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ABSTRACT o

4, Two techniques are described for improving Lin's method for

: obtaining locally optimal solutions to the traveling salesman

problem. The first, called dynamic 3-opt, is inductive in nature ‘
and produces 3-opt solutions two to three times faster than the :
basic method described by Lin. The second technique, called
linear 2-opt, takes advantage of distance ordering, and requires
computation time linear in the number of cities, as opposed to
the quadratic time dependence exhibited by the basic method.
This approach can be extended to 3-opt and increases the size

G of problem which can practicably be solved by computers.
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INTRODUCTION AND SUMMARY OF PREVIOUS WORK

The traveling salesman problem has received much attention.
Briefly, the problem can be stated as follows: Given an nxn
o distance matrix (dij), determine a permutation of the integers
from 1 to n, (ij,...,i,) which minimizes the sum dijip + dj,iz ,
* ... +dj iy. We shall consider only the cases i

when (dij) is a symmetric matrix. . i

ANt

Previous work -may be divided into two general categories:
exact and heuristic. .

Exact techniques

Although complete enumeration requires the evaluation of
(n-1) !/2 tours, Held and Karp [1) and Bellman [2] have shown
that the application of dynamic programming reduces the time
required for solution from a factorial to an exponential func-
tion of n. Little, et.al. [3) and Agin [4] applied a branch-
and bound method which reduces the time for solution still fur-
ther, but which still requires exponential time. Other exact
techniques include linear programming [5,6], and the method of
Croes [7]. The time required by all these algorithms grows so
fast with the number of cities that they become impractical for
moderate size problems (25-50 cities). For this reason a number
of approximate techniques have been developed., Many of the
papers referenced above concentrated on approximate applications
of the exact techniques. On the other hand there are approxi-
mate methods which are not derived from exact techniques, and
these will be discussed next.

*
4
:

Sy e,

Heuristic technigues
Karg and Thompson [8] combine two heuristic methods: The
¢ first is a fast way to obtain good but not necessarily optimum
tours, which works well for convex problems. The second is a
way of decomposing the original problem into convex pieces. The

*
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work of Roberts and Flores [9] is notable in its application of
statistical analysis to reduce the size of the problem to one
small enough to be completed exhaustively. .

In 1965 Reiter and Sherman ([10] and Shen Lin [11] suggested
the use of fast local optimization techniques applied repeatedly
to random initial tours. It should be mentioned that the attain-
ment of the absolute minimum length tour is not the only objec-
tive of these methods, which generate many distinct solutions
near the optimum. This approach has provided by far the most
dramatic reduction in the computation time required to obtain
good solutions to large problems. In particular, the computa-
tion times documented by Lin [11] represent a great improvement
over previously published results, and his approach provides a
starting point for our study.

LIN'S METHOD - 3-OPTING

tin's basic method is to apply a fast but powerful trans-
formation repeatedly to a random tour until no further improve-
ments are possible. The resulting stationary solutions are
defined to be locally optimal with respect to the particular
transformation. The power of the technique is derived in part
from the careful selection of the particular transformation.
1in has also demonstrated that it is possible to extract common
features from a collection of distinct locally optimum tours,
and that this leads to a reduction technique which considerably
reduces computation time. ’

The particularly successful transformation used by Lin is
called 3-opting and is a generalization of the procedure intro-
duced by Croes [7], which can be though of as 2-opting. In
general a tour is called A-opt [11] if it is not possible to
obtain a tour with smaller cost by replacing any A of its links
by any other set of A links. The transformation involves se-=
quentially examining all ways of interchanging A links of a
given tour, and selecting the first one which produces an im-
provement.

The overall strategy proposed by Lin consists of starting
with random initial tours and obtaining a number of distinct
3-opt tours. By examining common links of these tours, a reduc-
tion procedure is applied which commits certain links and effec-
tively reduces the size of the problem for the next round of 3-
opting. The reduced problem is attacked in the same way as the
original. Although the technique of reduction introduces the
danger of improperly committing suboptimum features to the tour

at an early stage, it can significantly reduce the time spent
on a particular problem.

DYNAMIC 3-OPTING

we shall now describe an alternate method for obtaining
3-opt tours, which we shall call dynamic 3-opting. Experimental
results indicate that this method produces 3-opt tours two to
three times faster than the basic method proposed by Lin. The
method has the property that the 3-opt tours obtained are, on
the average, as good as those produced by Lin's 3-opt procedure.
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Dynamic 3-opting proceeds as follows, given a starting tour
To. A starting city and an orientation are selected, so that To
can be characterized by the ordered list of indices ir,i2,...,4p.
The basic idea is to obtain a 3-opt. tour for the subproblem con-
sisting of the cities i3,...,ix+1 from a 3-opt tour for the sub-
problem consisting of the cities i1,.-..,ix. This is done in-
ductively as follows: There is only one tour for the subproblem
consisting of the cities i1,i2,i3, and this must be 3~-opt. Now
suppose a 3-opt tour has been obtained for the k-city subproblem.
An initial tour for the (k+1)-city subproblem is obtained by
inserting city iyp4] between two consecutive cities of the pre~

~viously obtained 3-opt tour, and this is done by examining the

incremental costs of the k possible tours ana choosing the one
which results in the minimum cost for the (k+1)-city subproblem.
Although the tour obtained in this way is not necessarily 3-opt,
experience indicates that it often is. 1In any event, we need
only check those triples of links which include at least one of
the two links connected to iy41. If and when an improvement is
obtained by replacing a triple of links with another triple of
links, it becomes necessary to check triples which include the
newly added links. Thus a list of links is generated which has
the property that we need only check triples of links which
include members of this list. Proceeding in this way a 3-opt
tour is obtained for the (k+1l)-city subproblem.

Table 1 shows a comparison of the running times of Lin's
3-opt procedure and dynamic 3-opt on typical problems of size
10 to 57 cities. Both algorithms were coded in Fortran IV with
equal sophistication, and run on the CDC 6600 computer. The
times shown are the result of averaging 100 3-opt tours from
random starts. Also shown are the average percent errors and
the number of times correct out of one-hundred trials.

Dynamic 3-opt Lin's 3-opt

Problem average average number éverage average number
(# of cities) time in % error correct time in % error correct

geconds per 100 seconds per 100
10 ([12]) .038 .6 34 .057 .7 26
20 ([7]) .327 1.9 36 .517 1.5 46
25 ({1 .378 .7 49 1.17 .75 56
29 ([13}]) .683 .9 11 1.72 .9 23
33 ([8]) 956 .75 43 2.63 .6 51
42 ([5]) 1.93 .9 31 6.93 1.1 35
48 ([1]) 3.06 1.1 8 10.10 1.6 7
48 ([11, [14)) 2.96 8.9 5 5.84 11.4 o
57 ([8)) 5.31 1.5 0 18.23 1.9 1

Table 1. A comparison of the running times of Dynamic 3-opt and
Lin's 3-opt. :

During the course of computer experimentation, several
heuristic techniques were developed which seemed to work very
well on some problems and not so well on others. For example,
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an attempt was made to provide initial tours which were effec-
tive in combination with dynamic 3-opt. One such method was the
nearest neighbor algorithm. In this method of generating an

initial tour, a starting city is selected, the city nearest to
that is chosen as the next city in the tour, and so on, until

a complete tour is generated. Because the beginning of a near-
est neighbor tour is more likely to be in the optimum tour than
the end, the nearest neighbor tour was fed into the dynamic
3-opting procedure in an order reverse to the one in which it
was generated. In this way it was hoped that the poor links
would be corrected at an early stage in the optimization. One
problem that was especially amenable to this combination of
nearest neighbor and dynamic 3-opt was the 48 city Knight's tour,
for which the optimum was found 11 times when the nearest neigh-
bor algorithm was started from each of the possible 48 cities.
on the other hand, the procedure never produced the correct
answer for the 57 city problem although it did produce very good
tours.” On the 105 city problem [1l] the nearest-heighbor-
reversed-dynamic 3-opt procedure produced a tour of length
23076, which is lower than any reported previously.

Dynamic 3-opt has the interesting feature that it may ba
iterated; that is, the tour resulting from one application may
be used as an initial permutation for another application, by
selecting a starting city and direction. The following strategy
was devised to exploit this feature: Once a dynamic 3-opt tour
was obtained, it was fed into the dynamic 3-opt procedure with
different starting points and directions until a tour with lower
cost was found. By repeating this it was found that one could
hill-climb to the global optimum. In point of fact, the con-
jectured global optimum was obtained in this manner for every
problem tried, up to and including the 57 city problem. The
method has the disadvantage that 2n local optima must be checked
out at the final stage before it can be determined that no fur-
ther improvement is possible. Experimental evidence indicates,
moreover, that the expected time before obtaining the conjec-
tured global optimum is not significantly less than the time
taken by dynamic 3-opting from random starts. This fact is

somewhat mitigated by the feature of having a definite termin-
ation point.

Another variation of some interest involves the concept of
link denial. First a 3-opt tour is obtained. Then a link in
the tour is temporarily assigned a high cost, effectively ex-
cluding it from future tours. The dynamic 3-opt procedure is
then entered at its last stage, since most triplets of the
Present tour have already been tested. This quickly yields
another tour which may or may not be 3-opt relative to the ori-
ginal matrix. This can be checked out by restoring the cost of
the denied link to its original value, and by then applying the
appropriate tests. The above method provides a very fast pro-
cedure - for generating a large number of distinct solutions close
to the optimum. In fact for the 57 city problem a solution with
cost 12978 was found, which is neither globally optimum nor
3-opt, but is the third best solution known. Thus, this proce-
dure may prove of value in engineering applications where non-
analytical constraints may be present. ’
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LINEAR 2-OPTING

Dynamic 3-opt, while two to three times faster than Lin's
3-opt, still requires computation time which is asymptotically
cubic in the number of cities. TIf dramatic reduction in the
time required to find a local optimum is to be made, means must
be found for reducing the asymptotic dependence of time on the
number of cities. Such a method will now be described for find-
ing 2-opt tours. By using the concept of local im rovement and
by ordering the distance matrix, there results a method for
~2-opting that-takes time asymptotically proportional to ny "

Consider a tour with node v; connected to branches with
lengths a and b. A local improvement is said to exist at vy if
there exists a link not in the tour terminating at vy with
length ¢ and if c<a or ¢<b. It can be shown easily that if a
2-opt improvement exists then a local improvement exists. PFur-
thermore, the local improvement determines a favorable 2-change.
If now for each node v) the other nodes are listed in order of
increasing distance from Vi, we need only search down the list
for a local improvement until we have passed the two nodes
adjacent to vj on the tour. Thus, if the nodes adjacent to \41
are each marked on the list by a star, we need only search down
to the second star. 1In a problem with a Euclidean metric, it
is plausible that the average depth of the second star for a
good tour is independent of the number of cities, since it de-
pends only on the local situation at a given city. 1Indeed, it
has been verified experimentally for the class of problems con-
sidered here that the average second star depth is 4 to 5. This
implies then that a complete checkout for a 2-opt tour requires
a time linear in the number of cities, since the search for a
local improvement at each city is roughly constant.

The algorithm suggested above requires a starting tour
with small average second star depth, for otherwise the initial
search for local improvements would still take quadratic time.
The following randomized start was used: The cities are ordered
randomly; each city, proceeding in the random ordering, is then
connected to its nearest neighbor, with the provisions that no
city is connected to more than two- others, and that no closed
cycle is formed until the last step.

The linear 2-opt ‘algorithm with randomized nearest neighbor
start was implemented and compared with Lin's 2~-opt algorithm
with random start, with the results shown in Table 2. Graph 1
shows a plot of computation time vs, problem size, and verifies
the linear dependence of the new 2-opt procedure.

818




Linear 2-opt

Problem ‘ average average
(# of cities) time in % error
seconds
10 .015 1.9
20 .023 11.1
25 .028 . 2.8
29 ([13]) .035 2.3
33 .028 2.6
42 .038 4.5
48 ([1]) .040 4.3
48 ([11, [14)]) ' .046 4.9
57 .052 5.3

i ASninisi iy

average
time in
seconds

.013
.038
.060
.085
<12
.19
.25

.12

.39

Lin's 2-opt

average
% error

l.6
11.8
3.6
3.0
4.6
7.7
6.8
30.1
6.2

Table 2. A comparison of Linear 2-opt and Lin's 2=9opt.
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Fig. 1. A comparison of running times for Linear and Lin's 2-opt.
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The approach described above has been extended to obtain a
local optimization procedure almost as. powerful as 3-opt which
still takes only linear computation time. Experimental results
will be reported in a future paper.

CONCLUSION

We have described two techniques for improving Lin's method
for finding locally optimal solutions to the traveling salesman
_..The first, called dynamic 3-opt, is inductive in _
nature and at each stage adds one city to a 3-opt subproblem and
checks only those triples of links which it is necessary to
check. The second technique, called linear 2-opt, takes advan-
tage of distance ordering in the search for 2-changes and re-
quires computation time linear in the number of cities, as
opposed to the quadratic dependence exhibited by the basic 2-
opt algorithm. This approach can be extended to 3-opt and
increases considerably the size of problem which can practicably
be solved by existing computers.
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