
1. Introduction 

Linear  network  theory  is based on  the electrical proper- 
ties of inductances,  capacitances,  and  resistances. These 
lead, via Kirchoff's  laws, to a  description of the perfor- 
mance of a  network by a set of linear  differential  equa- 
tions. By contrast,  a  set of linear difference equations is 
used to describe  a  discrete  linear  system; these equations 
are realized (by manipulating  numbers)  in  a special or 
general purpose  digital  computer. To realize a  linear 
difference equation,  the  input signal must be composed  of 
discrete  samples,  i.e.,  a sequence of numbers.  All  con- 
siderations  here  are based on  uniformly  spaced samples. 
Nonuniform spacing of samples lies outside  the scope 
of this  paper. 

The discussion is based on  a  model whose input  con- 
sists of discrete  samples  quantized  in  amplitude. The sam- 
ples are  then processed by digital logic, which performs 
the numerical operations  required to realize the  linear 
difference equation(s).  Initially, it is assumed that  the 
idealized digital logic manipulates the unquantized data 
with perfect accuracy.  The effects of quantization will be 
considered later. In many  practical cases, the effects of 
numerical error  due to quantization may be treated as a 
noise superimposed on the ideal  unquantized  data. 

An increasingly large  number of examples can be iden- 
tified in which digital filtering appears to be more  prac- 
tical  than  analog processing for  performing such opera- 
tions  as  interpolation,  extrapolation,  smoothing,  and 
spectral  decomposition.  This  is especially true when the 
data  to be operated  upon  are generated in  digital  form, 
e.g., by a digital transducer.  The  unique  advantages offered 
by digital techniques include the following: poten- 
tially small-size integrated  circuit  implementation ; very 
predictable  stable  performance of arbitrarily high pre- 
cision ; absence of impedance-matching problems; no 
restrictions  on  the  location of critical filter frequencies; 
greater flexibility, because of the ease with which the 
filter response can be changed by varying the  proper  co- 
efficients; and  the  intrinsic possibility of time-sharing 
major implementation segments. These advantages to- 
gether with larger scale circuit integration (LSI) promise 
to make  the  digital filtering technique eminently suitable 
for  the exacting requirements of modern  communica- 
tions-oriented  computing facilities. In fact, the rapid 
development of LSI has greatly increased the possibility 
of digital-filtering techniques,  thus  threatening to end the 
virtual  monopoly of analog processing [3], 141. 

The  study of discrete-time systems can be approached 
from  two  directions: first, they can be viewed as approxi- 
mations to continuous-time systems and second, they  can 
be considered as existing without reference to any  con- 
tinuous-time systems. Both viewpoints offer advantages; 
we shall begin with the second and come back to the  first. 
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II.  Elements of the  z-Transform 

A. Definition of the z-Transform 

The study of continuous  linear dynamic  systems is 
greatly facilitated by the  introduction of the  operational 
methods of the Laplace and  Fourier  transforms,  and also 
by the use of network concepts. Equivalently, the study 
of linear discrete systems benefits from  the introduction of 
the z-transform and  the use of network  concepts 121, 
[SI. To readers familiar with the continuous linear system 
approach, many of the  theoretical developments for  dis- 
crete linear systems  will be familiar [I]. But it is impor- 
tant  to remember that we have a discrete or digital frame- 
work within  which new insights must  be developed. 

A discrete-time (i.e.,  time-sampled) signal will  be repre- 
sented by a sequence of numbers f a ,  fi, . . , fn. When the 
function represents a time series, the index n will be re- 
ferred to as  the time parameter; however, the index  may 
represent a space coordinate  or some other discrete vari- 
able, depending on  the  nature of the series. What follows 
can be  extended  easily to include the case where signals 
are defined for negative time  as well. A common example 
of a discrete-time signal is provided by the samples of a 
continuous-time signalf( t )  at times t = nT, n = 0, 1,2, . . . . 
The gross national  product of a  country for successive 
years and  the magnitude of sonar  returns for successive 
pulses are examples of information that might  be collected 
and stored as discrete-time signals. 

The  z-transform is a  natural  tool  for  the  solution of 
linear constant-coefficient difference equations, just  as 
the Laplace  transform is appropriate  for  the  solution of 
linear constant-coefficient differential equations. Given a 
discrete-time signal f ,  represented by the sequence of 
numbersf,, its  z-transform F(z) is defined by the power 
series 

io 

F(2)  p C ; f n 2 - n ,  (1) 
n,= 0 

where z is  interpreted as a complex transform variable. 
The variable z plays a  role similar to  that of the Laplace 
transform variable s. The  operation of taking the z-trans- 
form of a sequence  will  be denoted by 

F(2) = - q f n ) .  (2) 

= / ; { a h  + bg,) = a z ( j n )  + bZ(gn) ,  (3) 

The  z-transform is a linear operation, so that 

where a and b are  constants. 

is the  z-transform of a delayed  sequence: 
An important  property  that  can be derived from (1) 

%{fn- -k )  = %--k.z{fn). ( 4  

Equation (4) may  be  used to derive the  important  con- 
volution property of the  z-transform.  The  product of two 
z-transforms 

F(x)  = G ( x ) H ( x )  (5 )  

1s represented in  the time domain as the discrete convolu- 
tion 

m 

Jn 2 hjgn ~ j ,  (6) 
i= 0 

whereF(z)=Z(f,),  G(z)=Z{g,],  and H(z )=Z(h , ) .  

B. Examples  of  the  z-Transform 

It will  be useful at  this point to calculate the z-trans- 
forms of some commonly  encountered discrete-time sig- 
nals. Consider first the constant signal 

fn = 1, 12 = 0, I, 2, ' ' . . (7)  

From (1) the  z-transform is found simply to be  the geo- 
metric series 

Differentiating (8) with respect to z+ and multiplying the 
result by z-l, we obtain  the  z-transform of a signal linearly 
increasing in value, 

(9) 

The  z-transform of higher-order  polynomials can be ob- 
tained by further differentiation. 

Consider  next the exponential function 

jn = en, n = 0,  1, 2,  . ' , (10) 

where c is some real  number.  The  z-transform  is a geo- 
metric  series,  which is readily summed. 

Differentiating with respect to z1 and multiplying the re- 
sult by 2-l as before, we obtain 

"-.-l 

which, of course, includes the first result when c= 1. 
Differentiating again, we get 

and so on. 
Although discrete-time signals will usually take  on real 

values, we may for  the  moment consider the exponential 
signal c" for complex c in  order to derive further  z-trans- 
forms. Write 

c = aejh, ( 14) 

where a>O and ,j= 4- 1 ; a is often called the  damping 
factor  and b the  phase  factor.  Then  the  transform (1 1) is 

- 
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still valid. Taking  the real part of  (1 1) with  z as the vari- contour Cy which  is entirely within the region of con- 
able, we obtain vergence  of the series (1) and which  encircles the origin 

1 - ax-l cos b once. 
Z {  a" cos nb) = 

1 - 2ax-1 cos b + 1 
x"Yqz)dx = -- jnxm-n-1dx 

2 r j  ' s  c n=O 

" 

1 - ax-1 cos b (15) 
- ___ - 

(1 - aejbx-1) (1 - ae--jb - 1 ' x - )  

1 x 1  > a ,  

which  is thus  the  z-transform of an exponentially damped 
or growing sinusoidal discrete-time signal. Notice that 
this z-transform  has  a pair of complex poles in the z-plane 
at  a radius depending  on  the  damping factor and at  an 
angle depending  on  the  phase  factor b. The angle of the 
poles reaches a  maximum when b reaches T and is taken 
modulo 2n for b greater than T.  This fact will  be impor- 
tant when  we  discuss the sampling of continuous-time 
signals.  The imaginary part of (1  1) yields in a similar 
manner 

ax-' sin b 

1 - 2az-1 cos b + a2x+ 
z ( a n  sin n b )  = - (16) 

ax-l sin b 

(1 - ae%-l) (1 - ae--jbx-l) 
- - . ('7) 

By taking the real and  imaginary parts of  expressions 
such as (12) and (13), we may  finally obtain z-transforms 
for any function of the  form 

nkan sin (nb + e) (18) 

and finite linear combinations of these. The result will 
always  be a rational function of r1 and, as we shall see, 
any rational function of z may  be broken  down  into 
finite sums of such functions. This class of signals corre- 
sponds to the class of continuous-time signals with ra- 
tional  Laplace  transforms  and  has much the same  impor- 
tance in engineering problems. 

An  even simpler class of discrete-time signals  consists 
of those that  are zero after a finite time N .  The z-transform 
of such a signal is then  a finite  series in z-l and is analytic 
for all values of z# 0. 

N 

F(x)  = C f n x - n ,  x # 0. (19) 
n=O 

These signals, having  polynomial z-transforms, may be 
considered as belonging to  the class of rational functions. 

C. Definition of the z-Transform Inverse 

Since the z-transform is a  power series in z-l, it repre- 
sents a Taylor series expansion of F(z) about  the point 
z l = O  (the point at infinity in  the z-plane) and hence 

= jnq 

where the interchange of orders of integration and  sum- 
mation is  justified  by the uniform convergence  of the 
power  series. 

The  two  formulas (20) and (21) for  the inverse z-trans- 
form  are general and may  be applied to any  transform 
that  has  a region of convergence. When dealing with  a 
rational function of rl, however, there are much simpler 
methods of obtaining the signal values J1. Perhaps the 
simplest method is long division,  which consists of divid- 
ing the numerator by the denominator to obtain a power 
series in rl. To illustrate, consider the  transform (9) 

2-1 + 2 x 4  + 32-3 + . ' . 
1 - 22-1 + x-2/2-1 (22) 

z-l - 2x-2 + x-3 

22-2 - 4x-3 + 2x-4 

3x-3 - 2x-4 

This is  easily implemented  on the digital computer  and 
has the advantage that  the locations of the poles of F(z) 
need not be found. This  long division  is  sensitive to 
round-off  error, however, and is  generally  useful  only 
when the poles are well inside the  unit circle (large damp- 
ing) [ 181. 

The second method of z-transform inversion is applica- 
ble to a  proper  rational function of zl, with L poles. 

Assume for simplicity that the poles p ;  are distinct and 
expand the bracketed expression in a  partial fraction 
expansion: 

Each of the L terms in (21) has  a  known inverse z-trans- 
(20) form given  by (1 l), so that 

Another expression for  the inverse z-transform  can  be  ob- 
tained by multiplying (1) by znZ--l and integrating on  a 

L 

.fn = C AiPP, (25) 
i= 1 
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where the pi may  be  complex but will appear  in complex 
conjugate pairs. 

The  partial  fraction expansion of  (23) and  the  forma- 
tion of  (25) require the use  of a polynomial root-finding 
routine. This is not  the case if the denominator of  F(z) is 
already known in factored form. This  second  method  has 
the advantage that  the value of the signal at time n can 
be  computed without  computing  any  other values. 

111. Use of the  z-Transform  in linear System Analysis 

A. Definition of  the  Digital  Transfer Function 

For a linear discrete system, the  input (xn) and  output 
(y,) signals are related by linear difference equations with 
constant coefficients  of the  form 

ZJn + blY,-1 + . . . + b&fYn--M 

= U ~ X ,  + . . . + a,vz,-nr. (26) 

That is, at time TI the  output value can be computed  from 
the current input  and a linear combination of past  inputs 
and outputs. If  we take  the z-transform of this  equation, 
term by term, we obtain 

( ) 
N N 

Y(x )  1 + biz& = X ( z )  a&, (27) 
i= 1 i=o 

where i is used in place of n in (1). Then 

Y ( 4  = H ( z )  x ( 2 )  f (28) 

where  H(z) is a  proper  rational function of z-l. Thus, if 
the values of the discrete-time signal x are  known, X(z),  
Y(z), and hence the values of the discrete-time signal y 
can be found by the  methods described above. In particu- 
lar, if  X(z)  is a polynomial or a rational function of 
z, Y(z)  will be a  rational  function of z. Its inverse will 
consist of exponential and sinusoidal terms like those 
discussed in Section 11-B. The function H(z) is called the 
transfer function relating x to y .  

8. Time-Invariant  Linear  Operators:  Digital Filters 

By an  operator  on discrete-time signals, we mean a  rule 
by which a discrete-time output signal is determined from 
a discrete-time input signal. We denote  the  input signal 
by xIL, the  output signal by y., and  the  operator by H( ), 
and write 

Y ,  = H(z,). (29) 

By a linear operator, we mean  one for which 

H(az,  + bw,) = aH(x,) + bH(w,) (30) 

for all constants a and b, and all signals x, and wn,. By a 
time-invariant operator, we mean  one for which 

Y,-k = H(Z,-k) (3  1) 

for all time translations k.  

Time-invariant linear operators  on discrete-time signals 
are normally  called digital filters [ 11. They can be charac- 
terized as follows. Let the digital filter H respond to a sig- 
nal that is unity at n=O and zero at all other times, with 
the  output signal ha. We shall make the additional assump- 
tion that H does not respond before an  input appears, so 
that h, is a legitmate one-sided discrete-time signal, the 
impulse  response of H. The response of H to a discrete- 
time signal & is therefore, from (27) and (28), 

( 3  2) 
j=O 

This result will be recognized as a discrete convolution of 
the signal x, with the impulse  response h, of the filter H .  
The  z-transform of both sides  of  (32)  may  be taken,  the 
order of summation on the  right-hand side reversed, and 
the delayed  sequence relation (4) used. The result is 

Y(z)  = H ( z ) X ( x ) .  (33) 

This shows that  the z-transform of the impulse  response 
of H can  be interpreted as a multiplicative transfer func- 
tion in much the same  way as  the Fourier  transform of 
the impulse  response  of a continuous-time filter is inter- 
preted. 

Digital filters that  can be  realized on  a digital computer 
include those with rational  transfer functions (or as a 
special case, polynomial transfer functions). These  can 
be  implemented  conveniently by the recursive relation 
obtained  from (26). 

- b&-1 - . . . - bLYn-.w. 

The  output  at any  time depends not only on a finite num- 
ber of past  inputs, but also on the present input  and a 
finite number of past  outputs.  The reader should note that 
(34) is equivalent to one step of the long-division method 
of inverting a  z-transform.  Other implementations of the 
same transfer function, employing a  partial fraction ex- 
pansion of H(z), may  be preferable because of the effect 
of  finite computer word length. 

C. Definition of the  Frequency  Response  of  Digital Filters 

Just as the frequency  response of a continuous-time 
filter is  determined by the values of its transfer function on 
the imaginary axis, the frequency  response of a digital 
filter is determined  by its values on  the  unit circle ( 1  zI = 1). 
This  can be  seen in much the same  way.  Consider an  in- 
put discrete-time signal sin nb, with the  z-transform given 
by (17) as 

This function has complex  conjugate poles on  the unit 
circle at z = e+ ib and  has  a time  response  whose  envelope 
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neither grows in magnitude  nor decays. This is  completely 
analogous to a sinusoid that is continuous in time. Now 
consider a digital filter H(z) with a rational transfer func- 
tion and all its poles inside the  unit circle; this require- 
ment  guarantees that  the digital filter is strictly stable. 
The  z-transform of the  output y, is also a rational func- 
tion of z1 and hence it  has a partial fraction expansion of 
the following form: 

(36) H(e-jb))l(  - 2j) 
1 - e- jbx- l  

+ - + decaying t'erms. 

Putting the  two steady-state terms  over  a  common de- 
nominator,  they become 

Re { H ( e f b )  1z-l sin b+Im { H ( e j b ) }  (1-z - l  cos b)  
- t (37) (1 - eibx-1)  (1 - e-jb2-1) 

which  by  (15) and (17) has the inverse z-transform 

yn = Re {IT(@) f sin nb + Im { H(ejb)  1 cos nb 
(38) 

= I H(e j6 )  I sin [nb + ArgH(ej*)]. 

Thus the magnitude of H(z) on the unit circle represents 
the transmission factor of a steady-state sinusoid at  that 
frequency and  the  phase angle represents the  phase shift 
of a steady-state sinusoid at  that frequency, in complete 
analogy  with  the  continuous-time case. 

The frequency variable b is naturally limited to the 
range between --a and a (-a< bs-a), in contrast with 
the  continuous-time case. A discrete-time signal whose 
z-transform  has  a pole at z= - 1 has a steady-state term 
of the  form a(- 1>". If this is interpreted as representing 
equally-spaced samples of a  continuous-time signal, this 
term represents samples  of a sinusoid with the frequency 
1/2T Hz, where T is the  sampling period. Thus we may 
think of the frequency  circle in the z-plane and the fre- 
quency  axis  in the s-plane as related by 

(39) 

whenever uniform  sampling of a continuous-time signal 
is involved. The  frequency  1/2T Hz is  called the Nyquist 
frequency  and represents the highest  frequency that can 
be represented unambiguously by  samples  spaced  every 
T seconds. 

IV. Digital  Implementation 

A. Digital Filter Configurations 

Assume that a digital filter has been  designed  in the 
sense that the transfer function H(z) has been chosen. 
H(z) is, at most,  a  ratio of polynominals in z-', and is 
finite outside and  on the circle IzI = 1 in  the z-plane. 

H(zj  might  be written in some other form that can  be 
manipulated into the form (40), for example, 

where  Hl(z) and H&) are ratios of polynomials,  or 

Although (41) or (42) can  be  manipulated  into the form 
(40)  by  simple algebra, it is not generally  wise to  do so in 
practice for reasons of numerical  accuracy in the realiza- 
tion. 

In the analog world, the realization of a given  system 
function is a  moderately difficult problem that  has re- 
ceived considerable attention. For digital filters, the  im- 
plementation of a difference equation  or system of differ- 
ence equations to realize a given  H(z)  is almost trivial. 
Suppose  the input is x, with  transform  X(zj  and  the  out- 
put is y, with  transform Y(z). Then  from (40) 

or, in the  time  domain, 

which  is, in  fact,  the difference equation  that realizes 
H(z) directly. That is,  (44)  gives a straightforward rule for 
computing y, in terms of the N+ 1 most recent samples 
of the  input x. and  the M previous values of y ,  already 
computed. Once y, has been computed  and as soon as a 
new input  sample x,+l is found, we can  proceed to com- 
pute P+~. In this way, an entire input  sequence of  indefi- 
nite duration  can be  filtered  by  (44) to produce an  output 
sequence of the  same length. 

It is often helpful to have pictures to describe waveform 
processing operations. A diagram to describe (44) is 
shown in Fig. 1. The rectangle  with a  constant written 
inside represents multiplication of a variable by a  con- 
stant  and the rectangle with z1 inscribed represents a 
one-sample delay. The circle with  a Z inscribed is, of 
course, a  summing point. The interpretation of Fig. 1, in 
terms of a digital machine,  is thus as  follows. 

x,--2, . . . , x,-Lv, yn-l, . . . , JJ,-~M at  the  outputs of the 
delay elements have been remembered.  Thus all the vari- 
ables are available for  the  computation of y,. When this 
computation is complete, L-M and y , - ~  are discarded and 
the  other quantities are saved. They will  be  needed for 

At t= nT, x , ~  becomes available. The quantities 
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I I 

Fig. 1. Pictorial representation of (44). 

the next computation. By counting  the delays, we can 
obtain a minimum estimate of the  number of storages  in- 
volved in realizing (44) and by counting rectangles with 
nontrivial associated constants, we can see  how  many 
multiplications are required per  sample. 

Equation (44), corresponding to Fig. 1, is not  the only 
possible way to realize a given digital filter function H(z).  
AS a trivial example, suppose  in  Fig.  1  the  sum of  weighted 
delayed inputs is considered as one filter N(z) and  the re- 
mainder of the  network is considered as a second filter 
l /D(z).  N(z) is the numerator of H(z) and D(z) is  the de- 
nominator of H(z). But these are linear systems in cascade. 
Thus  the same overall transfer  function H(z) is obtained 
if the order of the subsystems  is reversed, as in Fig. 2. An 
intermediate variable w, is introduced  and the single 
difference equation is replaced by a pair of equations, but 
with no additional  computation. 

M 

w, = xn - biWn-i 

i=O 

An advantage of (45) over  (44) is  the smaller memory 
requirement.  We are required to save only N or M previ- 
ous values of w,, depending on which is greater. This may 
be illustrated by  redrawing Fig. 2 as Fig. 3, in which the 
delay  elements  having the same output have  been  re- 
placed  by a single delay element. Fig. 3 is drawn  for 
N =  M .  

Figs. 1 and 3 are called direct  forms. It is to be empha- 
sized that  the constants ai and bl in  the network are  the 
same as the constants  in  the  transfer  function.  Continuous 
filter realization would  be  simple if the values of resistors, 
inductors,  and  capacitors  in a network  were so easily  re- 
lated to  the transfer  function of a continuous filter. 

Despite the simplicity of the  direct  forms that realize 
H(z), they are undesirable for high-order difference equa- 
tions  for  reasons of numerical accuracy. But  there  are 
other  forms. Suppose H(z) is expressed in  the  form (41). 
Then  the  output yn is  the sum of the  outputs of several 
smaller filters, Hl(z), Hz(z), . . . . Each of these can be 
realized in either of the direct forms.  Thus  such represen- 
tation of H(z) leads to  the picture  in  Fig. 4. In  the extreme, 
H(z) could  be  expressed in  a  partial  fraction expansion so 

'Y" 

Fig. 2. The same filter as Fig. 1, but with the subsystem interchanged. 

Fig. 3. The system of Fig. 2 with re- 
dundant delay elements eliminated. 

Fig. 4. The pictorial 
representation  of (41 1. 

I I 

that each of the terms  in (41)  would  be a ratio of first- or 
second-order  polynomials in z-l. Then  Fig.  4 becomes the 
parallel form of a digital filter. The parallel form  tends to 
be not nearly as sensitive to quantization effects as the 
direct  forms.  Each of the subfilters in the parallel form is 
realized in one of the  two  direct  forms. 

If H(z) is  expressed in the  form (42), we can express 
it as 

N ( z )  = H,(z) x H,(z) x . . . x H&), (46) 

where  each of the subfilters includes a subset of the poles 
and zeros of H(z). Since these transfer functions are mul- 
plied, the filters are  in cascade. Thus  Fig. 5 is a descrip- 
tion of a realization of H(z). In the case where all the 
Hi(z) are chosen to be simple ratios of first- or second- 
order polynomials, we have the cascade form of H(z). 
The cascade form  is  also preferable to  the direct forms 
for numerical reasons. 

There  is an infinity of other possible forms of networks 
to realize a given H(z). An example of further generality 
is given  by the second-order  system  of equations 

7Jn = ayn-1 + bwn-1 + czn 

tun = dyn-1 + ewn-1 + fxn,  
(37) 

where, in general, each of the present states y,, w ~ ,  is a 
weighted sum of all the previous states y,-1, wTL-l, and  the 
input. These  coupled equations  tend to require more  mul- 
tiplications to realize a given H(z) than  the direct, parallel, 
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or cascade realizations, but  the increase in  flexibility 
afforded  thereby may be enough to overcome numerical 
accuracy problems  in  certain cases. The coupled forms do 
find  use,  especially in  computer  simulations. 

The  realizations given here assumed that H(z)  was a 
ratio of polynomials. These are called recursive digital 
filters. They are distinguished by feedback of delayed out- 
puts or intermediate  computational variables. They have 
transfer  functions with poles at locations  other  than  the 
trivial z = 0. However, some design methods yield H(z) a 
polynomial  in z1 rather  than  a  ratio of polynomials. 
These are called nonrecursive digital filters. Of the realiza- 
tions  proposed so far,  Figs. 1, 2, and 3 all become the 
same,  namely a  tapped delay line with a weighted sum  of 
the signals at the equally spaced  taps, as shown in  Fig. 6.  
This  realization  has also been  called a  transversal filter. 
Fig. 4, the  parallel  form,  has no particular meaning for 
a nonrecursive filter; while Fig. 5, the cascade form, is pos- 
sible but  not  in common use, because it is usually very 
hard to factor  the  high-order polynomials H(z) that arise 
in  practice  and  also because there is no particular  advan- 
tage to Fig. 5 over Fig. 1. 

An important difference  between  recursive and  nonre- 
cursive digital filters exists in  the range of values of M 
and/or N encountered  in typical applications. Recursive 
digital filters usually meet the  kinds of specifications 
arising in  practice  (bandpass or bandstop filters, for ex- 
ample) with at most 10 or 20  coefficients. Thus  the com- 
putation required to produce each output, given a new 
input, is of the  order of 10 to 20 multiplications  and  addi- 
tions  per sample point.  In  contrast, nonrecursive digital 
filters, when  used to realize complex-shaped frequency 
responses, may require several hundred coefficients  (even 
though  there  are  no  poles except at z = 0). 

B. Nonrecursive  Filter  Implementation by 
High-speed Convolution 

In this  section,  a  computationally efficient method for 
obtaining  the  output of a nonrecursive filter  will  be pre- 
sented. The nonrecursive filter is characterized by the  ab- 
sence of feedback; that is, past values of the  output se- 
quence are  not used in  computation of the  current value 
of y+ The nonrecursive filter relationship may be written 
as 

?Z=O 

When A4 is large  enough, it is computationally efficient to 
implement the filter by means of the  technique called high- 
speed convolution Ell], [12], [14]. This  technique is 
based upon  three  observations. 1) The  discrete  convolu- 
tion of (48) may  be replaced by multiplication of the z- 
transforms of yi, hn, and x, (see (5) and (6), and [lo]). 
2) The  z-transforms may  be evaluated at uniformly 
spaced points on the  unit circle in  the z-plane. The  result- 
ing  transform is called the discrete Fourier  transform 
(DFT). 3) The DFT and inverse discrete Fourier  trans- 
form  (IDFT) may be computed by means of the  fast 
Fourier  transform (FFT) algorithm, which requires  ap- 
proximately L  logz  L  operations  (multiply-adds).  Here, 
Lis the  number of samples  in the array being transformed. 
The DFT is defined by (49). 

L- 1 

y, = 8 n e - i 2 r n k ~ ~ ,  16 = 0, 1, . . . , L - 1. (49) 
n=O 

From the  properties of the  exponential  function,  it  can 
be shown that  the IDFT is given  by 

1 L-I 

L k=O 
vn = - Vke+jZTnk'L, n = 0, 1, + . . , L - 1. (50) 

We can  take  the  input sequence x, and convolve it 
with the  aperiodic finite lengtl impulse response h, by 
using the FFT  as follows. 

We form a succession of short sequences xn@), by taking 
L- M f  1 samples at a time to form successive sections of 
x, which abut  but  do  not  overlap,  and by appending 
M -  1 zero-valued samples to the  end of each X(,), to 
form  L  point sequences. The  optimum size for L has been 
discussed  by Stockham [ 1 11 and Helms [ 121. For exam- 
ple, if M =  128, the  optimum value for  L  is 1024. Varia- 
tions  about  this  optimum value do not, however, produce 
large increases in  the required computation  time. 

The impulse response h, is then used to  form  an L  point 
sequence h, by appending L-M zero-valued samples to 
the  end. Using the  FFT, we compute  the DFT's of each 
of these L  point sequences and multiply the DFT of h, 
with the DFT of each &(". Then  the IDFT of each prod- 
uct is computed using the  FFT.  The result of the process 
is a succession of L point sequences, which are  the  con- 
volutions of each of the sections of x with the impulse re- 
sponse h. The  periodic  nature of the  convolution as com- 
puted by this  technique was avoided by putting enough 
zeros on  the  end of each sequence that  the periodic  con- 
volution  contained  the complete aperiodic  convolution  in 
each period.  This is always possible when L>M. Each of 
these results must then be added to each of the  others with 
the  appropriate delay to form  the  output of the filter. 
Usually, L is chosen to be a power of two,  for which the 
fast  Fourier  transform is very  efficient. This  method is 
called the  overlap-add  method of high-speed convolution. 

There is a second method, called the select-save method, 
in which the  input sequences are  formed  from  overlapping 
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pieces of x and  the  outputs  are selected so that only valid 
results are used as filter output. Both methods have  been 
described in  detail  in the literature [ 111, [ 121, [ 141. The 
important  feature  to  note is the dependence  of the com- 
putation time for  both  methods  on  logz M ,  rather  than 
M ,  per  output  point.  This means that once the filter is 
complicated  enough to have required the use of the FFT 
algorithm, almost any additional complexity  may  be 
attained at very small cost (except in terms  of  memory). 
So far,  the high-speed  convolution  technique has  found 
application only  when the digital filtering was  performed 
by a general-purpose computer  program. For a given 
operation speed, the high-speed  method is faster for M 
greater than roughly 30. While special-purpose hardware 
designed to perform  the direct sum-of-products approach 
to convolution has been in use for several years, there  has 
been  slower progress in  the  hardware implementation of 
the  fast  Fourier  transform.  Arithmetic  and logical units 
designed to  perform  the FFT algorithm  are, however,  be- 
ginning to appear. 

C. Choice of the  Transfer  Function H(z) 

There are a great many methods of choosing  H(z) to 
meet a given filtering requirement and  the choice  of an 
appropriate method  depends on  the requirement. The 
simplest case by far  is when a desired impulse  response 
is to be duplicated.  Suppose that a measurement has 
yielded a sequence of M numbers,  which are successive 
samples  of an impulse response. A digital filter, whose im- 
pulse response  is the samples of the given  impulse re- 
sponse, is a nonrecursive (tapped delay line) filter for 
which the weight applied to  the  kth  tap is the kth sample 
of the impulse response. Note  that in practical situations, 
this will lead to a nonrecursive filter with a very large 
number of  coefficients. 

In  the common case where the desired impulse re- 
sponse is that of an  analog filter of the classical type  (an 
RLC filter), the impulse  response of the filter is  known to 
be of the  form of (25), assuming that all the poles are dis- 
tinct,  and we know that we can find a recursive filter with 
this impulse  response  by  z-transforming (25). Even 
though the impulse  response (25) has an infinite number 
of terms, the recursive digital filter typically requires only 
a few  coefficients [3] ,  [4], [6], [7], [9]. 

Both methods based on impulse  response  must  be  ex- 
amined in  the frequency domain. Because the impulse 
response  is  sampled, the frequency  response exhibits 
folding or aliasing [see (61)]. The frequency  response of 
the digital filter  is thus a poor  imitation of the frequency 
response of the analog prototype, if the  latter  has signifi- 
cant frequency  response  beyond 1/2T Hz. 

To overcome this limitation in the design  of recursive 
filters, one can use the bilinear z-transform or z-form, 
given in (53). This  maps the entire left half of the s-plane 
into  the  interior of the unit circle. The poles and zeros 
of an  analog filter can thus be located in t.he z-plane in 

such a way that  the resulting digital filter has a frequency 
response that goes through the same  values, in the same 
order (as the  unit circle is traversed from 0 to T )  as the 
analog frequency  response displayed from 0 to 00. The 
price paid is in  the nonlinear  warping of the frequency 
scale and  the  distortion of the impulse response. The 
nonlinear  warping  effect can  be overcome  by a technique 
called predistortion, in which an  analog filter is  designed 
that will  give the desired frequency  response after warping 
of the frequency scale. This technique  is practical only 
when digital filters whose  frequency  response is piecewise 
constant-not  piecewise  linear-are  being  designed 
131- P I .  

When a nonrecursive filter is designed to meet an 
arbitrary frequency  response criterion, a common ap- 
proach is the  Fourier series technique  [4], [7], [14]. The 
frequency  response (usually chosen to be real and even) 
is  expanded as a  Fourier series (since it is a periodic func- 
tion with  period 2 ~ ) .  The  Fourier coefficients a, form the 
impulse  response of an ideal filter meeting the specifica- 
tions exactly. 

1 "  

2 n=l 

H*(x)  = a0 + - a n ( P  + x-"). ( W  

This filter has  an infinite number of terms  and is un- 
realizeable unless a finite approximation is made.  Simply 
eliminating all a,, a>_ M for some suitably chosen M will 
work  nicely  if the  Fourier series is rapidly convergent. 
However, a result of poor convergence is  the so-called 
Gibbs  phenomenon, which typically produces an over- 
shoot of about 9 percent at any discontinuity in the  de- 
sired frequency response. An approach  to  the elimination 
of  the  Gibbs  phenomenon is to multiply the a, by a win- 
dow function ,wn. The effect  of a window function is to 
smooth the frequency  response and thereby attenuate  the 
overshoot. 

There  are  other  methods 1141, [ 131  of design of both 
recursive and nonrecursive filters, but  the above  summary 
gives an idea of the  problems to be encountered and  the 
trade-offs involved. 

D. Quantization Effects in Digital Filters 

Up  to this  point, it has been tacitly assumed that  the 
sampling operation  and  the  arithmetic  operations indi- 
cated in (40) are performed  with infinite accuracy. In the 
actual implementation of  (40), either by a computation 
subroutine for a digital computer  or by the  construction 
of special-purpose digital hardware, infinite accuracy  of 
representation and  computation  are not possible. There 
are  three  primary sources of error that arise from  the use 
of a finite word length computer. 

One Source of  error is incurred when the  input  to  the 
filter is quantized to a finite number of bits.  This quan- 
tization creates an additive noise, which  may  be treated 



as  random if the  quantization is fine enough  and if the 
signal varies sufficiently, relative to  the sampling rate  and 
the  number of quantization levels. 

The second source of error arises in  the  evaluation of 
, the  arithmetic  products  and  their  sum  as  indicated  in 

(40). For  the nonrecursive filter (bj=O, j =  1, 2, * . * , n) 
the  magnitude of the  error  incurred by using finite 
arithmetic can be quickly estimated by approximating  the 
action of truncation  and round-off with a noise source 
(which can be considered random  in  most cases). For the 
recursive filter the  calculation of the  errors is more diffi- 
cult as  a result of the feedback inherent  in  the bi terms. 
For one  thing, while there is no  absolute necessity to 
round or truncate  the  products  in  a nonrecursive filter, 
in the recursive filter the sums of products that are fed 
back must be rounded or truncated, since after  a  multi- 
plication of two quantities represented by kl and kz bits, 
respectively, the  product  contains kl+kz bits. If it were 
fed back without  rounding,  the next stage would generate 
numbers requiring still  more  bits,  etc. Again each  trunca- 
tion or rounding  operation  adds  a small noise term, which 
can be considered random  in most cases, and these terms 
are passed through  a  digital filter consisting of part  or all 
of the required digital filter [3],  [4], [6], [15]-[17], [19]. 
Obviously, in  a cascade realization,  the noise generated 
in  the  kth stage cannot be seen  by any of the earlier 
stages. A similar effect causes the noise in some of the  di- 
rect realizations to pass  through  those  portions of the 
filter that realize the poles of H(z) and  not  through  those 
portions  that realize the zeros. 

A related effect also may occur in recursive filters as a 
result of round-off error when the round-off noise is 
highly correlated with the signal or highly correlated with 
itself from  iteration to iteration.  This  is  the so-called 
dead-band effect [6], [21]. This is best illustrated by an 
example. Suppose the  digital filter is described by 

but is implemented with products  rounded to the nearest 
integer.  Then with the  input  zero,  the  output would be 
expected to decay to zero. However, any  output  in  the 
range -50 to 50 causes the  error  due to quantization to 
exactly balance the decay per  iteration, so that  the 
erroneous  output  is  maintained. 

The  third  source of error arises in the  representation of 
each of the  digital filter coefficients by a fixed number of 
bits. This effect is analogous to that  encountered  in  con- 
tinuous filters when the  components called for by the  de- 
sign are  unavailable [4], [6], [ 171 , [ 181, [20]. If a design 
calls for  a coefficient of 0.95, the best 6-bit (i.e., 5 bits for 
the  fraction  and  a sixth bit  for  the sign) approximation we 
can make is  0.9375. The best 7-bit  approximation we can 
make is 0.953125, and so on. It must be realized that cer- 
tain  forms of digital filter realization  are extremely sensi- 
tive to these errors  in coefficients. For the nonrecursive 

filter, the  magnitude of this coefficient accuracy problem 
can be quickly estimated by simply looking at the relative 
magnitudes of the coefficients making  up the weighting 
sequence. For  the recursive filter with its  inherent feed- 
back the  results  are not so simple, as  the  stability of the 
filter itself  may be affected by coefficient round-off.  This 
problem is most severe  when using the  direct  form  for 
realization of the recursive filter. In general, the  direct 
form  should be avoided for  fourth  and higher order  recur- 
sive filters because of this effect. 

In considering quantization effects, it is not  as neces- 
sary to compute  the exact results of the effects, which is 
difficult, as to estimate  the  bounds on them  as  a guide to 
avoiding the effects that cannot be tolerated.  The  theory 
developed in  the literature so far  has  concentrated on 
rough estimates, such as upper  bounds  and mean square 
errors. 

V. Relationship  Between  Discrete  and  Continuous 
Signals  and  Systems 

A. Formal  Equivalence of Discrete-Time and Continuous- 
Time  Filtering  Theory 

In  the previous sections, the  theory of discrete-time sig- 
nals  and  digital filters has been developed without using 
continuous-time  theory.  A  theory  has been developed 
that is in every  way similar to the  continuous-time  theory 
insofar as linear  time-invariant filtering is concerned. 
The  mathematical  formulation of several operations on 
both discrete-time and  continuous-time signals is shown 
in  Table I. 

It is  also possible to rigorously establish  a  one-to-one 
correspondence between discrete-time signals and  con- 
tinuous-time signals in  such  a way that corresponding 
quantities  are images of each other.  This  has been done  in 
the  axiomatic  framework of Hilbert  space [ 11, each  con- 
tinuous-time signal being mapped to a  discrete-time signal 
via an orthonormal  expansion.  The  one-to-one  corre- 
spondence between the unit circle and  the  imaginary axis 
is, in  this case, provided by the  mapping 

which is  a useful transformation  in  relating the filter de- 
sign problems  in  the  two  domains [3]-[7], 1191. 

B. The Sampling Process 

In contrast to the  theoretical  correspondence between 
discrete-  and  continuous-time signals described previously 
the  usual process of sampling the values of a  continuous- 
time signal at regular intervals  does  not yield a  one-to-one 
correspondence between the discrete- and  continuous- 
time signals. In fact,  a  sinusoid of one frequency is, after 
sampling,  indistinguishable  from  sinusoids  at frequencies 
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TABLE I 

Correspondences Between  Operations on Continuous-Time and Discrete-Time Signals 

Inverse  Transform 

Inner  Product 

Frequency  Line 

Colivolution Filter 

Operator  Leading to  Rational 
Transfer  Function 

- ... 

Discrete-Time 
- 

DD 

F ( J )  = j(7L)z-n 
72-0 

unit, circle 
m 

j=o 
c hQn-j 

linear constant-coefficie!It difference equation 

.- ___. ... -.. .. . . .. 

Cont,inuous-Time 

^ m  

imaginary  axis 

JoWj(dQ(i - .)d7 

liuear  const,ant-coeficient different,ial equation 

differing from  the original by an integer multiple of sampled signal is obtained  from  the Laplace transform  of 
1/T Hz, the sampling frequency. One  approach to the  the impulse train by a simple  change of variable as 
problem  is to consider  band-limited signals and  limit follows: 
consideration to the baseband of frequencies between 
- 1/2T  and 1/2T Hz. When this is done,  the  correspon- I+) = b'"(s) (58) 
dence esT = 2 .  

R The Laplace transform of the  product (55) can be written x = &wT 
> I 4  <--, T (54) as  the convolution 

can  be used to provide a  one-to-one correspondence be- 
tween the baseband and  the  unit circle, and, as is well 
known, the original signal can  be  recovered exactly from 
its samples. In  a practical sense, however, the sampling 
process  always destroys some  information  and  operations 
on sampled signals can represent operations on  the origi- 
nal  continuous-time signals only  approximately. 

Uniform sampling can be  represented  by multiplication 
by  a periodic train of impulses, producing  a  train of im- 
pulses weighted  by the sample values of the continuous- 
time signal. We call this impulse train,f*(t)  and write 

f*(t) = f ( t )  6 (1  - 727'). (55) 
m 

n=O 

which  can also be written 

f * ( t )  == C,f(nT')6(t - ?IT),  (56) 
m 

n=O 

where we have adopted the convention of taking  the 
right-hand limit when  sampling at  a discontinuity. The 
Laplace transform off*(t) is, therefore, 

m 

F*(.s) = C f ( n ~ + ) e - m * T ,  (57) 

which  shows that  the z-transform of the discrete-time 

n=O 

where the  contour C extends  from the  bottom  to  the  top 
of the complex plane to the right of the singularities of 
F(p) and to  the left of the singularities of the impulse 
train. Assume for simplicity that F(p) is a  proper  rational 
function with all poles in the left-half y-plane.  Then the 
contour of integration  can be  closed to the left, yielding 
P I  

or to  the right, yielding 

Equation (60) is equivalent to  the  partial  fraction  expan- 
sion of (24), while  (61), the so-called aliasing formula, 
demonstrates  the effect  of  frequency components outside 
the baseband. Formula (61) can be derived also by Fourier 
series methods. 

C. The  Impulse  Transfer  Function 

If the impulse train (56) is applied to  an ordinary  con- 
tinuous-time network  with  impulse  response h(t), there 

312 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS SEPTEMBER 1968 



results the continuous-time signal VI. Conclusion 

y ( t )  = Cf(nT+>h( t  - n T ) .  (62) 
m 

?L=O 

Samples  of y(t) are, therefore, given  by 
W 

y(mT+) = f(nT+)h[(m - n)T+], (63) 
n=O 

which  is a discrete convolution of the form (38). It follows 
that 

Y(X) = F ( z ) H ( x ) ,  (64) 

where  H(z)  is the z-transform of the discrete-time signal, 
which is obtained by sampling the impulse  response of 
the continuous-time filter H. This digital filter H(z) is the 
effective discrete-time transfer function of a pulsed net- 
work  and is useful in the analysis of sampled-data  control 
systems. 

D. Reconstruction Filters 

The relation (62) represents the process of producing 
a  continuous-time signal from  a discrete-time signal and, 
as such, represents .an operation that is the opposite of 
sampling. As noted before, however, this process will not 
in general provide  an exact inverse to the sampling opera- 
tion, since some  information is destroyed by sampling. 

The Laplace  transform of (62)  yields 

Y ( s )  = F*(s)H(s) ,  (65) 

which shows that H(s), if it is to be an effective reconstruc- 
tion filter, should  have  a  low-pass characteristic in order 
to select the  baseband alias of F*(s), that is, the k=O 
term in the aliasing formula (61). 

It may be required that the reconstructed signal agree 
with the discrete-time signal at sample points, in which 
case the reconstruction filter H(s) is called an interpola- 
tion filter. From (64), this means  that 

In this paper, a  summary of techniques that may  be 
used for digital processing of signals has been presented. 
Digital filtering is based on  the z-transform, much as 
analog filter theory is based on  the  Laplace transform. 
The  concepts of impulse  and frequency response  have 
their digital counterparts. The  impulse  response of a 
digital filter is  defined as  its  response to a  sequence 
1, 0, 0, . . . , as input.  The  z-transform of the impulse 
response is the transfer function of the filter and if the 
transfer function is evaluated along  the unit circle, the 
frequency response of the filter  is obtained. An important 
consequence  is that frequency response is a  continuous 
but periodic function of frequency. 

For those impulse responses corresponding to sums of 
exponentially decaying polynomials  and sinusoidal se- 
quences, the z-transform  can be  expressed in a closed 
form as a  rational function of  z, reminiscent of the  trans- 
fer function of an RLC filter. Such an impulse  response 
leads to  the recursive digital filter, whose implementation 
is in terms of  difference equations. Impulse responses of 
finite duration  are usually  realized as weighted sums of 
the output of tapped delay lines and are called nonrecur- 
sive  filters. There are various forms of digital filters that 
realize the  same transfer function. There  are practical 
techniques for designing both types of filters. Currently, 
recursive  filters are  more practical for meeting hardware 
requirements  for  many  bandpass,  bandstop, low-pass, 
and high-pass filters, but  both recursive and  nonrecursive 
filters are finding  wide application in  waveform  processing 
by computer, where  very complicated  frequency  response 
functions are required. 

One possible advantage of digital filtering over analog 
filtering  may be  the high precision obtainable. The sources 
of error  due to finite length arithmetic are  somewhat  un- 
derstood  and  can be  minimized  in many cases  by analy- 
tical considerations. It is  expected that the technique of 
digital filtering  will grow rapidly in importance in  the 
future, especially as the size and cost of discrete compo- 

F ( z )  = F(x )H(x )  (66) 
nents continues to decrease. 

for every  F(z) or 

H(x)  = 1. (67) 

A simple  example of an interpolation filter  is the zero- 
order hold, which produces  the piecewise constant recon- 
struction 

y( t )  = fn, nT I 1 < (n + l)T. (68) 

In this case, the impulse  response is 

1 O < t < T .  
0 elsewhere 

H(t) = 

for which (67) can  be checked. 
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