COS 524 Class Notes
Draft of March 2, 1992 Ken Steiglitz

x.1 Karmarkar’s Algorithm [Ka]

The simplex algorithm stays on the boundary of the feasible set, and this fact has
been blamed for its poor theoretical worst-case complexity. It scems that the ellipsoid
algorithm is able to guarantee good asymptotic performance because it does not restrict
its attention to boundary points, but can probe freely in the domain of its variables. Itis
essentially a feasibility-testing algorithm, however, and it solves the optimization prob-
lem LP only by solving a succession of related feasibility problems. At this point, the
consensus is that the ellipsoid method, although it first showed that LPe P, and has some
important theoretical consequences, is not competitive with simplex in practice.

In 1985, Karmarkar described another polynomial-time algorithm for linear pro-
gramming, one which operates more directly within the feasible space of the original
problem. The algorithm is interesting enough to study for its own sake, but is even more
so because there are cases where it appears to be computationally faster than simplex.
These cases rely for computational speed on the constraint matrix being sparse, and also
require careful implementation.

Karmarkar’s algorithm has spawned a number of variants, which are termed
interior-point algorithms, because they share the property of moving strictly within the
feasible set, rather than on its boundary. Most of these variants are closely related to clas-
sical iterative techniques for minimizing nonlinear functions subject to constraints. In
this and the next section we describe the original version of Karmarkar’s algorithm.

Karmarkar’s algorithm works with the following form of linear programming prob-
lem, which, while apparently very special, can be shown to be equivalent to general LP
(Problem x-1).

minc’x c¢,xe€ R" x.1)
xe Nan A (x.2)

where
N4 = {x] Ax = 0} (x.3)

(the nullspace of A), and
A= {x]x20,¢ex = 1} x.4)

-9.

The vector e will be used throughout this section to denote the vector of 1s,

e = (1,1,1, .-+ , 1)’, and thus the constraint e’x = 1means
n
>xi =1 (x.5)
1
F=NAmA ﬁ'=NAD('\A

Fig. x-1 ‘Karmarkar’s algorithm. The initial feasible point a in F is mapped by T to the
central point d in F. An appropriate cost function is then minimized over the sphere
about d with radius or, to produce the point b, and the transformation 7! then carries b
back to the feasible point b, completing one iteration of the algorithm.

The set A is therefore the (n —1)-dimensional simplex defined by the intersection of this
hyperplane with the nonnegative orthant. The feasible set in this formulation is the inter-
section of the nullspace of the operator A with A. From now on we use the notation
F = Njgn Afor this set.

We also make the following assumptions, which can also be shown to be non-
restrictive (Problem x-2).

e The minimum value of the cost function is precisely 0; thatis, min ¢’x = 0.

e The pointd = e/n is feasible. It is used as an initial feasible point of the algo-
rithm. (The letter d will be used throughout this section to represent this particular
point,)

Finally, w¢ assume we are given an integer g which serves to define the termination con-
dition

< 274 (x.6)

As we know from previous discussion, when g = O(L) where L is the size of the input
problem, this is sufficient to determine the solution to the linear program exactly.

The bare mathematical statement of Karmarkar’s algorithm itself is simple, but the
details involved in showing it works and is polynomial can be tedious. We begin with an
intuitive explanation of the basic idea. (See Fig. x-1.) As in the ellipsoid algorithm, the
liberating idea is to break free from the surface of the polytope of feasible points, and to
operate somehow in its interior. In fact, the key step transforms the feasible space so that
we can do an unconstrained optimization within a sphere — without fear of hitting a
boundary. At each stage the point a in the feasible set F is mapped by a transformation T
to the center d of a new set F. The transformation 7 is nonlinear, and depends on a. We
next perform an unconstrained minimization within a sufficiently small sphere with
respect to an appropriate cost function, to arrive at the new point OTa, and then reverse
the transformation to get the new pointa = T~!OTa. (See ‘Fig. x-2.) The success of
the scheme depends on the careful choice of the transformation T and the cost function
used in F.

We begin with a definition of the transformation 7. Given a feasible point
a e F, a > 0, define the nxn diagonal matrix D = diag(a;). Then Tis defined by

T(x) = (x.7)

Notice that if any component of a is 0, T is not well defined. This will not cause a prob-
lem, however, because throughout the algorithm we will be dealing with feasible points
whose components are strictly positive. It is not hard to show the following properties of
the mapping T (Problem x-3):

Ta) = < = d (x.8)
n
T l(x) = ,D"x, for x e A (x.9)
T:A — A, and is one—to—one and onto (x.10)
T maps vertices of A to vertices of A (x.11)

T: F - F = Nygpn A (x.12)

Fig. x-2 A more precise illustration of Karmarkar’s algorithm The feasible set F and its
transformed version F both lie in the nonnegative slice of the hyperplane e’x = 1, and the
central point d lies in both subsets.

We will fix the notation F for the transformed version of F, which by (x.12) turns out to
be NapN A.

Next, we need to set the radius or of the sphere centered at the point d so as to

ensure that it stays in the nonnegative orthant. Figure x-3 shows that the radius r is the

distance from the center d to a point of the form (0, ——1—, 1 L

n-1"n-1"""n-1

), and

therefore

Fig. x-3 Calculation of the radius r.

1 1 1
1" n-1"""" n-1

= 1/\n(n-1)

1 1 1
r = |ICO, M = = = .. =l x13)
n n n n

The constant o is a safety factor, which allows for arithmetic roundoff error, and also
allows for the fact that we will use a linearized version of the cost function in F , in place
of the cotrect, but nonlinear cost function ¢’7T~!x. We will see later that the choice
o = 1/4is adequate for our purposes.

The linearized cost vector we use in the transformed space Fis
¢ = Dc (x.14)
and so, by (x.7), the cost we actually use can be written in terms of the original x as

’ ’
e c’x c’x

c’'x = D1 = — (x.15)
T Y (y/ap
j=1

-6-

From this we see that ¢’ can be considered an approximation to the scaled version ¢’x/n
of the original cost, provided x does not move too far away from ourain F.

Denate the sphere with center d and radius ar by S(d, ar), and define the
(n+1)Xn matrix ‘

e

B = [AD] (x.16)

which is just the matrix AD over a row of 1’s. The actual minimization is described in
the next theorem.

Theorem x-1 (Karmarkar’s Algorithm) The following algorithm minimizes ¢’x over
FA S, ar), o < 1.

1. Compute

¢, = I - B'(BB’)"!B]¢ (x.17)

2. Normalize:

¢p = cp/llcpll (x.18)

3. Step a distance or in the direction —¢:

-~

b = d - arc, (x.19)

Proof It is easy to verify first that the new point b remains in F, because B¢, = 0,and
S0

Bb = [%] - (x.20)

which, together with the fact that b 20, expresses the condition for feasibility in the
transformed set F. In fact, p is defined the way it is to be in the nullspace of B, and the
operation in (x.17) is an orthogonal projection into that space.

-7-

Now let z be any point in FA'S (d, ar). We would like to show that its cost can be

no smaller than that of b. From the fact that_B(I; — z) = 0 we can write

B'(BB’)"'B(b-z) = 0

Equation (x.17) implies that
(¢ - c,)’ = &'B(BB’)'B

Combining (x.21) and (x.22) we get

(¢ - cp)'(E -z) =0
and therefore

Fb-2 = ¢’(b-2)
Next we examine

cp’(b—2) = licpll &p’[d ~ arty - 2]

lcpll [€p°(d = 2) — ar]

Using the fact that| ¢,"(d = 2)] < |ld — 2l < orwe conclude that

Gb-2) = ¢/ (b-2 <0

or

which is what we wanted to prove. [

(x.21)

(x.22)

(x.23)

(x.24)

(x.25)
(x.26)

(x.27)

(x.28)

-8-

The three steps of Theorem x-1 constitute Karmarkar’s algorithm. We now need to
prove it is theoretically efficient.

x.2 Complexity Analysis of Karmarkar’s Algorithm

There now remains the task of showing that the b produced in Theorem x-1
improves the cost enough at each iteration to make the entire algorithm work in polyno-
mial time, Karmarkar’s idea is to use an intermediate function, called a potential func-
tion, to measure the progress of the algorithm. This function has the property that it
varies approximately as the logarithm of the true cost, but will penalize us if we approach
too close to the boundary. In particular, for x € F, we define the potential function by

’
c’x
Xj

f(x) = i In = nin(c'x) - i In x; (x.29)
j=1 j=1

Note that f(x) is invariant with respect to a scale change: that is, f(kx) = f(x) for any
scalar multiplier k. For a point in the transformed space, z € F , we define another poten-
tial functi}on]‘by fevaluated at the pre-image of z:

~ - D
f = fI7'@) = ()
e'Dz
= f(Dz) (x.30)
(because 1/¢’ Dz is a scalar multiplier)
= S EE - Shg (x31)
j=1 %j j=1

which we will need later. Thus, the function]~‘ has the same form as f, except that ¢
replaces ¢, and there is an additive constant.

The basic idea of the rest of the convergence analysis of the algorithm is that each
iteration results in at least a constant decrease in f. That is, we will show

f(b) < f(d) - 8 (x.32)

where 8 is a constant, and b and d are as used in Theorem x-1. The way}is defined
means that this implies

-9.

fb) < fla) - 3 (x.33)

and this in turn will imply convergence of the entire algorithm in polynomial time.

We begin by showing that there is at least one point in the sphere S(d, or) in the
transformed space that has the improved cost (x.32). After that, we will be able to show
that the point found in Theorem x-1 also has such a good cost.

Theorem x-2 There is a point z € FA'S (d, ar) such that

fz) € f(d - 8 (x.34)

where 6 = In(1 + o).

Proof Let z* be a point in F where &’x achieves its minimum value. We know that this
occurs on:the boundary of F ,soz* & S(d, ar). (See Fig. x-4.)

Fig. x-4 The point z lies at the intersection of the line between the center d and the point
z*in F.

The point we want to use is the point farthest in the direction from d to z* but still within
the sphere S(d, ar), namely

z = (1 -Nd + Az¥* (x.35)

-10 -

where A is a positive number less than 1. We know that this point z € F because F is
convex. Taking costs, we get

¢’z = (1 = AN)'d + Aé'z* (x.36)

Now we know from (x.15) that the corresponding costs of x € F and of % e F differ by
a positive factor, and that the minimum value of the cost in F is zero, so the last term
here is zetro, and we have

c'd 1
= x.37)
&'z 1 -A
We next use (x.31) to write the improvement in the potential function
~ ~ n c’d Zi
f) - Fo = $mEli (x.38)
j=t ¢z %
and, using (x.35), (x.37),andd; = 1/n,
n
= (i + "A_gw (x.39)
j=1 1-A

We next bound this from below by using the fact (Problem x-6) that for nonnegative A ;

T In(l +A4;) 2 In(l+ ¥ A4;) (x.40)

i i

so that we can write, using also the fact that e’z* = 1,
fd - F@ = (1 + 1"__7“1) (x.41)

Finally, to put this in terms of known quantities, we need a lower bound for A, which can

-11-
be derived by noting
ar = |lz — dl = lIMz* - I < '?»R (x.42)
where R/r = n - 1 (Problem x-4), so that

A no
> _— 2
1__7V_1+n_0€_1_1+oz (x.43)

Combining this with (x.41) yields the result. (]

We are now ready to prove the main result — that the point b produced in
Karmarkar’s algorithm also provides a good decrease in the potential function.

Theorem x-3 If we choose @ = 1/4andn 2= 4 in Karmarkar’s algorithm, the pointE
in (x.19) satisfies '

f(b) < f(d) - & (x.44)

with the constantd = 1/10.

Proof Define the function

~7

¢’x
-~ p 4
c'd

nln

g(x) (x.45)

let EO be a point in FAS (d, our) where f(x) achieves its minimum value, and write the
identity

@ - fb) = [fd) - f(bo)] + [f(bo) - (F(d) + g(bo))]
— [F(B) - (f(d) + g(b))] + [g(bo) — g(b)]
(x.46)

-12-

Our plan is to lower-bound each of the four bracketed terms. Using z from the previous
theorem,

f(d) - f(bo) 2 f(d) - f(z) 2 In(1 +) (x.47)

which lower-bounds the first term. To lower-bound the second and third terms, let
w e FnS(d, or), and use (x.31) to write

~ ~ n
fw) = [fd) + gw)] = = 3 In—= (x.48)
The inequality of Problem x-8 then yields

~ ~ 2
| Fon) = 17@) + g | € 5 (x.49)

where B = ayn/(n—1). To lower-bound the last term in (x.46) we observe that g(x) is
a monotonjlica.lly increasing function of the cost ¢’x, and so it achieves its minimum value
in FA S(d, ar) at the point b. Combining all these lower bounds yields finally

fd) - f(b) 2 In(1 +a) - ﬁ (x.50)

We leave it for Problem x-9 to show that when « = 1/4 and n 2= 4 the right-hand-
side is at least 1/10. O

The ircst of the complexity analysis is easy. Let the result of Karmarkar’s algorithm
after i iterations be denoted by b, where b(® = d. Then

Theoremi x-4 Karmarkar’s algorithm solves the linear programming (x.1) and (x.2) with
input length Lin O(nl) iterations and O(n* L) arithmetic operations.

Proof WE have already observed in (x.33) that the result of the previous theorem implies
that in thd original feasible set F

-13-

@Yy < fBU-Dy - 8 (x.51)
so after k ﬂtcraﬁons
f®) < f(d) - k8 (x.52)

Replacing|the function f by its definition and rearranging, this becomes

C,b(k) n k n
-7 S YhbY - ¥ Ind; - k8
J=1 Jj=1
<Snlhn - kb (x.53)
If we now choose k = n(g + In n)/0 iterations, where ¢ = ©O(L), we are assured

that

c’p®
c’d
which is stufﬁciently close to find an optimal vertex. The most time-consuming parts of

the algoritijhm are the matrix inversion and multiplications in (x-17), and the time bound
follows frbm the fact that we can perform those with O(n?) arithmetic operations. O]

< e? <2714 (x.54)

-

PROBLEMS

*x-1 Shov+/ that a standard form linear programming problem can be put in Karmarkar’s
formi (x.1) and (x.2).

*x-2 Show that there is no loss of generality in assuming in Karmarkar’s algorithm that
the minimum cost is zero, and that the pointd = e/n is initially feasible.

x-3 Shov? properties Egs. (x.8) to (x.12) of the transformation 7.

x-4 ShO\{jv that the feasible sets F and F in Karmarkar’s algorithm are contained in the
sphere with radius R = (n—1)/n,sothatR/r = n - 1.

x-5 Invektigate conditions which ensure that the matrix (BB’) in the definition of the
proje@cted cost ¢, (x.17), is invertible.

-14 -

x-6 Prove (x.40).
x-7 Prov%a that when|x] <P < 1

x2

2(1 - B)

x-8 Use the result of the previous problem with B = o+n/(n—1) to show that when
w € S(d, or) in Karmarkar’s algorithm

| In(1 +x) — x <

BZ
2(1-P)

M=

|
ln—]|
T

I
I
i}
x-9 Shovy that the right-hand-side of (x.50) is at least 1/10 wheno = 1/4andn > 4.

x-10 Whén isc, = 0inKarmarkar’s algorithm? Can this cause a problem?

x-11 [A. H. Watson] Show that F and Fin Flg X-2 must connect the same two edges of
the tlha.nglc bounding A.

NOTES AND REFERENCES

For puﬁinLg a general linear programming problem in Karmarkar’s form (Problems x-1

and x-2), $ee his original paper

[Ka] - N. Karmarkar, ‘““A New Polynomial-Time Algorithm for Linear Program-
- ming,”” Combinatorica, 4 (1984), 373-395.

He also dliscusses there a modification of the algorithm that takes O(n?"5 L) instead of
O(n* L) arithmetic operations.

y.3 Centejrs and Another Algorithm

We bave just described Karmarkar’s algorithm in its original form. The iterative
step takes| us from the space of feasible points F to the transformed space F, where we
take an u&constrained step, and then back from FtoF. The complexity analysis is some-
what comblicated, but reveals to some extent why we convert the initial linear program
to Karmarkar’s special form. For example, we constantly made use of the fact that F was
contained 11n A. As mentioned in the introduction, this algorithm has spawned many vari-
ants, some closely related to classical optimization methods. In this section we will
describe #n algorithm that is much easier to understand geometrically, and that works
directly m the original problem space of a canonical-form linear program. The algorithm

-15 -

makes use of the idea of the center of a polytope, which we discuss next.

The i(ey to Karmarkar’s algorithm is the transformation of our current feasible point
to a pointi sufficiently far away from the constraint boundaries. Instead of transforming
the spacc,%we can, at each step, look for such a point in our original space. Let us assume
now that Qur initial linear program is the canonical form

max c’x

Ax 2 b

where xé R"™ and A is an mxn matrix, m > n. We denote by P the feasible set
{x| Ax = b}. If we penalize approach to a boundary by the logarithm of the distance
to the con$ﬂﬁnt, we get the following definition of the center ® of the feasible set P:

©(P) = max ¥, In(a;’x - b;)
xe P i=1

The importance of this center has been appreciated for some time, and its relation to
linear prdjgramming algorithms has been studies by Bayer and Legarius [BL], Renegar
[Re], and }Vaidya [Val]. Itis in a very natural sense a ‘‘balance point’’ of the polytope —
the function maximized by the center is

m m
Gw = ¥ In(a’x - b) = I M@a's - b)
i=1 =

so the cenjjter maximizes the product of distances to the constraint walls. This function G
is stﬁctlﬂ concave (see Problem y-1) and assuming int(P) #), it follows that the
center is a uniquely defined point.

Theiproblcm of finding the center is quite different from solving a linear program-
ming problem, if for no other reason than the fact that the hard boundaries have been
eliminated, and we are searching for the maximum of a smoothly varying function. It
turns out, in fact, that the center can be found in polynomial time by using the classical
Newton’SL method, although the complexity analysis is lengthy [Val], and will not be
described here. What we will show is that this can lead to a polynomial-time algorithm

for lineaﬁ programming in a very natural way. Vaidya gives one method in [VAZ2]; the

-16 -

particular jmethod we describe next is quite clear geometrically. It is attributed to Rene-
gar and was discovered, independently, by A. H. Watson [Wa].

B

c'x 2 Bk

Fig. y-1 ‘A simple linear programming algorithm based on center finding. At stage k the po-
lytope is bhopped by the constraint ¢’x = Py, and a new center ® found.
|

The iidea is to add the constraint ¢’x = B to the other constraints, given that we
know a sq!)lution of cost B. This chops a piece from the feasible set, and we can then find
the center of the new polytope. The cost of this new center gives us a new value for B,
and we c%m iterate. (See Fig. y-1.) As we continue this process, the successive centers
produce a sequence of points that are interior to the original polytope, and whose cost
converges to optimal. As in Karmarkar’s algorithm, when we are within 2790 of
optimal, #?Jve can stop, and if desired find an optimal vertex in polynomial time. We state
the main L‘esult formally as

Theorerr+ y-1 Given an algorithm for finding the center of a polytope in time T(m, L),
there is an algorithm for solving linear programming in time O(m-L-T(m, L)).

Proof S¢ppose after k iterations we have found the center ® of the polytope
Py = {x]| Ax 2 b, c'x 2 Bg}

and it has cost c’® = PBr41. Atthe point @ the gradient of G is zero, so we can write

-17 -

for all xe Pk

moa;’'(x - o) c’(x — W)
VG'(x - ®) =
- ,~§1 a;’® - b; T Ve - Bk

Adding ode to each term, we can re-write this as

m a;’x — b; c’x — Py
+
’ I
c1ai’0 - b; c’'w — Bg

Using the]fact that the first summation is nonnegative in the polytope Py, we get

1
m+1

cw - By 2

(c’x = Bx)

This hold$ for all xe Py, so we can replace the cost ¢’x by the maximum cost in P, say

B max- Leﬁng c’® = Pr4+1 we can write this as
Bret — B 2 L([3 - Bx)
m+1 "

Simple rebrrangement of this yields

m
m+ 1

(Bmax - Bk)

ﬁmax - Bk+1 <

We know that we can stop this iteration when Pz — Bo is reduced by a factor of
20(1) | assuming we start with By = —-2°@) Thus, we want after K iterations

K
m < 2700
m+1

Choosing K = O(m-*L) and observing that

completes the proof. []

PROBLEMS

y-1 Shovﬁ!/ that the function used in the definition of center,

m m
G(x) = Y In(a;’x — b;) = In _Hl(a,-'x - b;)
i=1 1=

i
is stpictly concave. (Hint: see Problem 1.13.)

Notes am* References

Vaidya

polytope

[Val]

g‘t/es an algorithm based on Newton’s method for finding the center of a
hich takes O((mn + n3)-L) steps in
P. M. Vaidya, ‘‘A Locally Well-Behaved Potential Function and a Simple

Newton-Type Method for Finding the Center of a Polytope,”” AT&T Bell
Laboratories, 1987.

The chopping method is generally attributed to Renegar. Watson described the version
described here in a talk:

A. H. Watson, ‘A Conceptually Simple Geometric Polynomial-Time Linear

2

Programming Algorithm and Extensions,
University, April 27, 1988.

Research Seminar, Princeton

With Vaidya’s method of finding centers Watson’s chopping method solves linear pro-

gramming in O((m?n + mn3)-L?) steps, but Vaidya shows a way to use centers that
takes O(((m + n)n? + (m + n)!3n)-L) steps:

[Va2]

P. M. Vaidya, ‘“‘An Algorithm for Linear Programming which Requires
O(((m + n)n? + (m + n)>n)-L) Arithmetic Operations,”” AT&T Bell
Laboratories, 198?.

Other papers that study the center of a polytope are

[Re]

J. Renegar, "A Polynomial-Time Algorithm, Based on Newton’s Method, for
Linear Programming,”” MSRI 07118-86, Math. Sciences Res. Inst., Berkeley,

-19-

CA.
and

[BL] D. A. Bayer and J. C. Legarius, ‘“The Non-Linear Geometry of Linear Pro-
gramming I, Affine and Projective Scaling Trajectories,”” AT&T Bell Labora-
tories, 1986.

The idea of cutting off a part of the feasible set by passing a plane through a central point
is discussed for convex programming problems in

[NY] A. S. Nemirovsky and D. B. Yudin, ‘‘Problem Complexity and Method
Efficiency in Optimization,”” John Wiley, New York, 1983. (Translated from
the Russian: ‘‘Slozhnost’ Zadach i Effektivnost’ Metodov Optimizatsii,”
1979.)

They discuss the particular method based on the center of gravity of the convex body,
and attribute that idea to

A. Yu Levin, On an Algorithm for Minimizing Convex Functions,”” Doklady
Akad. Nauk SSSR, vol. 160, no. 6, 1965. (English translation: Soviet Maths.,
vol. 6, no. 1, pp. 286-290, American Mathematical Society.)

