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We present an on-line distributed reconfiguration algorithm for finding a new maximum matching 
incrementally after some nodes have failed. Our algorithm is deadlock-free and, with k failures, 
maintains at least M - k matching pairs during the reconfiguration process, where M is the size of 
the original maximum matching. The algorithm tolerates failures that occur during reconfiguration. 
The worst-case reconfiguration time is O(k min(lAl,161)) after kfailures, whereA and 6 are the node 
sets, but simulations show that the average-case reconfiguration time is much better. The algorithm 
is also simple enough to be implemented in hardware. 0 1993 by John Wiley & Sons, Inc. 

1. INTRODUCTION 

Imagine that there are n persons in Village A and m in 
Village B. Two persons from different villages can be 
matched to become a couple, and at any time, only one 
person can be matched to another. Initially, the match- 
ing is maximum. Sometimes, however, people decide 
to  be alone. Without loss of generality, assume that 
some in B change their minds. Let G = (A ,  B, E )  be a 
bipartite graph and ( A (  = n, ( B (  = m. An edge between 
two nodes means that they are allowed to become a 
couple. After a person b has changed his or her mind, 
b’s original matching in A must find another available 
one in B, if possible. 

The process of finding a new matching to  obtain the 
maximum number of pairs is called reconfiguration. 
Unfortunately, there is no central agency to perform 
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the reconfiguration process, so this process must be 
done in a distributed and parallel way. It is also desir- 
able that, during the reconfiguration process, as many 
matched pairs be maintained as possible and that fail- 
ures during the process be tolerated. Ideally, there 
should always be at least M - k matching pairs after k 
persons have changed their minds, where M is the 
original number of matching pairs. The number of 
matching pairs should monotonically increase in the 
reconfiguration process. Therefore, if no new persons 
change their minds, the reconfiguration process will 
finally regenerate a new maximum matching, if one is 
possible. 

One motivation for this problem is that such an al- 
gorithm can be applied to any fault-tolerant system 
that involves bipartite matching. For example, Kuo 
and Fuchs [ 5 ]  showed that many problems of spare 
allocation in VLSI arrays can be modeled as bipartite 
matching. Based on our bipartite matching algorithm, 
we can have a distributed reconfiguration mechanism 
to replace faulty nodes by spare nodes in a redundant 
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array. In [9, 101, highly reliable structures with the 
asymptotically optimal number of nodes and edges for 
one-dimensional and treelike array architectures were 
given. They used bipartite matchings between levels in 
layered graphs and so these are particularly well suited 
for the run-time-tolerant algorithm described in this 
paper. 

The general matching problem has been extensively 
studied. For maximum matching in bipartite graphs, 
the algorithm of Hopocroft and Karp [3] is the fastest 
known, and the algorithm by Micali and Vazirani [6] is 
the  most efficient one for finding matchings in general 
graphs. More recently, an algorithm for on-line bipar- 
tite matching was presented [4]. Some papers [H, I l l  
also gave distributed algorithms for maximum match- 
ing in general graphs. 

Our problem is different from the usual matching 
problem, which starts with an empty matching. We 
assume that we start with a maximum matching, and 
after some nodes fail, we would like to have a simple, 
efficient, and distributed way to find a new maximum 
matching. Further, the algorithm should start to recon- 
figure the system as soon as failures occur, even 
though new failures may occur during the reconfigura- 
tion process. We say a reconfiguration algorithm is on- 
line if it can start to reconfigure the system immedi- 
ately after a failure occurs and can endure new failures 
during reconfiguration. This is an especially desirable 
property for run-time fault tolerance, since the system 
need not stop to do a reconfiguration process. 

We will not be concerned so much with the number 
of messages that PEs need to send to achieve a new 
matching, such as is done in the matching algorithms 
in [8, 111, which, in any event, are not designed to 
operate in the presence of faults. Rather, we want to 
minimize the effects of failures during reconfiguration. 
Our algorithm does tolerate faults during operation 
and ensures that after k failures there are always at 
least M - k matching pairs, where M is the original 
number of matching pairs. If there are no further fail- 
ures, the size of the matching grows monotonically 
until it becomes maximum. The algorithm is simple 
enough to be implemented in hardware. The overall 
reconfiguration time is O(k min(lA1, \ E l ) )  after k fail- 
ures. The simulation results show that the average- 
case reconfiguration time is much better. 

2. THE BASIC IDEAS OF OUR ALGORITHM 

We first explain our model: An array architecture is 
represented by a graph G; each node of G is regarded 
as a processor, and each edge as a connection between 
two processors. If nodes have failed, the failed nodes 
and all the edges incident to them will be removed. If 

later a failed node is repaired, this node with the corre- 
sponding edges will be added to the graph. We assume 
that if two nodes have not failed, and are connected, 
they can communicate, i.e., we do not model failures 
of communication. 

Definition 2.1. Given a bipartite graph G = (A, B, E ) ,  
a matching M is a subset of the edges such that no two 
edges in A4 share the same end node. 

Definition 2.2. If an edge (a, b) is in M, we say that a 
is b's matching node in M or vice versa. This pair ( a ,  
b) is also called matching pair or a matching edge. If no 
edge in M is connected to node x ,  we say x is a free 
node. 

Definition 2.3. A matching is maximum if no other 
matching of G contains more edges. Given a matching 
M, an alternatingpath P is a path that does not contain 
two consecutive edges that are not in M. If an alternat- 
ing path P starts and ends at free nodes, it is an aug- 
menting path. 

It is well known that M is not a maximum matching if 
and only if there is an augmenting path. Our algorithm 
searches for augmenting paths to obtain the maximum 
matching of G. 

After some nodes have failed, the search for aug- 
menting paths to find free nodes will traverse the 
graph. Basically, our algorithm performs a depth-first 
search for finding free nodes. In this section, we de- 
scribe our algorithm informally. A formal description 
of our algorithm is given in the next section. Let G = 
(A, B, E )  be a bipartite graph. We think of sets A and B 
as two levels of nodes in a bipartite graph. Initially, we 
assume that a maximum matching already exists. An 
initial maximum matching can be obtained from our 
algorithm in the following way: Initially, every node in 
A regards its matching node as failed and starts to run 
the bipartite matching algorithm. We assume that a 
failure of a matched node can be detected by its cur- 
rent matching node. 

Nodes in both A and B can fail. For failures in B 
(resp., A),  nodes in A (resp., B )  will search for free 
nodes. We have two versions of our algorithm: Ver- 
sion A is for failures in B and Version B is for failures 
in A. These versions are the same except A and B are 
interchanged. However, if our algorithm is to be used 
as a reconfiguration algorithm for the layered fault- 
tolerant structure in [ 101, we only need the Version A 
because each layer can be regarded as level A.  

Let a be a matched node in A and b be a's matching 
node in B. If node b fails, Version A of our reconfigura- 
tion starts at node a .  Node a becomes what we call a 
supernode because it has the privilege of choosing a 
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(b) 
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Fig. 1. The figure for passing supernodes. 

good node to be its matching node. If a node in A fails, 
the matching node of this failed node will become a 
supernode to initiate Version B of our reconfiguration 
algorithm. These two versions of our algorithm are 
performed independently to obtain a maximum match- 
ing. In this section, without loss of generality, we only 
explain Version A .  However, we need to show that the 
failures in A do not affect the correctness of the Ver- 
sion A .  Here, we explain what the actions a supernode 
a will do. 

First, supernode a tries to find a free node in B that 
is connected to a .  If this node is available, it becomes 
a's matching node. Otherwise, supernode a will try to 
steal a node that is already matched to another node in 
A.  For example, in Figure 1, after node b fails, a be- 
comes a supernode. Since there is no free node con- 
nected to a,  a will steal node b' that was matched to a' .  

Definition 2.4. If a supernode x chooses a node y that 
has been matched to xr  to be its new matching node, 
we say that x steals y from X I .  

After b' has been stolen by a ,  node a' will become a 
supernode because a' does not have a matching node. 
We can think of this process as the token of supernode 
traversing the path from node a to node a' [Fig. l(b)]. 
A root node is a node that initiates a search process for 
finding a new matching after its matching node be- 
comes faulty. The root node is the first supernode in a 
search process. There may be several searches going 
on simultaneously, each having a root node. 

Our algorithm does a depth-first search (DFS) for 
finding augmenting paths [7]. The process of searching 
can be represented as a search tree called an alternat- 
ing tree. A typical alternating tree is shown in Figure 
2. Each root node is the root of an alternating tree, and 
at any time, a supernode is associated with the node 
that is performing DFS in a tree. There will be pre- 
cisely one supernode in each alternating tree. A new 
matching is found when a supernode acquires a free 
node. To prevent cycles in searching, we can simply 
store a bit in each node b to indicate if it has been 

Current 

- 
matching 

edge x 
Fig. 2. An example of alternating tree. 

reached. We say that this node is marked reached. 
When a supernode finds a free node, this supernode 
sends messages to unmark the corresponding nodes, 
as explained later in this section. 

If a supernode at a particular point cannot find an 
adjacent free node, and finds that all the adjacent 
nodes are marked reached (either by this tree search 
or some other), it backtracks immediately. Under 
backtracking, some supernodes may backtrack to root 
nodes, and these supernodes remain there in an idle 
state. Thus, we need a way to reactivate when some 
other supernodes find free nodes. After a supernode 
has found a free node, this supernode sends a mes- 
sage, called UNMARK-BACKTRACK, recursively to 
unmark all the nodes that have been passed through by 
a backtracking supernode along an alternating path. 
For example, in Figure 3 there are two idle su- 
pernodes, S1 and S2. After S3 has found a free node, 
S3 will send the message, UNMARK-BACKTRACK 
to wake up the idle super nodes Sl and S2. 

Versions A and B of our algorithms are performed 
alternatively. In each version, there are three phases 
as shown in Figure 4. Every node performs the same 

5 2  
idle 0 

\ 
A 

B 

0 s3 has found an A 
/ unmatched node b 

O'b 
Fig. 3. An example of breaking idleness. 
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Version A Version B Version A Version B 

Fig. 4. A running sequence of our algorithm; each version has three phases. 

phase in the same version. Therefore, we need to syn- 
chronize all the nodes to perform the same version and 
the same phase. Our possible implementation is to use 
common wires connected to every node. Because we 
consider our algorithm to be performed in tightly cou- 
pled processor arrays, few wires connected to every 
node ( P E )  are practical assumptions. We can assume 
there are three signal wires connected to every node 
( P E ) .  Wire wCLOCK is the clock wire to synchronize the 
phases of a clock. Wires wA and wE are to indicate 
which version is running. When wA (resp., M ’ ~ )  is high, 
Version A (resp., B )  is running. If we do not want to 
use these common wires, we can use more compli- 
cated message passing protocol for synchronization 
[ I ] .  

3. OUR RECONFIGURATION ALGORITHM 

In this section, we explain our algorithm. Since Ver- 
sions A and B are essentially the same, we only 
present Version A in this section. First, we define 
some terms for Version A of our algorithm: 

Definition 3.1. The node old(n) is n’s original match- 
ing node before the reconfiguration, and the node 
cur(n) is n’s current matching node during reconfigura- 
tion. 

Initially, for every node n ,  we set cur(n) = old(n). 
In our algorithm, there are several attributes for 

nodes in A and B, which are used and set during the 
operation of the algorithm. First, any node is good if it 
has not malfunctioned. The attributes of a node b in B 
are summarized as follows: A node b E B is 

free if it has no matching node under the current 
matching, 
reached if it has been reached by some DFS in our 
algorithm. When a node is not reached, we say that 
this node is unreached. 

The attributes of a node a E A that is reached by some 
search process can be marked by message passing as 
follows: Node a E A is 

super if cur(a) is not good, or it is unmatched be- 
cause its matching node cur(a) has been stolen by 
some other node; 
backtracked if a search that reaches node a finishes 
searching node a’s subtree and must backtrack to 
a’s parent. 

We call a node super if and only if it has a su- 
pernode token. This token can be transferred to other 
nodes along the DFS traversed in our algorithm. Mes- 
sages need to be passed in our algorithm for changing 
the current states of nodes a E A .  There are three 
messages that can be sent: SUPERNODE, 
U N M A R K J A C K T R A C K ,  and CHANGE-OLD- 
MATCHING. We discuss these three messages one by 
one as follows: 

1. The message SUPERNODE represents the su- 
pernode token. If node a receives the message 
SUPERNODE, a becomes the supernode. There 
are two situations when a node a sends this mes- 
sage. The first situation is when node a steals some 
other’s matching node. The second situation will be 
explained later in the section (see Fig. 5 ) .  

2. After a supernode s has found a free and good node 
in B, s will send the message UNMARK- 

cur(b)  

%matching 

sunds 
9 super node for Version 

o h  matchinn 

01 matching & 
(a )  

Fig. 5. A failure in A that is in an active alternating path. 
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BACKTRACK to all the backtracked nodes that are 
adjacent to node old(s). This message is used to set 
some nodes in B as not reached so that some idle 
supernodes can start to search for free nodes. 
When a node a E A receives the message 
UNMARK-BACKTRACK, a will set node old(a) 
as unreached. Then, after a sends 
UNMARK-BACKTRACK to old(a), old(a) will 
immediately send this message to all the back- 
tracked nodes that are adjacent to old@). 

3. When a supernode finds a free and good node in B. 
this supernode will send the message CHANGE- 
OLD-MATCHING to the nodes in the alternating 
path so that their old matching nodes are set to be 
the current matching nodes. When a node a gets the 
message CHANGE-OLD-MATCHING, node a 
will mark the node old(a) as unreached and ask 
old@) to send UNMARK-BACKTRACK to all the 
backtracked nodes that are adjacent to old(a). 

Our algorithm runs in parallel at all the nodes. Ini- 
tially, there is a bipartite maximum matching. In Phase 
1, each node checks if it needs to initiate a searching 
process because of the failure of its current matching 
node. 

The real search process is performed in Phase 2. If 
the supernode a is successful in finding a free and 
good node, a sends messages CHANGE-OLD 
-MATCHING and UNMARK-BACKTRACK as we 
explained previously. If node a cannot find a free 
node, node a will try to steal others’ matching nodes. 
The supernode a will steal an unreached and good 
node 6 ,  and send the message SUPERNODE to node 
cur(b). Otherwise, if all a’s adjacent nodes have been 
marked reached and the node old(a) is good, a will 
backtrack. Node a will retain its old matching node 
and send SUPERNODE to node cur(old(a)). Other- 
wise, if the supernode token has backtracked to a root 
node, this supernode token will wait there. 

In Phase 3, node a will do the appropriate opera- 
tions depending on which message a has received. If 
there are failures in A ,  their corresponding old match- 
ing nodes become supernodes. We will explain the de- 
tails later. In Version A ,  a supernode in A should not 
steal any supernode in B, since these supernodes in B 
will start their searches later in Version B. Denote by 
N the node that is performing the following algorithm. 
The following is a sketch of Version A of our algorithm 
that runs at all the nodes in A in parallel. A more 
detailed algorithm is presented in the Appendix. 

/* Let set E be the set of nodes in B which are good, 
adjacent to N ,  and not supernodes. *I 

Phase 1 
If cur(N) is not good, N is a supernode. 

Phase 2 
If N is a supernode 

If there exists a free node in E 
Set old(N) to be not reached 
Ask old(N) to send CHANGE-OLD- 
MATCHING to cur(old(N)) 
Ask old(N)  to send UNMARK-BACKTRACK 
to all adjacent backtracked nodes 

Else if N can steal an unreached node b in E 
Ask b to send SUPERNODE to cur(b) 

Else if old(N) is good 
backtrack from N 

Else 
Do nothing 

Phase 3 
If N receives SUPERNODE 

Set N to be a supernode. 
If N receives CHANGE-OLD-MATCHING 

Set old(N)  to be not reached 
Ask old(N)  to send CHANGE-OLD- 
MATCHING to cur(old(N)) 
Ask old(N)  to send UNMARK-BACKTRACK 
to all adjacent backtracked nodes 

Set old(N) to be not reached 
Ask old(N)  to send UNMARK-BACKTRACK 
to all adjacent backtracked nodes 

If N receives UNMARK-BACKTRACK 

We would like to discuss the operations that nodes 
in B perform in Version A .  We need to define the 
following terms: 

Definition 3.2. A supernode a is called idle if node a is 
a supernode and every adjacent node of a is labeled 
reached, and old(a) is not good; otherwise, a su- 
pernode is called active. We say an alternating path is 
active if the corresponding supernode is active. 

In Version A ,  nodes in B basically perform the mes- 
sage passing for nodes in A .  However, when there are 
failures in A, the old matching nodes of these failures 
become supemodes. These supernodes in B do not 
perform any search while the algorithm is running Ver- 
sion A ,  but they need to do some operations for nodes 
in A .  

There are two cases for failure of a node a in A :  
Either a is not in an active alternating path or a is. Let 
b be the old matching node of a. If a is not in an active 
alternating path, b will do nothing except become a 
supernode for Version B. If a is in an active alternating 
path as Figure 5(a) shows, b becomes a supernode 
and initiates a backtracking to cur(b) [b  sends 
SUPERNODE to cur(b)]. This backtracking is to re- 
store the alternating path. We can regard this original 
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search as not passing through b because b has now 
become a supernode for version B .  

There is a detail here: Let b' be the current match- 
ing node of a. In the proof of Lemma 4.2, we will show 
that failures of nodes in A do not affect the correctness 
of Version A.  To ensure this, node b' should be set 
free if the supernode of the alternating path, say S, 
finally finds a free node. Figure 5(b) shows this case. 
Figure 6 shows another case when S cannot find a free 
node. 

For nodes b in B: 
If old(b) is not good 

Set b to be the supernode. 
If old(b) is not the same as cur(b) 

Send SUPERNODE to cur(b). 
If b receives CHANGE-OLD-MATCHING and 
cur(b) is not good 

Set b to be free. 

Before we present the overall algorithm, we need a 
definition: 

Definition 3.3. We say that A in G (resp., B in G )  is 
stable if there is no active supernode in A (resp., B ) .  If 
both A and B in G are stable, we say the graph G is 
stable. 

When the graph is stable, there are no active 
supernodes, so the reconfiguration algorithm is over. 
In Version A ,  supernodes in B, because of the failures 
in A ,  will not be acquired by any supernode in A in 
Phase 2. Therefore, we need to consider the case when 
two supernodes should acquire each other to increase 
the matching size as figure shows. After A is stable, we 
will set all the idle supernodes in A to be free so that 
the supernodes in B can acquire them in Version B. 

The overall algorithm 

repeat 
repeat Version A until A is stable. 
All the idle supernodes in A are set to be free. 
All the nodes in B are set to be unreached. 
repeat Version B until B is stable. 
All the idle supernodes in B are set to be free. 
All the nodes in A are set to be unreached. 

until graph G is stable. 

4. THE ANALYSIS AND PROOF 
OF CORRECTNESS 

We prove the following lemmas to obtain more insight 
into this algorithm. In a stable graph, there are no 

0 0 
\ 0 

' Super node token 

acklrack 

i f  backtracked 

Fig. 6. A failure in nodes A. 

active supernodes. Thus, when a graph is stable, our 
reconfiguration algorithm is over. We would like to 
prove that if a stable graph is reached by using our 
algorithm then a maximum matching has been found. 

When there is only one supernode, our algorithm is 
the same as the standard sequential algorithm that per- 
forms a DFS to construct the alternating tree. There- 
fore, the following is easily proved. 

Lemma 4.1. When the number of active supernodes is 
one, this algorithm correctly finds a maximum bipar- 
tite matching. 8 

When there is more than one supernode, the situa- 
tion becomes more complicated. After some nodes 
have failed, during reconfiguration, some current 
matching nodes of good nodes may not be the same as 
their old matching nodes. If the current matching node 
of node a' fails later, node a' will initiate a new search 
process (reconfiguration process). Thus, we need to 
consider the situation where new failures occur during 
a reconfiguration process. The next lemma shows that 
it is sufficient to consider the case where all failures 
that occur in running a version of our algorithm occur 
at the very beginning of running that version. 

Lemma 4.2. If Version A of our algorithm works when 
all nodes fail at the beginning, then Version A of our 
algorithm works when some nodes fail during the re- 
configuration. 

Proof. We proceed by induction of the total num- 
ber of failures during a particular invocation of Ver- 
sion A. Suppose that there is already a reconfiguration 
process for k failures and then suppose that a new 
failure occurs. We would like to show that the above 
situation can be regarded as these k + 1 nodes failing 
at the beginning. We first consider the failures in A. If 
a node in A ,  say (I, fails, there are two cases: a is not in 
an active alternating path or a is. 

CASE Al.  We first consider the case when a is not in 
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/ 

Fig. 7. The case that two supernodes acquire each other. 

an active alternating path. Let b be the old matching 
node of a. Then b will become a supernode for Ver- 
sion B. Since b's old matching node is the same as 
its current matching node, the message of 
SUPERNODE will not be sent for this failure. It is 
obvious that this failure can be regarded as if it had 
occurred at the beginning. 

CASE A2. If a fails in an active alternating path, the 
message SUPERNODE will be sent from b to 
cur(b). We can regard the original alternating path 
as searching to cur(b) and cannot go through b be- 
cause b was a supernode at the beginning. If a is not 
a supernode, in this case, it looks like the number of 
supernodes becomes one more than the number fail- 
ures. However, we will show that the supernode in 
the alternating path starting from a is redundant and 
will disappear later. The supernode in the alternat- 
ing path starting from a either finds a free node or 
not. If it does not find a free node, after the su- 
pernode token is backtracked to the failed a, the 
supernode token will disappear as shown in Figure 
6(b). If it finds a free node, b' will be set free later as 
shown in Figure S(b). Whether it finds a free node or 
not, the size of the current matching does not 
change in the end. Thus, this supernode is redun- 
dant and will disappear. 

The preceding argument suffices when a is not a 
supernode. We now need to consider the cases 
when a is a supernode, and it fails after some mes- 
sages have been sent. If a fails after having sent 
SUPERNODE, it is similar to Case A1 . If the mes- 
sage CHANGE-OLD- MATCHING has been sent 
before a fails, this case is similar to Case A2. There- 
fore, we have shown all the cases for failure of 
node a. 

Now we consider failures in B. First, we describe 
the general idea. We analyze the cases where fail- 
ures happen at different instructions in our algo- 
rithm. The details for different cases are given in 
Appendix B. Let b be the new faulty node, a be the 
old matching node of b, and a' be the current 
matching node of 6 .  There are two cases for the new 
faulty node. 

CASE B1. If a is the same as a ' ,  node a backtracks or 
has not been reached. Since old(a) is not changed 

by the reconfiguration process, this failure can be 
regarded as if it had occurred at the beginning with 
the other k failures. 

CASE B2. If a is not the same as a', a and a' must both 
be in an active alternating path, say P, and a's old 
matching node b must have been stolen by a' as 
shown in Figure 8. From our algorithm, we know 
that a' will become a new supernode and will start a 
new search P' because of the failure of b. Node a 
becomes a root node for the search P, because a's 
old matching node b has failed and a cannot back- 
track farther back to a'. The new search P' starting 
from a' can be regarded as the original search P 
reaching a'. Thus, the new failure can be regarded 
as if it had occurred at the beginning with the other 
k failures. 

As mentioned the details of the analysis for dif- 
ferent situations are shown in the Appendix. After 
the above observations, the lemma is proved by in- 
duction on k. 

Thus, without loss of generality, we can assume 
that all the failures in running a version of our algo- 
rithm happen at the same time. We know that if a 
supernode has no way to proceed with the search, it 
backtracks. When a supernode backtracks to a root 
node (their old matching nodes are not good) and 
every adjacent node has been marked reached, this 
supernode is idle. Therefore, the following observa- 
tion follows easily from our algorithm: 

Lemma 4.3. An idle supernode must be a root 
node. rn 

The next lemma shows that if we cannot find an 
augmenting path from any root node, then a maximum 
matching has been obtained. 

Lemma 4.4. After a graph is stable, there is no aug- 
menting path from any root node if and only if a maxi- 
mum matching has been obtained. 

Proof. The if-part is obviously correct. We prove 
the only-if-part. Initially, a maximum matching is as- 

o l e i n g  

i 

P' & root node 

i 
P P 

Fig. 8. The figure for Case 2. 
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sumed. If we remove the failed nodes and their corre- 
sponding matching nodes, it is obvious that the match- 
ing of the remaining nodes is still maximum. We know 
that every failure at a matched node creates a root 
node either in A or in B. Therefore, if there is an aug- 
menting path to increase the size of matching, we can 
always find an augmenting path starting from a root 
node. In other words, a maximum matching is ob- 
tained if there is no augmenting path starting from any 
root node. 

Let G be the graph after we delete the failed nodes 
and their incident edges. Let Se be the set of su- 
pernodes in B, and G - SB be the remaining graph after 
the nodes in Sg and their incident edges are deleted 
from G. The graph G - SA is similarly defined. The 
next lemma shows the property of the current match- 
ing after the first Version A is finished. 

Lemma 4.5. After the first Version A is finished, the 
current matching is maximum for G - Sg. 

Proof. From Lemma 4.4, we know that if there is 
no augmenting path starting from any root node then a 
maximum matching has been obtained. The first Ver- 
sion A is finished only when A is stable. In the graph 
G - Sg,  there is no supernode in B. Thus, if A is 
stable, G - SB must be stable. Therefore, we can 
prove the lemma by showing that when A is stable, 
there does not exist an augmenting path starting from 
any remaining root node in A.  Thus, a maximum 
matching is obtained for G - S g .  

We consider the graph G - Ss. From Lemma 4.2, 
we know that we can assume that all failures of nodes 
occur at the same time. We prove this lemma by induc- 
tion on the number of root nodes in A,  say k .  When k = 
I ,  i t  is true by Lemma 4.1. Assume that the lemma is 
correct when the number of root nodes is less than k .  
Let M L  be the matching found in Version A .  If Mk is 
maximum, the theorem is proved. We claim that if Mk 
is not maximum then there must exist at least one root 
node that will find a free node. We will prove this claim 
later. From the induction hypothesis and this claim, 
we know that when G - SB is stable there does not 
exist any augmenting path starting from a root node in 
A ,  and the lemma is proved. 

Now we prove our claim: Assume that all those k 
root nodes are in one connected graph. Otherwise, 
there exists a smaller subgraph, so we can use the 
induction hypothesis to prove the theorem. Suppose 
that Version A is stable, i.e., every supernode in A is 
idle. From Lemma 4.3, we know that every supernode 
goes to a root node. Assume thatf is  a free node in B 
that would have been in a new matching. Consider an 
alternating tree rooted atf. There must exist one alter- 

D-0' 
b 

Fig. 9. Alternating path for showing impossibility of all 
supernodes being idle. 

nating path fromfto a root node r .  Under this alternat- 
ing path, say that a is the node adjacent tof,  and b is 
a's old matching node (see Fig. 9). Sincefis not found 
by a supernode, b must not be reached by any su- 
pernode. With the same argument, all the nodes in B 
appearing in the alternating path cannot be reached. 
This argument shows that there must exist one node 
adjacent to r that is unreached. Thus, the supernode 
should not idle, and Version A would not be stable 
either. Therefore, at  least one root node would find a 
free node. Our claim is proved. 

Since the supernodes will not all be idle, at least one 
will find a free node, and then this event will unmark 
the corresponding backtracked nodes to  wake up some 
idle supernodes, if they exist. By repeating the above 
argument, the number of active supernodes decreases 
monotonically until there is no augmenting path start- 
ing from any root node in A. 

Now we prove the main theorem that shows the 
correctness of our algorithm. 

Theorem 4.6. By using our reconfiguration algorithm 
if a stable graph is reached, then a maximum bipartite 
matching is obtained. 

Proof. Our algorithm alternatively performs Ver- 
sions A and B until the graph is stable. Let G be the 
graph obtained by deleting the failed nodes and their 
incident edges. Note that if a new failure occurs G will 
be changed accordingly. From Lemma 4.5, we know 
that after the first Version A is performed, we have a 
maximum matching for graph G - SB. If we delete all 
the failed nodes and nodes in Se, the matching after 
the first Version A is finished will be a maximum 
matching. Thus, if we can increase the matching size, 
we must be able to find an alternating path starting 
from a node in Ss. Therefore, in a way similar to the 
proof in Lemma 4.5, we can prove that after Version B 
(resp., A) is performed, a maximum matching for the 
graph G - SA (resp., G - SB)  is obtained. 

In our algorithm after Version A (resp., B)  is fin- 
ished, all the idle supernodes in A (resp., B )  are set to 
be free. Without loss of generality, we assume that the 
last version that is performed is Version B. It is obvi- 
ous that no supernode in A is created in running the 
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last Version B. Thus, SA is empty. Because SA is 
empty. Because SA is empty, B is stable if and only if G 
is stable. We know that if B is stable, then a maximum 
matching for G - SA = G is obtained. Therefore, a 
maximum matching is obtained for G if a stable graph 
is reached. 8 

We assume that the actions in a phase can be fin- 
ished in unit clock time where a clock consists of three 
phases. Note that for a more detailed timing analysis 
the parallel running time for each phase is actually 
upper bounded by O ( d ) ,  where d is the maximum de- 
gree of a node. 

Theorem 4.7. The total number of clock ticks for a 
reconfiguration to find a bipartite matching for k fail- 
ures in a bipartite graph G = (A, B .  E) is O(k min(lA1, 
1B1)) by our algorithm. 

Proof. We know that all k supernodes will not be 
idle at one time. The worst case happens when k - 1 
supernodes are idle and only one supernode is active. 
All the nodes in A or B can be searched at most twice, 
once forward and once backtracked. Thus, in 
O(min(lAI.1B1)) clock ticks, one supernode should find 
a free node. After the completion of the first root node, 
it unmarks the corresponding backtracked nodes that 
takes O(min(IA1, JB()) clock ticks. The worst case oc- 
curs when only one idle supernode wakes up to per- 
form a search again. Thus, the total maximum number 
of clock ticks is O(k min(lA1, IBI)). 8 

In [lo], the fault-tolerant graph is constructed by 
using N levels, and every two levels are connected by 
a bipartite matching. Suppose that there are N levels 
and each level has m = O(1og N )  nodes in our d-degree 
expander architecture. We analyze the worst-case per- 
formance, although it is very unlikely to happen. The 
worst case happens when the faults are in the first 
level, since we need to propagate the new matchings 
through the N levels. The total reconfiguration time is 
O(km N )  if k failures occur. Suppose M packets (or 
operations) need to be sent in one pipeline. Usually, M 
is very large compared to N. The minimum time to 
finish the whole operation is M + N. Suppose k faulty 
nodes occur in the operation. According to the above 
theorem, the total operation time is at most M + N + 
O(km N ) .  

5. EXPECTED RECONFIGURATION TIME 

In this section, we would like to show that the ex- 
pected number of clock ticks to finish a reconfiguration 
is small. We assume that the size of a maximum 
matching is all?[, where a < 1. Considering random 

graphs with maximum degree d, when there is one 
failure, reconfiguration time is actually upper bounded 
by a constant value. 

Lemma 5.1. The expected reconfiguration time of our 
algorithm for one failure is at most 2 4 1  - ad). 

Proof. Let M be the set of matched nodes in B and 
Y be the set of free nodes in A. Since IMI = alBl, the 
probability that a node in A is only connected to M is 
ad. In each clock, if a supernode s cannot find a free 
node, it either steals another matched node or back- 
tracks. Let search tree S be a tree by merging nodes in 
B and their corresponding matching nodes in an alter- 
nating tree, and the size of search tree be the number 
of nodes in S. When s steals another matched node, 
the size of a search tree grows one. When s back- 
tracks, the size of a search tree remains the same. 
However, all the edges in search tree can only be tra- 
versed at most twice. Thus, we know that the number 
of clock ticks for reconfiguration is at most two x the 
size of the search tree. 

If the size of a search tree is k, we know that k - 1 
nodes are only connected to M, and there exists at 
least an edge from the remaining one node to some 
node in B - M. The probability that the size of a 
search tree is k is ad(k-') ( 1  - a d ) .  Thus, the expected 
size of a search tree is 

Therefore, the expected reconfiguration time of our 
algorithm for one failure is at most 2/(1 - ad) .  8 

For example, when LY = 8/13, as our first simulation 
assumes in the next section, the expected number of 
clock ticks of reconfiguration for one failure is at most 
2.2 if the maximum degree d is 5 .  

6. EXPERIMENTAL RESULTS 

In this section, we show some experimental results for 
multiple faults. We first explain the first two simula- 
tions: The results in the first two simulations show that 
the average reconfiguration time is within several 
clock ticks. We construct random bipartite graphs and 
simulate the algorithm 10,000 times for different num- 
bers of failures. Failures are randomly produced in the 
beginning of a simulation. In the first simulation, there 
are 40 nodes in A and 65 nodes in B. Three sets of 
results are given by different maximum degrees of 
nodes, 4 (solid line), 5 (dashed line), and 6 (dotted 
line). We show the average number of clock ticks that 
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Fig. 10. The results of Simulation 1. 

are needed to completely finish reconfiguration in Fig- 
ure 10. Because a graph with higher degree has more 
possibility to find free nodes than does a graph with a 
lower degree, the average reconfiguration time for a 
graph with a higher degree is less than the time for a 
graph with lower degree. 

In the second simulation, there are 400 nodes in A 
and 450 nodes in B. Three results are given in Figure 
1 1  for different maximum degrees of nodes-I0 (solid 
line), 14 (dash line), and 18 (dotted line). From these 
simulations, we know that only several clock ticks are 
needed in average to complete a reconfiguration. 

We also simulate the situations where failures occur 
during reconfigurations. The occurrence of a failure 
follows a Poisson process at each clock. Let lambda 
be the probability that a failure occurs in a clock. In 
the following simulations, there are 80 nodes in A and 
90 nodes in B in this simulation, and, initially, the size 
of the maximum matching is 80. We simulate the situa- 
tions that failed nodes can be repaired. Let the repair 
period be the number of clock ticks that is sufficient to 

a 

6 
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Fig. 11. The results of Simulation 2. 

80 I 
lambda = 0.3 7\ 

repair a failed node. Thus, if a node b is failed at clock 
1,  at clock ( r  + repair period) node b is repaired. In this 
simulation, we set repair period to be 30. Figure 12 
shows the average matching size during each clock. 
When lambda is 0.1, the average matching size is al- 
ways almost 80, and when lambda is 0.3, the average 
stable matching size is about 77.5 after 50 clocks. If we 
do not use our reconfiguration algorithm, the average 
stable matching size is only about 72. 

The simulation in Figure 13 shows the average 
matching size with two different repair periods, 30 and 
60, with given a lambda = 0.3. Figure 13 shows when 
repair period is 60, the average stable matching size is 
dropped to about 71, but still much better than the 
stable size without reconfiguration. 

The following two simulations show the average 
stable matching sizes for different lambdas and repair 
periods. We set the repair period to be 30. Figure 14 
shows that the average stable matching size is larger 
while lambda is smaller. Therefore, when lambda is 
not too large, say less than 0.2, which is a practical 

80 

i 8  Repair period = 30 

Repair period = 60 

68 

ir period x 60 (no reconfiguration) 
6 4 

I I 1 I 4 
0 100 200 300 400 500 

Clocks 

Fig. 13. The simulation of repairable failures with differ- 
ent repair periods. 
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Fig. 14. The matching size with different lambdas. 

assumption, the matching size is about 79. It also 
shows that by doing our reconfiguration algorithm the 
matching size is increased significantly. 

We set lambda to be 0.1 in the last simulation. Fig- 
ure 15 shows that when the repair period becomes 
longer the average stable matching size is smaller. 
However, the stable matching size is always much bet- 
ter than the size with no reconfiguration. 

7. CONCLUSION 

Given a bipartite graph G = (A, B, E ) ,  nodes in A and 
B are regarded as processor elements that can fail at 
any time. After nodes have failed, the failed nodes and 
their adjacent edges are deleted. This paper presented 
an on-line distributed algorithm to find a maximum 
bipartite matching after some nodes have failed. This 
algorithm can tolerate failures during reconfiguration. 
Since this distributed algorithm finds a new matching 
incrementally, it is especially suitable for reconfigura- 
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70 

65 
0 50 100 150 

Repair period 

Fig. 15. The matching size with different repair periods. 

tion in run-time fault tolerance. The size of a current 
matching during reconfiguration is at least M - k, 
where M is the size of the original maximum matching 
and k is the number of current failures. The size of a 
current matching increases monotonically during re- 
configuration. The worst-case reconfiguration time is 
O(k min(lA1, let)) after kfailures. But the average-case 
reconfiguration time is much better. Experimental 
results were presented, which showed that, on the av- 
erage, only several clock ticks are needed for up to 40 
failures. Simulation results were also presented for the 
case when failures are Poisson-distributed. These 
results showed that the algorithm maintains a large- 
sized current matching. 

APPENDIX A: THE VERSION A OF 
OUR ALGORITHM 

I* Denote by N the node which is performing the fol- 
lowing algorithm. *I 
I* Let set E be the node set in B which are good, 
adjacent to N ,  and not supernodes. *I 

Phase 1 for nodes in A 
If cur(N) is not good { 

node N becomes a supernode 
Discard any received message } 

Phase 2 
If N is a super node { 

If there exists a free node in E { 
I* Let f be such a free node *I 
I* The nodes in the augmenting path should 
change their old matching nodes to be the current 
matching nodes. *I 
I* Let b be N's old matching node, old(N).  *I 

2.1 Ask b to send CHANGE-OLD-MATCHING 
to cur@) 
I* unmark the alternating path *I 
Set node b to be not reached 
Ask b to send UNMARK-BACKTRACK to all 
adjacent backtracked nodes 
I* change the old matching node to be the cur- 
rent matching node */ 
Set old(N)  to be f } 

2.2 

2.3 

Else if there is a node b in E which is unreached { 
I* N can steal this node b *I 

Set node b to be reached 
Ask b to send SUPERNODE to cur(b) 
Reset cur(b) and cur(N)  } 

Else if old matching node of N is good { 
/* Backtrack from N *I 
I* Let b be old(N)* 
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2.4 Ask node b to send SUPERNODE to cur@) 
Set cur(N) to be old(N) } 

Else { 
I* N is temporarily idle */ 

Do nothing } 
1 
Phase 3 
If N receives SUPERNODE 

Set N to be a supernode. 

If N receives CHANGE-OLD-MATCHING { 
I* Let b be N s  old matching node *I 

3.1 Ask b to send CHANGE-OLD-MATCHING 
to cur(b) 
Set node b to be not reached 
Ask node node b to send UNMARK-BACK- 
TRACK to all adjacent backtracked nodes 
Set old(N) to be cur(N)  } 

3.2 

If N receives UNMARK-BACKTRACK { 
I* Let b be N ’ s  old matching node *I 

Set node b to be not reached 
Ask node b to send UNMARK-BACKTRACK 
to all adjacent backtracked nodes } 

3.3 

For nodes N in B: 
If old(N) is not good. 

Set N to be a supernode. 
if old(N) is not the same as cur(N) 

Send SUPERNODE to c u r ( N ) .  

If N receives CHANGE-OLD-MATCHING and 
cur(N) is not good 

Set N to be free. 

message CHANGE-OLD- MATCHING, and then in 
the next Phase I ,  a’ will detect the failure of b, which 
is similar to Case B I .  

When b fails just after 2.2, b does not need to send 
the unmarked messages to all the adjacent back- 
tracked nodes, but it causes no error to send these 
redundant messages. 

If b fails before it sends the message SUPERNODE 
to its current matching node, say a’ ,  at Statement 2.3, 
the current matching node of both a and a’, which is b 
is not good. Thus, in the next Phase 1,  a and a’ will be 
supernodes, which is similar to Case B2. Otherwise, if 
b fails just after it sends the message SUPERNODE, 
a’ will be a supernode in Phase 3 and a will be a su- 
pernode in the next Phase 1, which is also similar to 
the Case B2. The analysis for the failure of b at 2.4 is 
similar to the previous analysis for 2.3. 

If b fails before it sends the message at Statement 
3.1, the analysis is the same as we did for Statement 
2.1. If b fails after sending the message to a’, a’ will 
discard this message in the next Phase 1 and becomes 
the supernode, which is similar to the Case 82. The 
situations when b fails at 3.2 and 3.3 are the same as 
the one for 2.2. 
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