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W
hen I arrived at
Princeton University
in the fall of 1963,
after having just
completed my dis-

sertation up the road at New York
University under Prof. Sheldon S.L.
Chang, I had no notion that I was carrying
with me a seed of post-World-War II tech-
nology to the world of music, an unwitting
agent of a kind of technical transpermia. 

And it happened quite accidentally: I
was wandering down the hall in an unfa-
miliar corridor of the new Engineering
Quadrangle building and heard jarring
noises emanating from an unmarked
room. I stuck my nose in and saw that
the cacophony was coming from loud
speakers driven by a rack of electronics
and a digital tape drive, which in those
days was a refrigerator-sized device with
vacuum columns to buffer the physical
tape. The machine was manned by the
composers Godfrey Winham and Jim
Randall, and I learned that the roomful
of equipment was a digital-to-analog
(D/A) converter that had recently been
donated to Princeton by Bell
Laboratories, through Max Mathews, a
pioneer in computer music. Having the
local converter saved an 80-mile
roundtrip to the Labs every time a com-
poser wanted to hear any sound at all.
Jim and Godfrey told me that the racket
was caused by samples out of range at
the output of a digital filter (a two-pole
digital resonator), and they were strug-
gling with the problem of controlling the
level of the output signal. 

I then told them that I had recently
finished writing a dissertation on digital
filters and that I might be able to help
them. Today, this may seem common-
place, but in the early 1960s there was
little (if any) published material on

digital filters, and, in fact, this digital-to-
analog converter was one of only a hand-
ful in the world that could operate at
high audio frequencies. It is also true, by
a turn of fate, that out of the millions of
people who could have appeared at their
door, I was one of only a handful who
had ever even thought about filtering
sound with a digital computer. 

Their problem was simple: they
weren’t scaling the filter. It’s a homework
problem now in any introductory DSP
course. I gave them a scaling constant,

they coded it up, and their outputs then
stayed in range. Although this was a very
straightforward fix, it established me,
quite unreasonably, as having godlike
powers, as if I came bearing technology
from another planet.

MUSICAL COLLABORATIONS
There followed years of enjoyable and
fruitful collaboration with composers at
Princeton, including especially Godfrey
Winham, and later, graduate student
Paul Lansky, now professor of music at
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the same institution. The converter
chugged away for years, converting big
reels of tape from university mainframes,
like the IBM 7094 and 360/91, for com-
posers at Princeton, as well as others
throughout the country who, not having
their own converters, mailed in tapes. My
work with Winham included an algo-
rithm for a digital pulse generator with
arbitrary pitch, one that generates pitch-
es “in the cracks.” To explain, a pulse
generator that interlaces ones with
strings of zeros can generate only pitches
with frequencies that are integral frac-
tions of the sampling rate. These are not
distributed densely enough in the musi-
cal scale to do music, and for a while it
was a puzzle as to how to generate arbi-
trary pitches. The solution lies in exploit-
ing an identity for the sum of sinusoids
(for details see [1]). 

My collaboration with composers
continued with other projects, including
adapting linear predictive coding (LPC)
for the synthesis of singing. The idea is
natural: LPC, a new tool in the 1970s,
builds a speech model that separates the
pitch and the formant structure. If
speech is analyzed using LPC and then
resynthesized using the right pitches,
singing results. Godfrey Winham did
some early experiments with the idea,
and Paul Lansky went on to master the
technique to make exciting music. He
even played with transformations of the
formant structure to change the percep-
tual size of instruments, making a virtual
string ensemble from a scale played by a
single violin [2]. 

This and my subsequent work in DSP
was a natural continuation of my gradu-
ate work, which was so strongly influ-
enced by Sheldon Chang, John
Ragazzini, and their generation of
researchers. By the 1950s, the early
development of digital computers had
engendered a great deal of interest in
what was then called “sampled-data”
control—that is, using digital computers
in a control loop, at the time a new and
radical idea. A transform theory for sam-
pled signals had been developed, which
became the z-transform. The transition
from analog to digital ways of thinking
was in the air. 

ANALOG-DIGITAL CONNECTIONS
It was quite natural, therefore, that my
research interests were drawn to this
analog-digital connection. The theme of
my dissertation was developing the view
that digital signals can be thought of
apart from the idea that they are “sam-
ples” of anything and that there is a cor-
respondence between the two idealized
(linear, shift-invariant) worlds of analog
signal processing and DSP. This made
possible a kind of technology transfer,
especially in filter design. All the tech-
niques for designing analog filters—for
the famous Butterworth, Chebychev,
and Cauer filters, for example—became
immediately applicable to digital filter
design. A half-century of brilliant work,
including many elegant closed-form
solutions, was retrieved for immediate
use in the new context. The key idea was
to map the frequency axis in the digital
domain to the frequency axis in the ana-
log domain in a one-to-one fashion,
using the familiar bilinear transforma-
tion. Any book on DSP will cover this
technique for designing closed-form
infinite-impulse response digital filters,
and my DSP Primer [3] is no exception.
Soon after finishing my dissertation I
became aware that Jim Kaiser, at nearby
Bell Labs, was, independently and con-
currently, using the same transforma-
tion for the same purpose. With his
sharp insight and scientific ability he
became a kind of mentor to me and to
many others in the growing digital sig-
nal processing community. 

The bilinear transformation has been
around a long time and pops up
throughout the sciences, usually in con-
nection with mapping circles to circles
or lines. Transmission line people use it
in graphical form as a “Smith Chart” for
impedance matching. I had come upon
the bilinear transformation when I started
working on designing digital filters in
1962, and it was my advisor, Sheldon
Chang, who had scribbled it down for me
one afternoon, with the offhand sugges-
tion that maybe it might be of some use
in filter design. Sheldon was, I believe,
trained as a physicist, and has a corre-
sponding deep and powerful intuition
about how things work. In working

under him I learned to pay attention to
every word he said, a hard-learned lesson
for many graduate students. As I followed
this lead, it became clear to me for the
first time that the transformation
allowed an inter-conversion between
analog filter and digital filter design.

We should take a moment to con-
sider why the bilinear transformation
plays such a central role in the connec-
tion between the analog and digital
domains. To begin with, it is important
to realize that if we want to establish a
one-to-one mapping between analog
and digital signals, sampling does not
do the job. This is easy enough to see:
many different analog signals have the
same periodic samples. For example,
we can interpolate sine waves of many
different frequencies through the sam-
ples of one particular sine wave at one
particular frequency. Thus, sampling
can map more than one analog fre-
quency to one digital frequency. (This
fact lies at the root of aliasing prob-
lems.) It turns out that the simplest
and most natural way to establish a
one-to-one correspondence between
the frequency axes in the analog and
digital domains, the imaginary axis in
the analog case, and the unit circle in
the digital, is to use just the simple
relationship s = (z − 1)/(z + 1) .  It
maps zero frequency in the digital
domain (z = 1) to zero frequency in
the analog domain (s = 0); it maps the
highest digital frequency (z = −1) to
the highest analog frequency (s = ∞);
and it maps all the other frequencies to
each other in a one-to-one fashion. The
transformation between the frequency
axes is usually encountered in the fol-
lowing form. The analog frequency
variable is written as �, so s = j�; the
digital frequency variable is written as
ω, so z = exp( jω); the sampling inter-
val is represented by T; and the bilinear
transformation is de-normalized by
using s = (2/ T)(z − 1)/(z + 1) .  The
analog and digital frequency variables
are then related to each other explicitly
as � = (2/ T) tan(ω/2) , which can be
thought of as a nonlinear stretching
of  the ω -axis  so i t  f i ts  onto the 
�-axis.



After seeing the close connection
between the digital and analog filter
design problems, I became absorbed by
the larger idea of a formal correspon-
dence between digital and analog signal
processing, and went on to show that the
bilinear transformation can be used to
induce an isomorphism between the two
signal domains: digital and analog sig-
nals are two reflections of the same
thing, we are merely looking at the sig-
nals in two different coordinate systems
(see Figure 1). The term isomorphism
means, informally, that there is a corre-
spondence between analog and digital
signals that satisfies certain nice mathe-
matical properties (specifically, it must
be linear, reversible, and preserve the
inner-product operation; see [4] for
details). The isomorphism does work
exactly as a change of coordinate system.
We expand an analog signal in a basis
that consists of a sequence of functions
and use the coefficients of the expansion
as the corresponding digital signal. The
isomorphism has implications beyond
filter design, including the equivalence
of least-squares design problems in the
two domains [4]. 

But the bilinear transform does
much more than connect the analog
and digital signal spaces: it also induces
a mapping between linear, shift-invari-
ant filtering operations. That is, if an
analog signal x gets filtered by an ana-
log filter to yield another analog signal
y, the digital signal corresponding
under the isomorphism to x gets fil-
tered by a digital filter to yield the digi-
tal signal corresponding to y . And,
furthermore, the digital filter that con-
nects the signals in the digital domain
is just the original analog filter with its
frequency variable transformed by the
bilinear transformation. This is how
analog and digital signal processing can
be connected perfectly: every filtering
operation in one domain is mirrored by
a corresponding operation in the other.
The mathematical foundation provided
by the isomorphism shows us that the
rich intuition we bring with us from the
analog realm of linear signal processing,
with all the power of frequency domain
interpretation that we take for granted,
applies equally well to the digital realm.

In historical context, I like to think of
this connection as enabling a transfer of

technology, not only from analog to digi-
tal, but from control theory, fueled to a
great extent by the postwar development
of rocketry, through sampled-data con-
trol, to the exciting development of com-
puter music in the second half of the
20th century. 
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[FIG1] The diagram illustrates how digital and analog signal processing are connected by
an isomorphism, induced by mapping the respective frequency domains using the
bilinear transformation. The frequency variable in the analog case is usually denoted by
�, and in the digital case by ω. The bilinear transformation connects these by
� = (2/T) tan(ω/2), where T is the sampling interval. I make a distinction between a
transformation, which maps variables, and a transform, which maps functions.
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