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Optimal Design of FIR Digital Filters with Monotone
Passband Response
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Abstract—The application of linear programming to the design of
FIR digital filters with constraints on the derivative of the frequency
response is described. Numerical considerations in the implementa-
tion are discussed and a program is given with examples for the design
of filters with optional monotone response in passbands. The method
provides the user with an additional degree of flexibility over the
Remez exchange algorithm.
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1. INTRODUCTION

NE important advantage of linear programming for de-

signing FIR filters [1]-([4], as opposed to the Remez
exchange algorithms [9], is the inherent generality of the
formulation. Rabiner in [2] points out that constraints on
both the frequency and the time response of a filter can be
imposed, and gives an example of a design with constraints
on the step response. In this paper we show the possibility
of adding extra constraints in the frequency domain and apply
the technique to the design of FIR filters whose response in
passbands is constrained to be monotonically decreasing or
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increasing. The approximate design of such monotonic FIR
filters is described in [5]-[8].

We also discuss some important numerical considerations
in the implementation of the revised simplex algorithm for
filter design, such as the resolution of ties in the cases of
degeneracy which arise in this problem, and the choice of
tolerance for sign tests. The design of very high-degree filters
(length greater than 100) can be made faster by using the FFT

The dual of (3) is a linear program in standard form (10},
the form usually used for numerical solution [11]. This dual
has one equality constraint for each of the unconstrained
variables A; and -R in (3), and one nonnegative variable for
each of the inequality constraints in (3), 2NV +2 altogether.
It is usual in these problems to solve the dual by the revised
simplex algorithm [10], which we now outline.

The tableau of the dual is shown below

row 0 0 cosif 2n/N -cos if 2n/N
: i=0,--- ,M-1 i=0,--- ,M-1
rowM-110 ) j=0,---,N/2 i=0,--- N2 | 4)
1 T T
-z G -G < cost row
4

constant column

in the pricing operation, and we describe this idea and give a
timing comparison.

Finally, we give a program and some examples which illus-
trate the additional flexibility allowed by linear programming,.

II. Basic FORMULATION OF THE PROBLEM

We restrict our attention to the case of an odd-length sym-
metric FIR filter, whose frequency response F is

M-1 “2"
Fi= 3 h,cosu—AT

i=0

]'=0,...’N/2 (1)

where M is the number of free coefficients (the number of
variables), 4; are the coefficients, and there are N/2 + 1 grid
points from 0 to  radians/sample. We will usually use a grid
density of 16, by which we mean that N = 16(2M - 1) where
(2M - 1) is the filter length NFILT.

Let C; be the desired frequency response at grid point j and
let T; be the desired tolerance at that point. Then the mini-
max formulation of the design problem is to choose the h;
so that the real number R in

|Fj- G| <RT; j=0,--- ,NJ2 )

is as small as possible. If the minimum value of R is no greater
than 1, then the design achieves the specifications determined
by the C; and T; in a minimax sense. We write the constraints
(2) together with the cost criterion min R as the linear program

max (-R) -

Fi+ CR)T; <G |

-Fi+(-R)T;< -G ’ (3)

wnica we call the primal problem with unconstrained variables
hiyi=0,--- M-1, and -R.

The solution to this program will have at most M + 1 positive
dual variables, each corresponding to a column; and each
positive dual variable and its column will correspond to a con-
straint in (3) which holds with equality. In general, therefore,
the solution response will have M + 1 ripples (but may have
more).

The revised simplex algorithm proceeds at each pivot as
follows (for more details, see [10]):

1) The columns are priced by calculating a relative cost
¢j for each column. If no C; is negative we have reached
optimality; otherwise, the most negative ¢j determines the
column & to enter the basis.

2) Column k is generated by using an m X m inverse-basis
matrix which is carried along from pivot to pivot (array
CARRY in the program).

3) The usual ratio test is used to choose a row I, which
then determines the column which is to leave the basis.

4) The pivoting operation is used to update the inverse-
basis matrix and the shadow prices m;, which are used to
price the columns in Step 1.

We will use the usual two-phase method, where phase 1
is used to obtain a feasible solution to the dual, and phase
2 is used to drive that solution to optimality.

The simplex algorithm thus applied can be viewed as a
“single exchange algorithm,” as mentioned in [9]. That is,
at each pivot one extremum of the frequency response error
(column of the dual) is traded for another. In the Remez
exchange algorithms, all extrema are changed at each iteration,
but such an iteration step may be more time-consuming than
a simplex pivot. In general, however, the Remez algorithms
are faster for the basic minimax problem.

III. AbDITIONAL CONSTRAINTS ON THE
FREQUENCY RESPONSE
Any constraints which are linear in the parameters h;and R
can be added very conveniently. We describe here the intro-
duction of constraints on the derivative of the frequency re-

.




STEIGLITZ: FIR DIGITAL FILTERS WITH MONOTONE PASSBAND RESPONSE

sponse. Equation (1) can be thought of as a function of the
continuous variable w

M-1
Fw)= 3 hicosiw (5
i=0
and therefore,
M-1
gl;%= i;) hy(-isin iw). 6)

Thus, the constraints

s dF(w) <

T (M

can be added to the original set in (3) at any subset of the
points w =2mj/N, j=0,--- Nf2. The effect is to add col-
umns to the dual in (4), but no more rows. The only effect on
the algorithm itself is to increase the number and variety of
columns that need to be priced and that may have to be gen-
erated to enter the basis. In this case the columns are of the
form (¥isin ij 2n/N), and the corresponding entries 7; and G
are zero. It is easy to see, however, how we could add con-
straints of the form

aFw)

dw’ ()

<T(w),

(8

or even more general constraints, in arbitrary regions of the
frequency axis [13]. .

In the program given here we can choose one of (7), or no
derivative constraint at all, in each of the specification bands.

IV. NUMERICAL CONSIDERATIONS

A very important problem that arises in this program stems
from the fact that the original solution at the start of phase 1
in the solution of the dual is highly degenerate —that is, M out
of (M + 1) variables have the value zero, as can be seen from
(4). This implies that there will be many ties in step 3 of
the simplex algorithm, the ratio test. If no care is taken in
resolving these ties, we are doing the equivalent of solving
a set of simultaneous equations using Gauss reduction with
no pivot selection. We found that the following algorithm
works well: from among the rows for which a tie occurs in
the ratio test, choose one that corresponds to the largest
pivot.

There are two important places in the simplex algorithm
where quantities must be tested against zero: in the pricing
operation and in the ratio test. One must choose small num-
bers to use here; if these numbers are too large, valid pivots
will be overlooked and suboptimal solutions produced; if they
are too small, accumulated roundoff errors will induce invalid
pivots. We used double precision arithmetic on an IBM 360
series computer (64 bit floating-point numbers), and we found
that a threshold of EPS = 1078 in both places was reliable. On
some problems with a filter length greater than 100, however,
there tends to be a long “tail” of convergence, and slightly
suboptimal solutions may be obtained. This is typical of such
linear programming applications. '
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TABLE |
SUMMARY OF RESULTS IN EXAMPLE 1

Filter Pivots:

Length Constraints  Time: s Deviation: dB  phase 1  Total
33 none 1.24 ~-15.63/-55.64 25 70
33 monotone in 2.59 -10.05/-50.05 28 101

passband

A good measure of how well phase 1 does is the cost at its
end. In theory, since the artificial variables are all driven out,
we should terminate with z=0. In practice it is usually of
the order of 107!" or smaller in magnitude.

V. EFFICIENCY CONSIDERATIONS —FFT PRICING

The usual care must be exercised to produce reasonable run
times. Thus, tables of cosines and sines are kept for column
generation, and these are filled once at the start of execution.
Also, a logical array KSTAR is kept which tells us when a col-
umn can be skipped in the pricing—either because it doesn’t
correspond to a band constraint we wish to impose, or because
itis in the basis already.

The pricing operation is the most time-consuming part of
the simplex algorithm. It involves computing an inner product
of the current shadow prices with a column, which is either a
cosine or sine vector. Thus, the pricing operation is essen-
tially a cosine or sine transform, and can be accomplished with
an FFT algorithm [12]. The direct method involves oMP)
operations, where P is the number of columns; and FFT pric-
ing involves O(P log P) operations [14]. For sufficiently large
M we would therefore expect FFT pricing to be profitable.
Experiments on the IBM 360/91 computer using Fortran H
show that the break-even point is roughly between NFILT =
65 and 127, with not much difference between the two meth-
ods at these filter lengths. The idea was therefore not used
in the program, but may be attractive when special FFT hard-
ware is available. '

V1. COMPUTATIONAL RESULTS AND EXAMPLES

We will give two design examples, the first simple and the
second more complicated. A grid density of 16 was used
throughout, and the times are for the Fortran H compiler
on an IBM 360/91 computer.

Example 1: This is a straightforward low-pass problem
with the passband from 0 to 128/512 and the stopband
from 152/512 to 1/2. The tolerances were chosen to be 1.0
in the passband and 0.01 in the stopband. The results are sum-
marized in Table I and the response curves are shown in Figs. 1
and 2. As expected, there is a difference of 40 dB between
the deviation in the pass- and stopbands because of the differ-
ence in tolerance. Also, as one might guess, we sacrifice some
rejection for the monotonic response in the passband, in this
case about 5.6 dB. What is surprising, perhaps, is the fact that
the monotone design is very flat over most of the passband,
using most of its slack at the edge of the band closest to the
transition region. This effect can be anticipated in the specifi-
cations, and there is a great deal of freedom available to the
designer in choosing band edges and tolerances.
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Fig. 1. Magnitude frequency response of the conventional design for
Example 1.

-50r

MAGNITUDE RESPONSE IN 0B
>
2

\ A " i o i I "

00 o5 d S 2 .25 3 35 4 45 8

FREQUENCY IN FRACTIONS OF 2 » RADIANS PER SAMPLE

Fig. 2. Magnitude frequency response of the monotone passband
design for Example 1.

For purposes of comparison, the program of [9] took 0.49 s
on the same machine for a design which checks that shown in
Fig. 1. We note also that a length 65 monotone design took
4.59 s, and a length 127 monotone design took 34.81 s.

FExample 2: This is a bandstop specification with a passband
from-0 to 140/512, a stopband from 160/512 to 190/512, and
another passband from 210/512 to 1/2. The tolerances were
chosen to be 1.0 in the passbands, and 0.01 in the stopband, as
before, so that the passband ripple is visible without scale
change on the drawing. The results are summarized in Table 11
and the response curves are shown in Figs. 3 and 4. The re-
sults are entirely as expected, with a sacrifice of about 7.8 dB
rejection for the flat passbands (or an equivalent increase in
filter order). Also as before, there is about a two-fold increase
in execution time with the addition of the derivative con-
straints, caused not by a comparable increase in the number
of pivots, but by the increased cost of pricing.

TABLE 11
SUMMARY OF RESULTS IN EXAMPLE 2

Filter Pivots:
Length Constraints Time:s  Deviation: dB phase 1 Total

6S none 6.89
mono. down
65 [ none 13.73 -22.15/-62.15 47 164
mono. up .

-29.96/-69.96 46 162
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Fig. 3. Magnitude frequency response of the conventional design for
Example 2.
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Fig. 4. Magnitude frequency response of the monotone passband
design for Example 2.

For comparison, the program of [9] took 1.35 s to produce
the same equiripple design as that shown in Fig. 3.

VII. COMMENTS ON THE PROGRAM

The Fortran source is shown in Fig. 5. The program has no
subroutines (besides the user-supplied EXIT and DRAW) and
consists of an initialization segment (up to the comment
“MAIN LOOP”), the main simplex algorithm loop (from there
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INPUT DATA

CARD 1: NFILT= FILTER LENGTH. NFFT=GRID SIZE PARAMETER.
NORMALLY 16sNFILT, NBANDS:=NO. OF BANDS, KMAX= MAX. NO.
OF PIVOTS, IEX 1S EXPONENT OF EPS ( EPS=104+1EX), IPRINT
=1 IF FULL PRINTOUT IS DESIRED

CARD 2: BANDEDGES IN FRACTIONS OF 24Pl

CARD 3: DESIRED VALUES IN BANDS

CARD 4: DESIRED TOLERANCES IN BANDS

CARD 5: MONOTONICITY PARAMETERS OF BANDS: +1 IF MONO.
DECREASING., -1 IF MONO. INCREAS.. 0 IF NO CONSTRAINT

ARRAY INFORMATION

PRESENT DIMS. ARE FOR NFILT=129, NFFT=2048

CARRY IS (MM+2)X(MM+2). WHERE MM= (NFILT+1)/2, NO. OF COEFFS.
ABAR IS (NFILT+1)-DIMENSIONAL

H.COLK ARE MM-DIMENSIONAL

C.D.KSTAR ARE NN-DIM., WHERE NN=3+N22NO. OF COLS.

TOL IS N2-DIMENSIONAL, WHERE N2sN/2

QQ,SLOPE ARE N2-DINM.: TABC,TABS ARE NFFT-DIM.

BASIS 1S M-DIMENSIONAL

D 1S FIRST THE COST IN PHASE 1. THEN PHASE 2

nnnnnnnnnnnnnnnnnnnnnnn

IMPLICIT REAL«8 (A-H,0-2)

LOGICAL PRINT,KSTAR(3075)

INTEGER PHASE,BASIS(66),IFLAT(10)

REAL+8 CARRY(67.67).ABAR(1JO).H(SS).COLK(65).C(JO75).D(3075)
REAL+8 EDGE(20) .FX(10),TOLBAN(10},TOL(1025)

REAL»8 0Q(1025),TABC{2048) . TABS (2048)

REAL«B SLOPE(1025)

NFILT=FILTER LENGTK (ODD)
_NFFT= POWER OF 2 s 2¢{N2-1), N2= # OF GRID POINTS FROM 0 TO PI

aonNnnn

HUGE=1.D32

READ(5.700)NFILT .NFFT.NBANDS , KMAX . IEX. 1PRINT
700 FORMAT(1015)

EPS&10.+0 (IEX)

PRINT= .FALSE.

IF (IPRINT.EQ.7)PRINT=, TRUE.

WRITE(6.705)

705 FORMAT(1H1.70(1Hs}//25X," FINITE IMPULSE RESPONSE (FIR)'/
125X, 'LINEAR PHASE DIGITAL FILTER DESIGN'/
225X, * TWO-PHASE LINEAR PROGRAMMING ALGORITHM' /)

WRITE(6,706)NFILT.NFFT, IEX

706 FORMAT{25X,’'FILTER LENGTH:'.IS."
IF(PRINT)WRITE(6.901)
1F (.NOT.PRINT)WRITE(6,902)

901 FORMAT(25X. THE PRINT OPTION IS ON*)

902 FORMAT(25X.°THE.PRINT OPTION IS OFF)

WRITE(6.707)

FORMAT(//.° * . 70(1H+))

JB=2+NBANDS

READ(5.701) (EDGE(J).J=1.JB)

NFFT=’.15,” EPSz10ss’,14)

~

70

701 FORMAT(8F10.5)
READ(S.7OV)(FX(J).J*I.NBANDS)
READ(5.70|)(TOLBAN(J).Jxl.NBANDS)

c IFLAT=1 IF MONOTONICALLY DECREASING. -1 IF INCREASING
READ(5.7001(IFLAT(J).J=1.NBANDS)
<
[ MM=# OF COEFFS.. STARTING WITH SAMPLE 0
c
MM=(NFILT+1)/2
MaMM+1
MPaM+1
NsNFFT+2
N2aN/2
N2P=N/2+1
NP=N+1
NNs3sN2
TPON-G.DOODATAN2(1.DO.1.DO)/PLOAT(NFPT)
c
C INITIALIZE CONSTANTS IN TABLES
[+
DO 300 I=1,NFFT
300 TABC(1)=DCOS(FLOAT{I-1)eTPON)
DO 311 I=1,NPPT
31 TABS(I)}=DSIN(FLOAT(I-1)e«TPON)
[«
c DEFAULT DESIRED VALUE 1S 0
[

DO 702 J=1,NN
702 C(J)=0.D0

DEFAULT TOLERANCE IS 8.D0

non

DO 703 J=1,N2
703 TOL{J)=8.D0

TURN OFF ALL COLUMNS TO START

00N

DO 401 X=1,NN
KSTAR(K)=.TRUE.
DO 704 J=1,NBANDS

40

-

ROUND LOWER BAND EDGE DOWN, UPPER [ 4

naan

J1=IDINT(FLOAT (NFPT)sEDGE (20J-1) ) 41
JZ-IDINT(PLOAT(NPIT)OIDGE(ZOJ)-|0000.DO)010001
BE1=FLOAT(J1+1)/FLOAT (NFPT)
BE2=FLOAT(J2-1)/FLOAT{NFPT)
WRITE(6,900)J1,J2,B21,BE2

900 FORMAT(’ BANDEDGES ARE IN COLUMNS* .215,° CORRESP. TO’.2D20.10)
DO 704 K=J3,J2 N
IF(IFLAT(J).EQ.0)}GOTO315
KSTAR(K+N)= . FALSE.
SLOPE(X) =FLOAT(IFLAT(J))

315 CONTINUE
TOL (K} =TOLBAN(J)
KSTAR(K) =, FALSE.
KSTAR (K+N2)=.PALSE.
C(X)=FX(J)

704 CUKN2)=-C(K)

30

32

313

32

25

non

30

aon0no

510

oo

600

30

60

303
302

60

3

31

non

5

nonNn oann

~

o

-

2

7

6

o

SET UP CARRY, D FOR PHASE 1

DO 312 Jet,N2
IF(KSTAR(J) .AND.KSTAR{J+N2) )GOTO325
SUM=0.D0

JM=J-1

LL=3

DO 307 Is=1,MM
SUM=SUM+TABC(LL)
LL=LL+JM
IF(LL.GT.NFPT)LL=LL-NPPT
D(J)=-TOL(J)-SUM
D(J+N2)=-TOL(J) +SUM
IF(XSTAR(J+N) )}GOTO312
SUM=0.D0

JHeJ-1

LL=1

DO 313 I=1 .MM
SUM=SUM-PLOAT (I-1)«TABS (LL)
LL=LL+IN
IF(LL.GT.NFPT)LLaLL-NFPT
D(J+N) =-SUMeSLOPE(J)
CONTINUE

DO 25 I=1,mMp

DO 25 Js=1,MP

CARRY (1,J)=0.D0
CARRY(1,1)=-1.D0

CARRY (MP,1)=1.D0

DO 15 Ie2,MP
CARRY(I,I)=1,D0

USE NEGATIVE INDICES POR ARTIFICIAL VARIABLES
DO 30 I=1,NM
BASIS(I)=-I
MAIN LOOP
PHASE=1
KOQUNT=0
‘KOUNT=KOUNT+1
IF(KOUNT.GT.KMAX)GOTO750
PRICING OPERATION

DO 600 I=2,M

"H(I-1)=CARRY (1,1}

CMIN=HUGE

R= CARRY(1,MP}

DO 316 J=1,N2

S=RsTOL(J)

IF(KSTAR(J) )GOTO601
Q=0.D0

DLEMER]

LL=1

DO 307 Ie1, MM
QuQ+H(I)eTABC(LL)
LLsLLeJN
IF(LL.GT.NFPT)LL=LL-NFFT
CBAR=D(J)+{Q +8)
IF(CBAR.GE.CKIN)GOTO601
K=J

CMIN=CBAR
IF(KSTAR(J+N2})GOT0602
IF(.NOT.KSTAR(J) )GOTO302
Q=0.D0

JNeJ -1

LL=1

DO 303 Ie1,MM
Q=Q+H(I)TABC(LL)
LLsLL+JK
IF(LL.GT.NFFT)LLsLL-NPFT
CONTINUE
CBAR=D{J+N2)+(-Q +S)
IF({CBAR.GE.CHIN)GOTO602
KxJoN2

CMIN=CBAR

CONTINUZ
IP(XSTAR(J+N))GOTOI16
Q=0.D0

JM=J -1

LL=1

DO 317 I=1,MM
Q*Q-H(I)ePLOAT(I~1)eTABS(LL)
LLaLLeJM
IP(LL.GT.NFFT)LL=LL-NPPT
CBARsD{J+N) +SLOPE(J) «@
IF(CBAR.GE.CMIN}GOTO316
K=JoN

CMIN=CBAR

CONTINUE

CBAR=CMIN .
IF{CBAR.LT.-EPS)GOTO56

OPTIMUM FOUND
IF (PHASE.EQ. 1)GOTO6
GOTO7

COLUMN K FOUND, GENERATE COLUMN X
IF(K.GT.N)GOTO318
FIRST N COLS.

KP=X
IF(X.GT.N2)KP=K-N2
JM=KP -1

LL=1

DO 308 Is=1,MM
COLK(I)=TABC(LL)
LLsLL+JX

Fig. 5. The Fortran source program for linear programming design with monotonicity constraints.
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308 IF(LL.GT.NFFT)LL=LL-NFFT

ABAR{1)sCBAR

DO 66 I=2,MP

SUM=0.D0

DO 65 J=2,M
65 SUMsSUM+CARRY(I,J)eCOLK(J-1)
IF(K.LE.N2)ABAR(I)=SUM+TOL(K) «CARRY (I ,MP)
IF(X.GT.N2)ABAR(I}=~SUM+TOL (K~N2)#CARRY (I ,MP}
CONTINUE
GOTO319

o
L

LAST N2 COLS.

nnn

318 KPak-N
JM=KP-1
LL=1
DO 320 I=1,MM
COLK(I)=~FLOAT(I-1)sTABS{LL)+«SLOPE(KP}
LLsLL+JM
320 IP(LL.GT.NPPT)LLsLL-NFFT
ABAR(1) «CBAR
DO 321 I=2,MP
SUM=0.D0
DO 322 Je2,M
322 SUM=SUM+CARRY(I,J)COLK(J~1)
321 ABAR(I)sSUM

[of LOOK FOR ROW

319 RMINsHUGE
L=0
DO 70 I=2,MP
IF(ABAR(1).LE.EPS)GOTOT0
RATIO=CARRY (I.1) /ABAR(I)
IF(RATIO.GT.RMIN)GOTO70
IF (RATIO.LT.RMIN)GOTO69
IF{ABAR(I).LE.ABAR(L)}GOTO70
69 RAINeRATIO
Lel
70 CONTINUE

TEST FOR UNBOUNDED SOLUTION
IF{L.EC.0)GOTO751

PIVOT

nnoon noon

LMs=L-1

KOLD»BASIS(LM)

IF{XOLD.GT.0)KSTAR(XOLD)=. FALSE.

BASIS(LM) =K

KSTAR{K)=.TRUE.

PIVOT=ABAR(L)

DO 80 J=1,MP

CARRY{L,J)=CARRY(L,J)/PIVOT

DO 85 I=1,MP

IF(I.EQ.L)GOTO8BS

P=ABAR(I)

00 90 J=1,MP

90 CARRY(I,J)=CARRY(I,J)-CARRY(L,J)+P

85 CONTINUE
2=-CARRY (1,1}
IP(PRINT)WRITE(6,400)KOUNT,LM,KOLD,K,CBAR ,PIVOT,2

400 PORMAT(’ °,IS,” PIVOT',I5,’ CHANGED',IS,’ OUT’.I5,’ IN CBAR= ",
1D20.10,° PIV=’,D20.10,° Z=’,D20.10)
GoTO1

@

END OF MAIN LOOP; EXITS FOLLOW

KOUNT EXCEEDS KMAX

noann

750 WRITE(6,800) ]
800 PORMAT(® eesss MAXIMUM NO. OF PIVOTS EXCEEDED seevs’)
CALL EXIT

c PHASE 1 OPTIMUM

o

IF(Z.LE.EPS)GOTO8

WRITE(6,108)2

108 FORMAT{’ PHASE 1 ENDS WITH 2 =’,D14.7,’:PROBLEM INFEASIBLE")
CALL EXIT

WRITE(6,106)2

106 FORMAT(' PHASE 1 SUCCESSFULLY COMPLETED; Z2°,D14.7)

PHASE=2

onn

CHANGE ROW 1 OF CARRY FOR PHASE 2

DO 95 J=1,NN

D{J)=C{J)

DO 96 J=1,MP
CARRY(1,J)=0.D0

DO 96 Ia2,.NP

L=BASIS(I-1)

IF(L.LE.0)GOTO96

. CARRY{1,J)=CARRY{1,J)-C(L)eCARRY(I,J)
96 CONTINUE

GOTO

9

w

UNBOUNDED SOLUTION

0N

751 WRITE(6,111)PHASE
111 FORMAT(’ eeses UNBOUNDED SOLUTION FOUND IN PHASE ‘012,° seses’)
CALL EXIT

DONE

[ X Ke)

7 WRITE(6,112)
112 PORMAT(® OPTIMUM SOLUTION FOUND DURING PHASE 2°)

FINAL OUTPUT SECTION

noon
~

WRITE(6,110) (BASIS(I),I=1,M)
110 FORMAT(’ FINAL BASIS IS‘//16(' ’,14))
DO 500 I=2.,M
500 H(I-1)=-CARRY(1,I)
WRITE(6,109)( I,H(I) ,I=1,MM}
109 FORMAT(’ COEFFICIENTS'/s4(’ ',15,D20.10)})
DO 306 J=1,N2
0=0.D0
JM=J -1
LLs1
DO 305 I=1,MM
Q=Q+H{I)sTABC{LL)
LLsLL+JM
305 IF{LL.GT.NFPT}LLeLL-NPPT
306 QQ(J)=Q
IF(PRINT)WRITE(6,98) (J,Q0(J),J=1,N2)
98 FORMAT(’ FREQUENCY RESPONSE’//4(° ‘,15,020.10))
DO 801 J=1,NBANDS
J1=IDINT(FLOAT(NFFT )eEDGE(20J-1))+1
J2=IDINT(PLOAT(NFFT )<EDGE(2¢J)-10000.D0)+10001%
PDESsFX(J)
ERRMAX=0.D0
DO 803 I=J1,J2
ERROR=DABS (QQ{I)-FDES)
IF(ERROR.LE.ERRMAX }GOTOB03
ERRMAX=ERROR
CONTINUE
DEVDB=20.D0+DLOG10 (ERRMAX }
WRITE(6,807)J,EDGE(2+J-1) ,EDGE (24J) ,FX(J)}, TOLBAN(J)
807 FORMAT(’OBAND’,I3,’ EDGE1=’,D20.10,° EDGE2+‘,D20.10,° FX=’,D20.70,
1’ TOLBAND=‘,D20.10)
WRITE({6,804)ERRMAX ,DEVDR
804 FORMAT(’ MAX. DEV.s’,D20.10,° MAX. DEV. IN DB =°,D20.10)
801 CONTINUE

80

-

DRAW IS A USER-SUPPLIED PLOT ROUTINE

onn

CALL DRAW(QQ,N2,NFFT,NFILT)
sToP
END

Fig. 5. (Continued.)

to “END OF MAIN LOOP; EXITS FOLLOW ™), error exists (from
there to “DONE”), and the output section (from there to the
END). The user should provide a subroutine EXIT for termi-
nations other than the normal stop, and may supply a plotting
subroutine DRAW, or remove its call. :

The program has always been run in double precision, and
this is probably necessary for any reasonably sized problem.
More sophisticated measures to control roundoff error in
linear programs, such as periodic basis reinversion and replace-
ment of small quantities by zero, were not found necessary
for the design of filters of lengths up to 127, but may be nec-
essary for larger problems. '

VIII. CoNcLusiONs

We have shown that the linear programming formulation
can be used to impose monotonicity constraints in the design
of FIR digital filters, and provides the designer with much

more flexibility than the usual Remez algorithms. ‘It is hoped
that the inclusion of the program will encourage others to
experiment further with the flexibility of this design approach.
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