynomial

p@=3 a7’
i=0

may be characterized as follows [9]. Let N, (8,,9;,p)be the

number of zeros of p(z) in the region v
[0<9, <9, <2, 1- n " < o] < I4n~",0<r <1},
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Then, with probability one
lim,, - .,.N" (0] ,192,p)/n
= (192 - 191)/21I’.

This is a very strong result: It indicates that the roots of a
“random polynomial” tend to be evenly distributed in angle
and tightly clustered near the unit circle as the degree of the
polynomial increases. (Recall Fig. 4.) However, the indepen-
dence condition corresponds to assuming a white-noise signal,
which is unrealistic. '

A more appealing signal model is the output signat of a fixed
white-noise-excited FIR filter, which introduces the appropri-
ate correlation or spectral structure. Since the filtering adds
only a fixed (asymptotically negligible) number of zeros to the
output’s z-transform, we may still use the white-noise result on
distribution of zeros to justify the empirically observed distri-
‘bution illustrated by the examples presented earlier.

The theoretical result also suggests that the general approach
to phase unwrapping taken by Tribolet will require increasingly
fine grid sizes, and hence increasing FFT lengths, as the number
of signal points grows, simply because the zeros of the poly-
nomial are squeezed closer to the unit circle. Indeed, storage
requirements seem to be a limiting consideration in phase un-
wrapping by adaptive integration using small computers.

IX. CONCLUSIONS

We have described a method for computing unwrapped phase
that seems to be reliable and accurate. It is, however, fairly
expensive on problems of realistic size. Experiénce has shown
that the number of iterations per root is almost constant, in-

dependent of the signal length n, and each iteration takes time

roughly proportional to n, so that we get a time complexity
approximately 0(n?). Thus, the method is not well-suited to
ondine computation, or high-volume computation, at.least
with today’s technology. On the other hand, the reliability
and accuracy of the method may make it preferable to Tribolet’s
algorithm in certain applications.

We have also explained why the FFT approach necessarily
runs into numerical difficulties: The zeros of a z-transform
tend to cluster near the unit circle as the signal length becomes
large. The phase unwrapping task seems to be inherently dif-
ficult for this reason, and it is unlikely that a really fast solu-
tion to the problem exists (comparable in speed, say, to the
FFT).

Once a signal’s transform has been factored, it may be pos-
sible to perform other operations besides phase unwrapping.
For example, the minimum-phase version of the signal can be
obtained directly by reflecting all zeros with magnitude larger
than unity inside the unit circle. These ideas will be investi-
gated in the future.

Finally, we ought to mention that the phase unwrapping
problem for two-dimensional signals does not seem amenable
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to this approach, since the zeros of two-variable polynomials
do not necessarily occur at isolated points.
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