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The Design of Minimum-Cost Survivable Networks

KENNETH STEIGLITZ, memBER, 1EEE, PETER WEINER, MEMBER, 1EEE, aND D. J. KLEITMAN

Abstract—We consider the problem of designing a network which
satisfies a prespecified survivability criterion with minimum cost.
The survivability criterion demands that there be at least r,; node
disjoint paths between nodes i and j, where (r;;) is a given re-
dundancy requirement matrix. This design problem appears to be
at least as difficult as the traveling salesman problem, and present
techniques cannot provide a computationally feasible exact solution.

A heuristic approach is described, based on recent work on the
traveling salesman problem, which leads to a practical design
method. Algorithms are described for generating starting networks,
for producing local improvements in given networks, and for testing
the redundancy of networks at each stage. This leads to networks
which are locally optimum with respect to the given transformation.
Randomizing the starting solution ensures that the solution space is
widely sampled. Two theorems are given which allow great reduc-
tion in the amount of computation required to test the redundancy
of a network. Finally, some design examples are given.

I. STATEMENT OF THE PROBLEM

N IMPORTANT consideration in the design of a
communication or transportation network is the
degree to which connectivity between given pairs

of nodes is vulnerable to the failure or destruction of other
parts of the network. The introduction of redundancy in
the network will increase its survivability, but at the same
time will increase the cost of construction and main-
tenance. This leads to the problem of designing at mini-
mum cost a network to meet prespecified redundancy
requirements.

Specifically, we assume that we are given n nodes and
the cost matrix C = (c.;), where c,; is the cost of building
and maintaining a branch between nodes  and j. The
treatment will be restricted to undirected graphs, so that
C will be assumed to be symmetric. A set of paths between
nodes ¢ and j will be called node disjoint if they share no
nodes other than ¢ or j. The redundancy r:; 18 defined as
the maximum number of node disjoint paths between
nodes ¢ and j. A redundancy of r;; between nodes 7 and 7
means that at least r;; nodes (other than 7 and j) and/or
branches must be destroyed before ¢ and j are disconnected.
This concept of redundancy is independent of probabilistic
considerations, and determines in a sense a minimum
enemy effort required to disrupt a strategic communication
network.
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The problem mentioned above can then be stated pre-
cisely as follows. Find an undirected network that has the
following properties.

1) Feasibility—The redundancy between any two
nodes 7 and j is at least r,;, where R = (r;) is a
given matrix,

2) Optimality—No network which satisfies 1) has
lower cost.

Notice that the network redundancy is required to be at
least, but not precisely, ;. Hence the question of the
exact realization of a given R does not arise.

When the cost matrix C is uniform (¢;; = constant for
all ¢ and j), the problem becomes one of designing a net-
work with the minimum number of branches. In the special
case of uniform C and R, a complete explicit solution has
been given [1]-[4]. On the other hand, the synthesis
problem with uniform C and arbitrary R has not been
completely solved, although the problem has received
attention and many special cases have been worked out [5].
In addition, design problems with different definitions of
redundancy have been considered [6).

II. HEURISTIC APPROACH

The general design problem as stated above can be
formulated as an integer programming problem, but the
number of constraint equations quickly becomes astro-
nomical for even small problems. In this respect the prob-
lem is similar to the traveling salesman problem, which
has long resisted attempts at analytical solutions that are
computationally practical. Another similarity stems from
the fact that a minimum length closed tour satisfies a re-
dundancy requirement of 2 between every pair of nodes.
Hence the survivable network design problem with arbi-
trary cost and a uniform redundancy requirement of 2 has
a good if not optimal solution provided by the solution to
the traveling salesman problem. For these reasons, plus
the difficulties encountered in the uniform cost case, it
appears that present analytical methods cannot provide a
practical exact solution to our problem. Recent work on
approximate methods for the traveling salesman prob-
lem [7], [8] has been quite promising, however, and the
approaches used for that problem suggested the techniques
which we shall use here to develop practical algorithms for
designing low-cost survivable networks.

By a ‘“feasible” solution we shall mean one which
satisfies condition 1) above. By an “optimal” solution
we shall mean a feasible one which satisfies condition 2).
Our goal is to present a practical method for finding feasi-
ble solutions with costs close to optimal. By a “practical”’




Diagrammatic representatxon of the hill-climbing
procedure.
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Fig. 2. Flow diagram of the hill-climbing procedure.

method we mean one which will handle realistically large
problems in reasonable computation time.

The method to be described here has two main parts,
which may be called the starting routine and the optimizing
routine, respectively. The starting routine generates a
feasible solution. The optimizing routine then searches
networks generated by local transformations for a similar
network with a lower cost. When such a local improvement
is found that is also feasible, the improvement is adopted
and the search continued from this solution, until no
further loeal improvements can be made. In this way
there is eventually reached a feasible network which is
“locally optimal” in the sense that no local transforma-
tions of the type considered result in a feasible network
with lower cost.
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Once a locally optimum solution is found, the entire
process is repeated using the starting routine again. This
starting routine is randomized, and by hill climbing to
local optima from different random starts a variety of
solutions can be found. Fig 1 shows a diagrammatic
representation of this process, where the space of feasible
solutions is represented by the entire figure, random
starting solutions are represented by dark circles, and
local optima by light circles. The practicality of the ap-
proach is based on the assumption that random local
optima are, with high probability, close in cost to the
global optimum. This assumption is sensitive to the par-
ticular local transformation used and must be verified
experimentally in a given application.

Fig. 2 shows a flow diagram of the method. The pro-
cedure will be described in detail in the next sections.

III. THE RANDOMIZED STARTING ROUTINE

The purpose of this algorithm is to generate a network
that has a reasonable probability of being feasible, and
that at the same time has a relatively low cost. Its opera-
tion is based on the observation that the degree of node
i must be at least max,r, ; if there are to be ;; node disjoint
paths between nodes 7 and j. This gives a lower bound on
the number of branches at each node. Branches are added
to the network one at a time between the node with the
highest (updated) requirement and a node with the next
highest (updated) requirement. Of all those nodes with
the next highest requirement, that one is chosen that
results in the smallest increase in cost, with the constraint
that no parallel branches are allowed. All ties are resolved
by choosing the node highest on the list of nodes, and the
process terminates when the maximum requirement is
zero.

The routine is made nondeterministic by ordering the
nodes uniformly at random at the start of each execution.
This has been observed experimentally to produce a rich
variety of candidate networks, often with different num-
bers of branches.

The operation of the starting routine will now be illus-
trated by the seven-node example shown in Fig. 3(a),
where the cost matrix is obtained from the Euclidian
distance in the plane, truncated to an integer, and the
requirement matrix is uniformly 3. Fig. 3(b) shows the
random node ordering. We keep track of the updated
requirements at each stage by writing

node: 1234567
requirement: 3 3 3 3 3 3 3.

The highest requirement is 3, and therefore the first
branch to be added will start from node 1. The next
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highest requirement is also 3, and of all those nodes with
this requirement, node 2 (tied with 4) is closest to node 1.
The updated requiremepts become

1234567
2233333.

Next are added in turn the branches' (3, 5), (4, 7), (6, 5),
1,4),27),3,6),14,7), (2 3), 4 5), and (6, 7). The
result shown in Fig. 3(c) is feasible and has a cost of 243.
For this problem the starting routine required, on the
average, about three trials to produce a feasible solution.

Fig. 3(d) shows the optimum solution, with a cost of
242, obtained from the hill-climbing routine. The global
optimality was verified by an exhaustive program which
guarantees optimality but which is limited by computation
time to problems with about eight nodes. The next section
contains a description of the local transformation used to
hill-climb.

In some applications it might be desirable to use some
other method to obtain a starting network. When the
problem can be represented graphically, for example,
human suggestions might be more effective than the
heuristic procedure described here.

node:
requirement:

IV. THE Locar TRANSFORMATION

The particular local transformation selected for this
problem is called an X-change, and networks that are
local optima with respect to X-changes in the space of
feasible networks are called X-opt. This transformation
is motivated by similar transformations for the traveling
salesman problem such as Croes’ inversion [7] and Lin’s
generalization to A-change [8].?

If a network N has two branches, say (z, m) and (j, l)
such that (7, 1) and (5, m) are not in N, then an X-change
on the network N, producing a network N’, is defined by
the operation of removing the branches (i, m) and @, ),
and adding the branches (7, 1) and (j, m) (see Fig. 4).

If

Cit + Cim < Cim + Ci1

we say that the X-change is favorable, since the network
N’ has a smaller cost than N. The presence or absence of
the branches (7, j) or (m, ) is irrelevent.

An X-change has the property that the degrees of all
nodes are preserved. The fact that N is feasible does not
imply, however, that N’ is feasible. The network of Fig.
3(d) can be obtained from that of Fig. 3(c) by the X-
change replacing branches (4, 5) and (6, 7) by (4, 6) and
(5, 7). The X-change in this case is favorable, preserves
feasibility, and in fact produces the globally optimal
solution. ‘

! The symbol (3, j) will represent the undirected branch between
nodes ¢ and j. ]

? In the traveling salesman problem, an inversion, or a £-change,
is defined by removing two branches from the tour, and adding
two other branches to restore the graph to a tour. Similarly, a
S-change involves replacement of three branches, The X-change
described below is in fact a generalization of the 2-change, and
reduces to a 2-change if it is applied to a tour and if it preserves
feasibility.
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Fig. 4. Diagram of an X-change.

V. TESTING FEASIBILITY OF A
RanpoM STARTING SOLUTION

The method used to calculate the redundancy between
a given pair of nodes is due to Frisch [9]-[12] and will not
be described here. The algorithm is similar to the labeling
algorithm of Ford and Fulkerson [13] and requires compu-
tion time linear in the number of nodes n.

The feasibility of a candidate solution can-be checked,
of course, by calculating the redundancy between all possi-
ble pairs of nodes. This requires n (n — 1)/2 applications
of Frisch’s labeling algorithm. However, not all of these
checks are necessary in a given situation, and the number
of redundancy calculations required can be reduced sig-
nificantly, especially in the case of uniform R. To see this,
we prove the following result, where r;; denotes a re-
dundancy requirement, and r/; actual redundancy.

Theorem 1
If
Tami Z Tap (M
i 2 T @

for nodes m,, m,, ---
other, then

, M,,,, distinet from a, b, and each

T;b = Tab-

Proof: Suppose !, < r,,, that is, that the redundancy
requirement between a and b is not satisfied. Assume
first that the branch (a, b) is not present. Then there
exists a node cutset Q with £ < r,, nodes, which separates
the network into two or more disconnected subgraphs
G, Gy - ,witha € G,and b € G, (see Fig. 5). Node
m; must lie in the cutset, for if it lay in G,, condition (2)
would be impossible; if it lay in G,, condition (1) would
be impossible; and if it lay in G;, ¢+ > 2, both conditions
would be impossible. Hence, there are r,, distinet elements
in the cutset, which is a contradiction. If the branch
(a, b) is present, the argument is essentially unchanged.

QE.D.

This result enables one to eliminate the need for check-
ing r,, whenever the conditions of the theorem hold.
In such a case, we say that the entry r,, of the matrix R
is dominated by previous checks. In the case where R is
uniformly &, we need only perform the following redun-
dancy checks: first, between any node m, and all remain-
ing nodes; second, between any node m, and all remaining
nodes except m,; - - - ; and so on, up to m,. This s a total of

F=D+0=D+ -+ -k
= kn — k(k + 1)/2
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tests, which for large problems represents a considerable
saving over n (n — 1)/2.

In the nonuniform R case it i8 not clear how to order
the redundancy tests so as to take maximum advantage
of Theorem 1. The following ad hoc procedure was pro-
grammed and seems to perform well. It reduces to the pro-
cedure described above when R is uniform.

1) Select the largest unchecked entry r;; of R.

2) If it is dominated, consider it checked.

3) If it is not dominated, calculate 7/; and check the
entry if v}, 2 ry.

4) Go to 1) until every element of R is checked.

Of course, when a network is being tested for feasibility
and a given redundancy requirement is not met, the
checkout need not be continued further. Empirically, it
has been observed that certain pairs of nodes in a net-
work are more likely to reveal such infeasibility than
others. It is also true that infeasibility is usually revealed
at an early stage of a checkout, and that computation
time is determined largely by the cost of a complete
checkout of a feasible solution.

VI. TesTING FEASIBILITY AFTER AN X-CHANGE

If an X-change is performed on a feasible network, a
different economy can be effected in checking feasibility of
the new network. We need the following result, where r,,
denotes a redundancy requirement and r!; denotes the
actual redundancy after an X-change.

Theorem 2

If an X-change on a feasible network destroys feasi-
bility by reducing the redundancy between nodes a and b
below the requirement r,,, and if the X-change resulted in
the removal of branches (7, m) and (j, I), then either

r;"m < Tab
or
’
T < Tape

Proof: Assume first that the branch (a, b) is not present
in the original network. After the X-change a and b have
a redundancy of less than r,,, so that there is a node cut-
set @ with k¥ < r,, nodes, separating the network into two
or more disconnected subgraphs G,, G,, - -+ , witha € G,
and b &€ G, (see Fig. 6). Either 7 and m are disconnected
by the cut, or j and [ are; for otherwise, a and b would not
have had the required redundancy before the X-change.
Assume without loss of generality that ¢ and m are dis-
connected by Q. Then

r:- -S- k < rab-

The argument is not essentially changed if (a, b) was
present in the original network. Q.E.D.

From this theorem it follows that whenever

Tad é min (ra'wu ril)r
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Fig. 6. Diagram illustrating the construction of Theorem 2.

any infeasibility will be discovered after an X-change by
checking r/,, and r/,. In addition to 7/, and r},, then, we
need only check redundancy between those pairs a and b
such that

Top > Min (Fim, 741).

When R is uniform, only two redundancies need be
calculated after an X-change. This is in contrast with
naively calculating all » (n — 1)/2 redundancies, and
results in an enormous saving. The saving in the non-
uniform case will depend on the particular X-change and
the distribution of values in R.

VII. EXAMPLES

1) The first example has already been discussed to
some extent, and is shown in Fig. 3. As mentioned, the
solution with a cost of 242 has been verified to be opti-
mum. To illustrate the randomized aspect of the method,
100 local optima were found, with the following results:

Frequency

9

.20

251 7
6

1

9

9
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In this simple example the global optimum is found more
frequently than the other local optima. The average com-
putation time was about 0.2 second per local optimum
on the Univae 1108.

2) To illustrate the method when applied to a problem
with nonuniform redundancy requirements, the network
shown in Fig. 7 was analyzed. This network represents the
first stage in the construction of the Continental United
States Automatic Voice Network (conus aurovon) [14],
(15]. This network contained ten switching machines
(nodes) and existed at the end of 1965. The calculated
redundancy matrix is given below, and the cost is 67522
(the units are airline miles multiplied by 1/70).

0 3
0

S o

O W ww

O D

S v e

S vtk oo

S Uttt b
= N N N
=R R N

This matrix was used as a requirement matrix and 100
local optima found with the following result:

Cost Frequency

65692
65770
65822
65882
66409 ,
66593
66647
66701
66711
66780
67035
67044
67468
68313
69373
70978

bt
»OOoOWLk

bt
=W O IO = 00

The network with the best score of 65692 is shown in
Fig. 8, and has a cost about 2.7 percent lower than the
network of Fig. 7 with at least as much redundancy be-
tween each pair of cities. It also has one less branch.
Note that in this example the most frequently obtained
local optimum is not the lowest in cost, This problem re-
quired about 3.4 seconds per local optimum on the Uni-
vac 1108.

3) The last example illustrates the method on a rather
large-scale problem, a mosaic representing 58 switching
centers of coNus AUTOVON. Cost was determined by dis-
tance in this regular pattern. In a real application actual
geographical distances or cost in dollars could be used.
The redundancy requirement was taken to be uniformly 6.
Fig. 9 shows the best solution obtained after ten local

Fig. 7. coNus aurovon in 1965,

Fig. 9. A 58-city network designed in Example 3.

optima were found, each taking about 12 minutes on the
Univac 1108. The solutions obtained are superficially
similar to the polygrid pattern used in CONUS AUTOVON,
but have uniform redundancy. Thus, connections with
cities near the edge of the pattern have the same surviv-
ability as those with geographically interior cities.

VIII. ComMENTS

A practical method has been described for designing
low-cost survivable networks, a problem for which present
analytical methods fail. The approach is based on recent
advances in heuristic programming, and especially Lin’s
work on the traveling salesman problem. In addition,
recently developed tools of network analysis, such as
Frisch’s flow algorithm for calculating redundancy, have
been indispensable. :
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The heuristic approach described here depends very
much on interaction between the human and the com-
puter. The selection of starting solutions and local trans-
formations relies both on human intuition and computa-
tional verification. In this paper, for example, the random-
ized starting routine and X-opt were arrived at only after
examining many alternative schemes.

One advantage of the heuristic approach is that of
producing a number of distinct solutions with near optimal
cost. This allows one to take into account nonanalytic
constraints when selecting the final solution.

Finally, we mention that further effort along the lines
described here will very probably be rewarded by im-
proved performance, in the sense that better solutions will
be obtained in less time. A local transformation which
replaces three branches is a natural generalization of the
X-change, just as 3-opt is a generalization of 2-opt. Further
economies are possible in the feasibility checkout.
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