
Maintaining Bipartite Matchings in the
Presence of Failures*

Edwin Hsing-Mean Sha

Department of Computer Science & Engineering, University of Notre Dame,
Notre Dame, Indiana 46556

Kenneth Steiglitz

Department of Computer Science, Princeton University, Princeton, New Jersey 08544

We present an on-line distributed reconfiguration algorithm for finding a new maximum matching
incrementally after some nodes have failed. Our algorithm is deadlock-free and, with k failures,
maintains at least M - k matching pairs during the reconfiguration process, where M is the size of
the original maximum matching. The algorithm tolerates failures that occur during reconfiguration.
The worst-case reconfiguration time is O(k min(lAl,161)) after kfailures, whereA and 6 are the node
sets, but simulations show that the average-case reconfiguration time is much better. The algorithm
is also simple enough to be implemented in hardware. 0 1993 by John Wiley & Sons, Inc.

1. INTRODUCTION

Imagine that there are n persons in Village A and m in
Village B. Two persons from different villages can be
matched to become a couple, and at any time, only one
person can be matched to another. Initially, the match-
ing is maximum. Sometimes, however, people decide
to be alone. Without loss of generality, assume that
some in B change their minds. Let G = (A , B, E) be a
bipartite graph and (A (= n, (B (= m. An edge between
two nodes means that they are allowed to become a
couple. After a person b has changed his or her mind,
b’s original matching in A must find another available
one in B, if possible.

The process of finding a new matching to obtain the
maximum number of pairs is called reconfiguration.
Unfortunately, there is no central agency to perform

*This work was supported in part by NSF Grant MIP-8912100,
and U.S. Army Research Office-Durham Grant DAAL03-89-K-
0074.

the reconfiguration process, so this process must be
done in a distributed and parallel way. It is also desir-
able that, during the reconfiguration process, as many
matched pairs be maintained as possible and that fail-
ures during the process be tolerated. Ideally, there
should always be at least M - k matching pairs after k
persons have changed their minds, where M is the
original number of matching pairs. The number of
matching pairs should monotonically increase in the
reconfiguration process. Therefore, if no new persons
change their minds, the reconfiguration process will
finally regenerate a new maximum matching, if one is
possible.

One motivation for this problem is that such an al-
gorithm can be applied to any fault-tolerant system
that involves bipartite matching. For example, Kuo
and Fuchs [5] showed that many problems of spare
allocation in VLSI arrays can be modeled as bipartite
matching. Based on our bipartite matching algorithm,
we can have a distributed reconfiguration mechanism
to replace faulty nodes by spare nodes in a redundant

NETWORKS, Vol. 23 (1993) 459-471
0 1993 by John Wiley 13 Sons, Inc. ccc 0028-3045/93/050459-13

459

460 SHA AND STElGLln

array. In [9, 101, highly reliable structures with the
asymptotically optimal number of nodes and edges for
one-dimensional and treelike array architectures were
given. They used bipartite matchings between levels in
layered graphs and so these are particularly well suited
for the run-time-tolerant algorithm described in this
paper.

The general matching problem has been extensively
studied. For maximum matching in bipartite graphs,
the algorithm of Hopocroft and Karp [3] is the fastest
known, and the algorithm by Micali and Vazirani [6] is
the most efficient one for finding matchings in general
graphs. More recently, an algorithm for on-line bipar-
tite matching was presented [4]. Some papers [H, I l l
also gave distributed algorithms for maximum match-
ing in general graphs.

Our problem is different from the usual matching
problem, which starts with an empty matching. We
assume that we start with a maximum matching, and
after some nodes fail, we would like to have a simple,
efficient, and distributed way to find a new maximum
matching. Further, the algorithm should start to recon-
figure the system as soon as failures occur, even
though new failures may occur during the reconfigura-
tion process. We say a reconfiguration algorithm is on-
line if it can start to reconfigure the system immedi-
ately after a failure occurs and can endure new failures
during reconfiguration. This is an especially desirable
property for run-time fault tolerance, since the system
need not stop to do a reconfiguration process.

We will not be concerned so much with the number
of messages that PEs need to send to achieve a new
matching, such as is done in the matching algorithms
in [8, 111, which, in any event, are not designed to
operate in the presence of faults. Rather, we want to
minimize the effects of failures during reconfiguration.
Our algorithm does tolerate faults during operation
and ensures that after k failures there are always at
least M - k matching pairs, where M is the original
number of matching pairs. If there are no further fail-
ures, the size of the matching grows monotonically
until it becomes maximum. The algorithm is simple
enough to be implemented in hardware. The overall
reconfiguration time is O(k min(lA1, \ E l)) after k fail-
ures. The simulation results show that the average-
case reconfiguration time is much better.

2. THE BASIC IDEAS OF OUR ALGORITHM

We first explain our model: An array architecture is
represented by a graph G; each node of G is regarded
as a processor, and each edge as a connection between
two processors. If nodes have failed, the failed nodes
and all the edges incident to them will be removed. If

later a failed node is repaired, this node with the corre-
sponding edges will be added to the graph. We assume
that if two nodes have not failed, and are connected,
they can communicate, i.e., we do not model failures
of communication.

Definition 2.1. Given a bipartite graph G = (A, B, E) ,
a matching M is a subset of the edges such that no two
edges in A4 share the same end node.

Definition 2.2. If an edge (a, b) is in M, we say that a
is b's matching node in M or vice versa. This pair (a ,
b) is also called matching pair or a matching edge. If no
edge in M is connected to node x , we say x is a free
node.

Definition 2.3. A matching is maximum if no other
matching of G contains more edges. Given a matching
M, an alternatingpath P is a path that does not contain
two consecutive edges that are not in M. If an alternat-
ing path P starts and ends at free nodes, it is an aug-
menting path.

It is well known that M is not a maximum matching if
and only if there is an augmenting path. Our algorithm
searches for augmenting paths to obtain the maximum
matching of G.

After some nodes have failed, the search for aug-
menting paths to find free nodes will traverse the
graph. Basically, our algorithm performs a depth-first
search for finding free nodes. In this section, we de-
scribe our algorithm informally. A formal description
of our algorithm is given in the next section. Let G =
(A, B, E) be a bipartite graph. We think of sets A and B
as two levels of nodes in a bipartite graph. Initially, we
assume that a maximum matching already exists. An
initial maximum matching can be obtained from our
algorithm in the following way: Initially, every node in
A regards its matching node as failed and starts to run
the bipartite matching algorithm. We assume that a
failure of a matched node can be detected by its cur-
rent matching node.

Nodes in both A and B can fail. For failures in B
(resp., A), nodes in A (resp., B) will search for free
nodes. We have two versions of our algorithm: Ver-
sion A is for failures in B and Version B is for failures
in A. These versions are the same except A and B are
interchanged. However, if our algorithm is to be used
as a reconfiguration algorithm for the layered fault-
tolerant structure in [101, we only need the Version A
because each layer can be regarded as level A.

Let a be a matched node in A and b be a's matching
node in B. If node b fails, Version A of our reconfigura-
tion starts at node a . Node a becomes what we call a
supernode because it has the privilege of choosing a

MAINTAINING BIPARTITE MATCHINGS 461

(b)
s Super Node - Current matching edge

Fig. 1. The figure for passing supernodes.

good node to be its matching node. If a node in A fails,
the matching node of this failed node will become a
supernode to initiate Version B of our reconfiguration
algorithm. These two versions of our algorithm are
performed independently to obtain a maximum match-
ing. In this section, without loss of generality, we only
explain Version A . However, we need to show that the
failures in A do not affect the correctness of the Ver-
sion A . Here, we explain what the actions a supernode
a will do.

First, supernode a tries to find a free node in B that
is connected to a . If this node is available, it becomes
a's matching node. Otherwise, supernode a will try to
steal a node that is already matched to another node in
A. For example, in Figure 1, after node b fails, a be-
comes a supernode. Since there is no free node con-
nected to a, a will steal node b' that was matched to a' .

Definition 2.4. If a supernode x chooses a node y that
has been matched to xr to be its new matching node,
we say that x steals y from X I .

After b' has been stolen by a , node a' will become a
supernode because a' does not have a matching node.
We can think of this process as the token of supernode
traversing the path from node a to node a' [Fig. l(b)].
A root node is a node that initiates a search process for
finding a new matching after its matching node be-
comes faulty. The root node is the first supernode in a
search process. There may be several searches going
on simultaneously, each having a root node.

Our algorithm does a depth-first search (DFS) for
finding augmenting paths [7]. The process of searching
can be represented as a search tree called an alternat-
ing tree. A typical alternating tree is shown in Figure
2. Each root node is the root of an alternating tree, and
at any time, a supernode is associated with the node
that is performing DFS in a tree. There will be pre-
cisely one supernode in each alternating tree. A new
matching is found when a supernode acquires a free
node. To prevent cycles in searching, we can simply
store a bit in each node b to indicate if it has been

Current

-
matching

edge x
Fig. 2. An example of alternating tree.

reached. We say that this node is marked reached.
When a supernode finds a free node, this supernode
sends messages to unmark the corresponding nodes,
as explained later in this section.

If a supernode at a particular point cannot find an
adjacent free node, and finds that all the adjacent
nodes are marked reached (either by this tree search
or some other), it backtracks immediately. Under
backtracking, some supernodes may backtrack to root
nodes, and these supernodes remain there in an idle
state. Thus, we need a way to reactivate when some
other supernodes find free nodes. After a supernode
has found a free node, this supernode sends a mes-
sage, called UNMARK-BACKTRACK, recursively to
unmark all the nodes that have been passed through by
a backtracking supernode along an alternating path.
For example, in Figure 3 there are two idle su-
pernodes, S1 and S2. After S3 has found a free node,
S3 will send the message, UNMARK-BACKTRACK
to wake up the idle super nodes Sl and S2.

Versions A and B of our algorithms are performed
alternatively. In each version, there are three phases
as shown in Figure 4. Every node performs the same

5 2
idle 0

\
A

B

0 s3 has found an A
/ unmatched node b

O'b
Fig. 3. An example of breaking idleness.

B

462 SHA AND STEIGLI’TZ

Version A Version B Version A Version B

Fig. 4. A running sequence of our algorithm; each version has three phases.

phase in the same version. Therefore, we need to syn-
chronize all the nodes to perform the same version and
the same phase. Our possible implementation is to use
common wires connected to every node. Because we
consider our algorithm to be performed in tightly cou-
pled processor arrays, few wires connected to every
node (P E) are practical assumptions. We can assume
there are three signal wires connected to every node
(P E) . Wire wCLOCK is the clock wire to synchronize the
phases of a clock. Wires wA and wE are to indicate
which version is running. When wA (resp., M ’ ~) is high,
Version A (resp., B) is running. If we do not want to
use these common wires, we can use more compli-
cated message passing protocol for synchronization
[I] .

3. OUR RECONFIGURATION ALGORITHM

In this section, we explain our algorithm. Since Ver-
sions A and B are essentially the same, we only
present Version A in this section. First, we define
some terms for Version A of our algorithm:

Definition 3.1. The node old(n) is n’s original match-
ing node before the reconfiguration, and the node
cur(n) is n’s current matching node during reconfigura-
tion.

Initially, for every node n , we set cur(n) = old(n).
In our algorithm, there are several attributes for

nodes in A and B, which are used and set during the
operation of the algorithm. First, any node is good if it
has not malfunctioned. The attributes of a node b in B
are summarized as follows: A node b E B is

free if it has no matching node under the current
matching,
reached if it has been reached by some DFS in our
algorithm. When a node is not reached, we say that
this node is unreached.

The attributes of a node a E A that is reached by some
search process can be marked by message passing as
follows: Node a E A is

super if cur(a) is not good, or it is unmatched be-
cause its matching node cur(a) has been stolen by
some other node;
backtracked if a search that reaches node a finishes
searching node a’s subtree and must backtrack to
a’s parent.

We call a node super if and only if it has a su-
pernode token. This token can be transferred to other
nodes along the DFS traversed in our algorithm. Mes-
sages need to be passed in our algorithm for changing
the current states of nodes a E A . There are three
messages that can be sent: SUPERNODE,
U N M A R K J A C K T R A C K , and CHANGE-OLD-
MATCHING. We discuss these three messages one by
one as follows:

1. The message SUPERNODE represents the su-
pernode token. If node a receives the message
SUPERNODE, a becomes the supernode. There
are two situations when a node a sends this mes-
sage. The first situation is when node a steals some
other’s matching node. The second situation will be
explained later in the section (see Fig. 5) .

2. After a supernode s has found a free and good node
in B, s will send the message UNMARK-

cur(b)

%matching

sunds
9 super node for Version

o h matchinn

01 matching &
(a)

Fig. 5. A failure in A that is in an active alternating path.

MAINTAINING BIPARTITE MATCHINGS 463

BACKTRACK to all the backtracked nodes that are
adjacent to node old(s). This message is used to set
some nodes in B as not reached so that some idle
supernodes can start to search for free nodes.
When a node a E A receives the message
UNMARK-BACKTRACK, a will set node old(a)
as unreached. Then, after a sends
UNMARK-BACKTRACK to old(a), old(a) will
immediately send this message to all the back-
tracked nodes that are adjacent to old@).

3. When a supernode finds a free and good node in B.
this supernode will send the message CHANGE-
OLD-MATCHING to the nodes in the alternating
path so that their old matching nodes are set to be
the current matching nodes. When a node a gets the
message CHANGE-OLD-MATCHING, node a
will mark the node old(a) as unreached and ask
old@) to send UNMARK-BACKTRACK to all the
backtracked nodes that are adjacent to old(a).

Our algorithm runs in parallel at all the nodes. Ini-
tially, there is a bipartite maximum matching. In Phase
1, each node checks if it needs to initiate a searching
process because of the failure of its current matching
node.

The real search process is performed in Phase 2. If
the supernode a is successful in finding a free and
good node, a sends messages CHANGE-OLD
-MATCHING and UNMARK-BACKTRACK as we
explained previously. If node a cannot find a free
node, node a will try to steal others’ matching nodes.
The supernode a will steal an unreached and good
node 6 , and send the message SUPERNODE to node
cur(b). Otherwise, if all a’s adjacent nodes have been
marked reached and the node old(a) is good, a will
backtrack. Node a will retain its old matching node
and send SUPERNODE to node cur(old(a)). Other-
wise, if the supernode token has backtracked to a root
node, this supernode token will wait there.

In Phase 3, node a will do the appropriate opera-
tions depending on which message a has received. If
there are failures in A , their corresponding old match-
ing nodes become supernodes. We will explain the de-
tails later. In Version A , a supernode in A should not
steal any supernode in B, since these supernodes in B
will start their searches later in Version B. Denote by
N the node that is performing the following algorithm.
The following is a sketch of Version A of our algorithm
that runs at all the nodes in A in parallel. A more
detailed algorithm is presented in the Appendix.

/* Let set E be the set of nodes in B which are good,
adjacent to N , and not supernodes. *I

Phase 1
If cur(N) is not good, N is a supernode.

Phase 2
If N is a supernode

If there exists a free node in E
Set old(N) to be not reached
Ask old(N) to send CHANGE-OLD-
MATCHING to cur(old(N))
Ask old(N) to send UNMARK-BACKTRACK
to all adjacent backtracked nodes

Else if N can steal an unreached node b in E
Ask b to send SUPERNODE to cur(b)

Else if old(N) is good
backtrack from N

Else
Do nothing

Phase 3
If N receives SUPERNODE

Set N to be a supernode.
If N receives CHANGE-OLD-MATCHING

Set old(N) to be not reached
Ask old(N) to send CHANGE-OLD-
MATCHING to cur(old(N))
Ask old(N) to send UNMARK-BACKTRACK
to all adjacent backtracked nodes

Set old(N) to be not reached
Ask old(N) to send UNMARK-BACKTRACK
to all adjacent backtracked nodes

If N receives UNMARK-BACKTRACK

We would like to discuss the operations that nodes
in B perform in Version A . We need to define the
following terms:

Definition 3.2. A supernode a is called idle if node a is
a supernode and every adjacent node of a is labeled
reached, and old(a) is not good; otherwise, a su-
pernode is called active. We say an alternating path is
active if the corresponding supernode is active.

In Version A , nodes in B basically perform the mes-
sage passing for nodes in A . However, when there are
failures in A, the old matching nodes of these failures
become supemodes. These supernodes in B do not
perform any search while the algorithm is running Ver-
sion A , but they need to do some operations for nodes
in A .

There are two cases for failure of a node a in A :
Either a is not in an active alternating path or a is. Let
b be the old matching node of a. If a is not in an active
alternating path, b will do nothing except become a
supernode for Version B. If a is in an active alternating
path as Figure 5(a) shows, b becomes a supernode
and initiates a backtracking to cur(b) [b sends
SUPERNODE to cur(b)]. This backtracking is to re-
store the alternating path. We can regard this original

464 SHA AND STElGLllZ

search as not passing through b because b has now
become a supernode for version B .

There is a detail here: Let b' be the current match-
ing node of a. In the proof of Lemma 4.2, we will show
that failures of nodes in A do not affect the correctness
of Version A. To ensure this, node b' should be set
free if the supernode of the alternating path, say S,
finally finds a free node. Figure 5(b) shows this case.
Figure 6 shows another case when S cannot find a free
node.

For nodes b in B:
If old(b) is not good

Set b to be the supernode.
If old(b) is not the same as cur(b)

Send SUPERNODE to cur(b).
If b receives CHANGE-OLD-MATCHING and
cur(b) is not good

Set b to be free.

Before we present the overall algorithm, we need a
definition:

Definition 3.3. We say that A in G (resp., B in G) is
stable if there is no active supernode in A (resp., B) . If
both A and B in G are stable, we say the graph G is
stable.

When the graph is stable, there are no active
supernodes, so the reconfiguration algorithm is over.
In Version A , supernodes in B, because of the failures
in A , will not be acquired by any supernode in A in
Phase 2. Therefore, we need to consider the case when
two supernodes should acquire each other to increase
the matching size as figure shows. After A is stable, we
will set all the idle supernodes in A to be free so that
the supernodes in B can acquire them in Version B.

The overall algorithm

repeat
repeat Version A until A is stable.
All the idle supernodes in A are set to be free.
All the nodes in B are set to be unreached.
repeat Version B until B is stable.
All the idle supernodes in B are set to be free.
All the nodes in A are set to be unreached.

until graph G is stable.

4. THE ANALYSIS AND PROOF
OF CORRECTNESS

We prove the following lemmas to obtain more insight
into this algorithm. In a stable graph, there are no

0 0
\ 0

' Super node token

acklrack

i f backtracked

Fig. 6. A failure in nodes A.

active supernodes. Thus, when a graph is stable, our
reconfiguration algorithm is over. We would like to
prove that if a stable graph is reached by using our
algorithm then a maximum matching has been found.

When there is only one supernode, our algorithm is
the same as the standard sequential algorithm that per-
forms a DFS to construct the alternating tree. There-
fore, the following is easily proved.

Lemma 4.1. When the number of active supernodes is
one, this algorithm correctly finds a maximum bipar-
tite matching. 8

When there is more than one supernode, the situa-
tion becomes more complicated. After some nodes
have failed, during reconfiguration, some current
matching nodes of good nodes may not be the same as
their old matching nodes. If the current matching node
of node a' fails later, node a' will initiate a new search
process (reconfiguration process). Thus, we need to
consider the situation where new failures occur during
a reconfiguration process. The next lemma shows that
it is sufficient to consider the case where all failures
that occur in running a version of our algorithm occur
at the very beginning of running that version.

Lemma 4.2. If Version A of our algorithm works when
all nodes fail at the beginning, then Version A of our
algorithm works when some nodes fail during the re-
configuration.

Proof. We proceed by induction of the total num-
ber of failures during a particular invocation of Ver-
sion A. Suppose that there is already a reconfiguration
process for k failures and then suppose that a new
failure occurs. We would like to show that the above
situation can be regarded as these k + 1 nodes failing
at the beginning. We first consider the failures in A. If
a node in A , say (I, fails, there are two cases: a is not in
an active alternating path or a is.

CASE Al. We first consider the case when a is not in

MAINTAINING BIPARTITE MATCHINGS 465

/

Fig. 7. The case that two supernodes acquire each other.

an active alternating path. Let b be the old matching
node of a. Then b will become a supernode for Ver-
sion B. Since b's old matching node is the same as
its current matching node, the message of
SUPERNODE will not be sent for this failure. It is
obvious that this failure can be regarded as if it had
occurred at the beginning.

CASE A2. If a fails in an active alternating path, the
message SUPERNODE will be sent from b to
cur(b). We can regard the original alternating path
as searching to cur(b) and cannot go through b be-
cause b was a supernode at the beginning. If a is not
a supernode, in this case, it looks like the number of
supernodes becomes one more than the number fail-
ures. However, we will show that the supernode in
the alternating path starting from a is redundant and
will disappear later. The supernode in the alternat-
ing path starting from a either finds a free node or
not. If it does not find a free node, after the su-
pernode token is backtracked to the failed a, the
supernode token will disappear as shown in Figure
6(b). If it finds a free node, b' will be set free later as
shown in Figure S(b). Whether it finds a free node or
not, the size of the current matching does not
change in the end. Thus, this supernode is redun-
dant and will disappear.

The preceding argument suffices when a is not a
supernode. We now need to consider the cases
when a is a supernode, and it fails after some mes-
sages have been sent. If a fails after having sent
SUPERNODE, it is similar to Case A1 . If the mes-
sage CHANGE-OLD- MATCHING has been sent
before a fails, this case is similar to Case A2. There-
fore, we have shown all the cases for failure of
node a.

Now we consider failures in B. First, we describe
the general idea. We analyze the cases where fail-
ures happen at different instructions in our algo-
rithm. The details for different cases are given in
Appendix B. Let b be the new faulty node, a be the
old matching node of b, and a' be the current
matching node of 6 . There are two cases for the new
faulty node.

CASE B1. If a is the same as a ' , node a backtracks or
has not been reached. Since old(a) is not changed

by the reconfiguration process, this failure can be
regarded as if it had occurred at the beginning with
the other k failures.

CASE B2. If a is not the same as a', a and a' must both
be in an active alternating path, say P, and a's old
matching node b must have been stolen by a' as
shown in Figure 8. From our algorithm, we know
that a' will become a new supernode and will start a
new search P' because of the failure of b. Node a
becomes a root node for the search P, because a's
old matching node b has failed and a cannot back-
track farther back to a'. The new search P' starting
from a' can be regarded as the original search P
reaching a'. Thus, the new failure can be regarded
as if it had occurred at the beginning with the other
k failures.

As mentioned the details of the analysis for dif-
ferent situations are shown in the Appendix. After
the above observations, the lemma is proved by in-
duction on k.

Thus, without loss of generality, we can assume
that all the failures in running a version of our algo-
rithm happen at the same time. We know that if a
supernode has no way to proceed with the search, it
backtracks. When a supernode backtracks to a root
node (their old matching nodes are not good) and
every adjacent node has been marked reached, this
supernode is idle. Therefore, the following observa-
tion follows easily from our algorithm:

Lemma 4.3. An idle supernode must be a root
node. rn

The next lemma shows that if we cannot find an
augmenting path from any root node, then a maximum
matching has been obtained.

Lemma 4.4. After a graph is stable, there is no aug-
menting path from any root node if and only if a maxi-
mum matching has been obtained.

Proof. The if-part is obviously correct. We prove
the only-if-part. Initially, a maximum matching is as-

o l e i n g

i

P' & root node

i
P P

Fig. 8. The figure for Case 2.

466 SHA AND STElGLlTZ

sumed. If we remove the failed nodes and their corre-
sponding matching nodes, it is obvious that the match-
ing of the remaining nodes is still maximum. We know
that every failure at a matched node creates a root
node either in A or in B. Therefore, if there is an aug-
menting path to increase the size of matching, we can
always find an augmenting path starting from a root
node. In other words, a maximum matching is ob-
tained if there is no augmenting path starting from any
root node.

Let G be the graph after we delete the failed nodes
and their incident edges. Let Se be the set of su-
pernodes in B, and G - SB be the remaining graph after
the nodes in Sg and their incident edges are deleted
from G. The graph G - SA is similarly defined. The
next lemma shows the property of the current match-
ing after the first Version A is finished.

Lemma 4.5. After the first Version A is finished, the
current matching is maximum for G - Sg.

Proof. From Lemma 4.4, we know that if there is
no augmenting path starting from any root node then a
maximum matching has been obtained. The first Ver-
sion A is finished only when A is stable. In the graph
G - Sg, there is no supernode in B. Thus, if A is
stable, G - SB must be stable. Therefore, we can
prove the lemma by showing that when A is stable,
there does not exist an augmenting path starting from
any remaining root node in A. Thus, a maximum
matching is obtained for G - S g .

We consider the graph G - Ss. From Lemma 4.2,
we know that we can assume that all failures of nodes
occur at the same time. We prove this lemma by induc-
tion on the number of root nodes in A, say k . When k =
I , i t is true by Lemma 4.1. Assume that the lemma is
correct when the number of root nodes is less than k .
Let M L be the matching found in Version A . If Mk is
maximum, the theorem is proved. We claim that if Mk
is not maximum then there must exist at least one root
node that will find a free node. We will prove this claim
later. From the induction hypothesis and this claim,
we know that when G - SB is stable there does not
exist any augmenting path starting from a root node in
A , and the lemma is proved.

Now we prove our claim: Assume that all those k
root nodes are in one connected graph. Otherwise,
there exists a smaller subgraph, so we can use the
induction hypothesis to prove the theorem. Suppose
that Version A is stable, i.e., every supernode in A is
idle. From Lemma 4.3, we know that every supernode
goes to a root node. Assume thatf is a free node in B
that would have been in a new matching. Consider an
alternating tree rooted atf. There must exist one alter-

D-0'
b

Fig. 9. Alternating path for showing impossibility of all
supernodes being idle.

nating path fromfto a root node r . Under this alternat-
ing path, say that a is the node adjacent tof, and b is
a's old matching node (see Fig. 9). Sincefis not found
by a supernode, b must not be reached by any su-
pernode. With the same argument, all the nodes in B
appearing in the alternating path cannot be reached.
This argument shows that there must exist one node
adjacent to r that is unreached. Thus, the supernode
should not idle, and Version A would not be stable
either. Therefore, at least one root node would find a
free node. Our claim is proved.

Since the supernodes will not all be idle, at least one
will find a free node, and then this event will unmark
the corresponding backtracked nodes to wake up some
idle supernodes, if they exist. By repeating the above
argument, the number of active supernodes decreases
monotonically until there is no augmenting path start-
ing from any root node in A.

Now we prove the main theorem that shows the
correctness of our algorithm.

Theorem 4.6. By using our reconfiguration algorithm
if a stable graph is reached, then a maximum bipartite
matching is obtained.

Proof. Our algorithm alternatively performs Ver-
sions A and B until the graph is stable. Let G be the
graph obtained by deleting the failed nodes and their
incident edges. Note that if a new failure occurs G will
be changed accordingly. From Lemma 4.5, we know
that after the first Version A is performed, we have a
maximum matching for graph G - SB. If we delete all
the failed nodes and nodes in Se, the matching after
the first Version A is finished will be a maximum
matching. Thus, if we can increase the matching size,
we must be able to find an alternating path starting
from a node in Ss. Therefore, in a way similar to the
proof in Lemma 4.5, we can prove that after Version B
(resp., A) is performed, a maximum matching for the
graph G - SA (resp., G - SB) is obtained.

In our algorithm after Version A (resp., B) is fin-
ished, all the idle supernodes in A (resp., B) are set to
be free. Without loss of generality, we assume that the
last version that is performed is Version B. It is obvi-
ous that no supernode in A is created in running the

MAINTAINING BIPARTITE MATCHINGS 467

last Version B. Thus, SA is empty. Because SA is
empty. Because SA is empty, B is stable if and only if G
is stable. We know that if B is stable, then a maximum
matching for G - SA = G is obtained. Therefore, a
maximum matching is obtained for G if a stable graph
is reached. 8

We assume that the actions in a phase can be fin-
ished in unit clock time where a clock consists of three
phases. Note that for a more detailed timing analysis
the parallel running time for each phase is actually
upper bounded by O (d) , where d is the maximum de-
gree of a node.

Theorem 4.7. The total number of clock ticks for a
reconfiguration to find a bipartite matching for k fail-
ures in a bipartite graph G = (A, B . E) is O(k min(lA1,
1B1)) by our algorithm.

Proof. We know that all k supernodes will not be
idle at one time. The worst case happens when k - 1
supernodes are idle and only one supernode is active.
All the nodes in A or B can be searched at most twice,
once forward and once backtracked. Thus, in
O(min(lAI.1B1)) clock ticks, one supernode should find
a free node. After the completion of the first root node,
it unmarks the corresponding backtracked nodes that
takes O(min(IA1, JB()) clock ticks. The worst case oc-
curs when only one idle supernode wakes up to per-
form a search again. Thus, the total maximum number
of clock ticks is O(k min(lA1, IBI)). 8

In [lo], the fault-tolerant graph is constructed by
using N levels, and every two levels are connected by
a bipartite matching. Suppose that there are N levels
and each level has m = O(1og N) nodes in our d-degree
expander architecture. We analyze the worst-case per-
formance, although it is very unlikely to happen. The
worst case happens when the faults are in the first
level, since we need to propagate the new matchings
through the N levels. The total reconfiguration time is
O(km N) if k failures occur. Suppose M packets (or
operations) need to be sent in one pipeline. Usually, M
is very large compared to N. The minimum time to
finish the whole operation is M + N. Suppose k faulty
nodes occur in the operation. According to the above
theorem, the total operation time is at most M + N +
O(km N) .

5. EXPECTED RECONFIGURATION TIME

In this section, we would like to show that the ex-
pected number of clock ticks to finish a reconfiguration
is small. We assume that the size of a maximum
matching is all?[, where a < 1. Considering random

graphs with maximum degree d, when there is one
failure, reconfiguration time is actually upper bounded
by a constant value.

Lemma 5.1. The expected reconfiguration time of our
algorithm for one failure is at most 2 4 1 - ad).

Proof. Let M be the set of matched nodes in B and
Y be the set of free nodes in A. Since IMI = alBl, the
probability that a node in A is only connected to M is
ad. In each clock, if a supernode s cannot find a free
node, it either steals another matched node or back-
tracks. Let search tree S be a tree by merging nodes in
B and their corresponding matching nodes in an alter-
nating tree, and the size of search tree be the number
of nodes in S. When s steals another matched node,
the size of a search tree grows one. When s back-
tracks, the size of a search tree remains the same.
However, all the edges in search tree can only be tra-
versed at most twice. Thus, we know that the number
of clock ticks for reconfiguration is at most two x the
size of the search tree.

If the size of a search tree is k, we know that k - 1
nodes are only connected to M, and there exists at
least an edge from the remaining one node to some
node in B - M. The probability that the size of a
search tree is k is ad(k-') (1 - a d) . Thus, the expected
size of a search tree is

Therefore, the expected reconfiguration time of our
algorithm for one failure is at most 2/(1 - ad) . 8

For example, when LY = 8/13, as our first simulation
assumes in the next section, the expected number of
clock ticks of reconfiguration for one failure is at most
2.2 if the maximum degree d is 5 .

6. EXPERIMENTAL RESULTS

In this section, we show some experimental results for
multiple faults. We first explain the first two simula-
tions: The results in the first two simulations show that
the average reconfiguration time is within several
clock ticks. We construct random bipartite graphs and
simulate the algorithm 10,000 times for different num-
bers of failures. Failures are randomly produced in the
beginning of a simulation. In the first simulation, there
are 40 nodes in A and 65 nodes in B. Three sets of
results are given by different maximum degrees of
nodes, 4 (solid line), 5 (dashed line), and 6 (dotted
line). We show the average number of clock ticks that

468 SHA AND STElGLlTZ

i 6 -

hlar c hi ngs

7.1 -

72 -

70 i I I I I ’
0 5 10 15 20

Faults

‘

-
I I I I

Fig. 10. The results of Simulation 1.

are needed to completely finish reconfiguration in Fig-
ure 10. Because a graph with higher degree has more
possibility to find free nodes than does a graph with a
lower degree, the average reconfiguration time for a
graph with a higher degree is less than the time for a
graph with lower degree.

In the second simulation, there are 400 nodes in A
and 450 nodes in B. Three results are given in Figure
1 1 for different maximum degrees of nodes-I0 (solid
line), 14 (dash line), and 18 (dotted line). From these
simulations, we know that only several clock ticks are
needed in average to complete a reconfiguration.

We also simulate the situations where failures occur
during reconfigurations. The occurrence of a failure
follows a Poisson process at each clock. Let lambda
be the probability that a failure occurs in a clock. In
the following simulations, there are 80 nodes in A and
90 nodes in B in this simulation, and, initially, the size
of the maximum matching is 80. We simulate the situa-
tions that failed nodes can be repaired. Let the repair
period be the number of clock ticks that is sufficient to

a

6
Clocks

4

2

/

I I I I I
0 10 20 30 40

Faults

Fig. 11. The results of Simulation 2.

80 I
lambda = 0.3 7\

repair a failed node. Thus, if a node b is failed at clock
1, at clock (r + repair period) node b is repaired. In this
simulation, we set repair period to be 30. Figure 12
shows the average matching size during each clock.
When lambda is 0.1, the average matching size is al-
ways almost 80, and when lambda is 0.3, the average
stable matching size is about 77.5 after 50 clocks. If we
do not use our reconfiguration algorithm, the average
stable matching size is only about 72.

The simulation in Figure 13 shows the average
matching size with two different repair periods, 30 and
60, with given a lambda = 0.3. Figure 13 shows when
repair period is 60, the average stable matching size is
dropped to about 71, but still much better than the
stable size without reconfiguration.

The following two simulations show the average
stable matching sizes for different lambdas and repair
periods. We set the repair period to be 30. Figure 14
shows that the average stable matching size is larger
while lambda is smaller. Therefore, when lambda is
not too large, say less than 0.2, which is a practical

80

i 8 Repair period = 30

Repair period = 60

68

ir period x 60 (no reconfiguration)
6 4

I I 1 I 4
0 100 200 300 400 500

Clocks

Fig. 13. The simulation of repairable failures with differ-
ent repair periods.

MAINTAINING BIPARTITE MATCHINGS 469

80 1 .Tx reconfiguration

75

Matchings

70 4 I

I
I 1 I I I '

0 0. I 0.2 0.3 0.4 0.5
lambda

Fig. 14. The matching size with different lambdas.

assumption, the matching size is about 79. It also
shows that by doing our reconfiguration algorithm the
matching size is increased significantly.

We set lambda to be 0.1 in the last simulation. Fig-
ure 15 shows that when the repair period becomes
longer the average stable matching size is smaller.
However, the stable matching size is always much bet-
ter than the size with no reconfiguration.

7. CONCLUSION

Given a bipartite graph G = (A, B, E) , nodes in A and
B are regarded as processor elements that can fail at
any time. After nodes have failed, the failed nodes and
their adjacent edges are deleted. This paper presented
an on-line distributed algorithm to find a maximum
bipartite matching after some nodes have failed. This
algorithm can tolerate failures during reconfiguration.
Since this distributed algorithm finds a new matching
incrementally, it is especially suitable for reconfigura-

80

15

Matchings

70

65
0 50 100 150

Repair period

Fig. 15. The matching size with different repair periods.

tion in run-time fault tolerance. The size of a current
matching during reconfiguration is at least M - k,
where M is the size of the original maximum matching
and k is the number of current failures. The size of a
current matching increases monotonically during re-
configuration. The worst-case reconfiguration time is
O(k min(lA1, let)) after kfailures. But the average-case
reconfiguration time is much better. Experimental
results were presented, which showed that, on the av-
erage, only several clock ticks are needed for up to 40
failures. Simulation results were also presented for the
case when failures are Poisson-distributed. These
results showed that the algorithm maintains a large-
sized current matching.

APPENDIX A: THE VERSION A OF
OUR ALGORITHM

I* Denote by N the node which is performing the fol-
lowing algorithm. *I
I* Let set E be the node set in B which are good,
adjacent to N , and not supernodes. *I

Phase 1 for nodes in A
If cur(N) is not good {

node N becomes a supernode
Discard any received message }

Phase 2
If N is a super node {

If there exists a free node in E {
I* Let f be such a free node *I
I* The nodes in the augmenting path should
change their old matching nodes to be the current
matching nodes. *I
I* Let b be N's old matching node, old(N). *I

2.1 Ask b to send CHANGE-OLD-MATCHING
to cur@)
I* unmark the alternating path *I
Set node b to be not reached
Ask b to send UNMARK-BACKTRACK to all
adjacent backtracked nodes
I* change the old matching node to be the cur-
rent matching node */
Set old(N) to be f }

2.2

2.3

Else if there is a node b in E which is unreached {
I* N can steal this node b *I

Set node b to be reached
Ask b to send SUPERNODE to cur(b)
Reset cur(b) and cur(N) }

Else if old matching node of N is good {
/* Backtrack from N *I
I* Let b be old(N)*

470 SHA AND STElGLllZ

2.4 Ask node b to send SUPERNODE to cur@)
Set cur(N) to be old(N) }

Else {
I* N is temporarily idle */

Do nothing }
1
Phase 3
If N receives SUPERNODE

Set N to be a supernode.

If N receives CHANGE-OLD-MATCHING {
I* Let b be N s old matching node *I

3.1 Ask b to send CHANGE-OLD-MATCHING
to cur(b)
Set node b to be not reached
Ask node node b to send UNMARK-BACK-
TRACK to all adjacent backtracked nodes
Set old(N) to be cur(N) }

3.2

If N receives UNMARK-BACKTRACK {
I* Let b be N ’ s old matching node *I

Set node b to be not reached
Ask node b to send UNMARK-BACKTRACK
to all adjacent backtracked nodes }

3.3

For nodes N in B:
If old(N) is not good.

Set N to be a supernode.
if old(N) is not the same as cur(N)

Send SUPERNODE to c u r (N) .

If N receives CHANGE-OLD-MATCHING and
cur(N) is not good

Set N to be free.

message CHANGE-OLD- MATCHING, and then in
the next Phase I , a’ will detect the failure of b, which
is similar to Case B I .

When b fails just after 2.2, b does not need to send
the unmarked messages to all the adjacent back-
tracked nodes, but it causes no error to send these
redundant messages.

If b fails before it sends the message SUPERNODE
to its current matching node, say a’ , at Statement 2.3,
the current matching node of both a and a’, which is b
is not good. Thus, in the next Phase 1, a and a’ will be
supernodes, which is similar to Case B2. Otherwise, if
b fails just after it sends the message SUPERNODE,
a’ will be a supernode in Phase 3 and a will be a su-
pernode in the next Phase 1, which is also similar to
the Case B2. The analysis for the failure of b at 2.4 is
similar to the previous analysis for 2.3.

If b fails before it sends the message at Statement
3.1, the analysis is the same as we did for Statement
2.1. If b fails after sending the message to a’, a’ will
discard this message in the next Phase 1 and becomes
the supernode, which is similar to the Case 82. The
situations when b fails at 3.2 and 3.3 are the same as
the one for 2.2.

REFERENCES

[I 1

I21

I31

APPENDIX B: DETAILED CASE ANALYSES
FOR LEMMA 4.2

If the failure at node b E B happens at the statements
in which no message transmissions are involved, we
can use the previous Case B1 and Case B2 to analyze
the effect. Thus, we only need to consider failures at
the statements that have message transmission involv-
ing nodes in B. These statements are labeled in Appen-
dix A.

If b fails at the Statement 2. I , b either fails before
the message has been sent to b ’ s current matching
node, say a‘ , or after. If b fails before sending the
message, a’ will detect the failure of b in the next clock
period and will become a supernode, which is similar
to the Case B2. Otherwise, if b fails after sending the
message, a’ will perform the actions for sending the

B. Awerbuch, Complexity of network synchroniza-
tion. J. Assoc. Comput. Math. 32 (1985) 804-823.
J. W. Greene and A. E. Gamal, Configuration of VLSI
arrays in the presence of defects. J . Assoc. Comp.
Mach. 31 (1984) 694-717.
J. E. Hopocroft and R. M. Karp, An n 2.5 algorithm
for maximum matching in bipartite graphs. SlAM J .
Comput. 2 (1973) 225-23 1.
R. M. Karp, U. V. Vazirani, and V. V. Vazirani, An
optimal algorithm for on-line bipartite matching. Pro-
ceedings of the 22th Annual ACM Symposium Theory
of Computing (1990) 352-358.
S.-Y. Kuo and W. K. Fuchs, Spare allocation and
reconfiguration in large area VLSI. Proceedings of
25th ACMllEEE Design Automation Conference

S. Micah and V. Vazirani, An OCfl IEI) algorithm
for finding maximum matching in general graphs. Pro-
ceedings of the Foundations o j Computer Science

C. H. Papadimitriou and K. Steiglitz, Combinatorid
Optimization: Algorithtns and Complexity. Prentice-
Hall, Englewood Cliffs, N.J. (1981).
B. Schieber and S. Moran, Slowing sequential algo-
rithms for obtaining fast distributed and parallel algo-
rithms: Maximum matchings. Proceedings of the 5th
Annual ACM Symposium on PrinciplP.5 of Distributed
Computing (1986) 282-292.

(1988) 609-612.

(1980) 17-27.

MAINTAINING BIPARTITE MATCHINGS 471

[9] E. H.-M. Sha and K. Steiglitz, Reconfigurability and
reliability of systolic/wavefront arrays. IEEE Trans.
Comput., to appear.

1101 E. H.-M. Sha and K. Steiglitz, Explicit constructions
for reliable reconfigurable array architectures. Pro-
ceedings of the Third IEEE Symposium Parallel and
Distributed Processing, Dallas, Texas, (Dec. 1991) Received October 1992
640-647. Accepted December 1992

[l l] M. M. Wu and M. C. Loui, An efficient distributed
algorithm for maximum matching in general graphs.
Algorithmica 5 383-406 (1990).

