
BIT 11 (1971), 94--106

A N E W D E R I V A T I O N O F F R I S C H ' S A L G O R I T H M

F O R C A L C U L A T I N G V E R T E X - P A I R C O N N E C T I V I T Y

K E N N E T H S T E I G L I T Z a n d J O H N B R U N O

Abstract.
In this paper we give a new and conceptually simple version of Frisch's algo-

rithm for calculating the vertex connectivity of a graph. We show how this algo-
rithm is obtained immediately from the Ford and Fulkerson labelling algorithm
by using a "2-ply" scanning step. Data structures are introduced which lead to
effieiencies in execution, and the final algorithm is presented in a "go-to-less"
notation.

1. Introduction.

In a recent paper [1] Frisch describes an algorithm for finding the
number of vertex disjoint paths between a pair of vertices in a graph.
He establishes the validity of this algorithm by making a correspondence
between the Ford-Fulkerson labelling algorithm (FFLA) applied to an
augmented graph and his own algorithm applied to the original graph.
In this paper we give a new and conceptually simpler version of Frisch's
algorithm and show how it is obtained immediately from the FFLA by
using a "2-ply" scanning step. Moreover, we present our results in an
algorithmic notation and introduce data structures which lead to effi-
ciencies in execution of the algorithm.

2. Statement of the Problem.

Let G be an undirected graph without self-loops or multiple edges, and
with edges E(G) and N vertices V(G). Two vertices I1, I2 e V(G) are
distinguished as source and terminal vertices. Our problem is to find the
maximum number .NF(II,I2) of vertex-disjoint paths from vertex I1
to I2.

I t is well&nown [2] tha t the Ford and Fulkerson labelling algorithm
(FFLA) can be used to find N/7(I1,I2) if it is applied to an augmented

Received J a n u a r y 12, 1970; revised Augus~ 20, 1970.
This work was supported in par t by U.S. Army Research Office, Durham under contract

DA HC04 69 C 0012, and NSF Grant GJ-965.

A N E W D E R I V A T I O N O F F R t S C H ' S A L G O R I T H M . . . 95

graph G+ which is obtained from G. G + is a capacitated directed graph
defined as follows:

1. For every vertex v e V(G) let there be two vertices of G +, denoted
by v' and v".

2. For every vertex v e V(G), E(G +) contains the edge (v",v').
3. For every edge (i ,j)e E(G), E(G +) contains the edges (i',j") and

(j ' , i") .
4. Every edge of G + has capacity 1; tha t is, if f is the flow in the

direction of orientation on any edge of G +, then 0 < f ~ 1.

NF(II , I2) is found by finding the maximum flow from I I ' to 12" in G +.
We proceed by writing a program for the FFLA applied to G + which

takes advantage of its special structure. By so doing we shall arrive at
an algorithm which has the storage and time requirements of a flow
calculation on a graph with N rather than 2N vertices.

3. Data Structures and Programming Style.

In this section we define the arrays which will be used in our program:

NADJ(I :N) - - a list which contains in position i the valence of
vertex i in G. This entry is also equal to the out-
valence of vertex i' and the in-valence of vertex
i" in G +.

NEAR(1 :N, 1 : N) - a matrix which describes the vertex to vertex ad-
jacency of G. If i is a vertex of G, then NEAR(i, k)
for k = 1 , . . . ,NADJ(i) is a list of all the vortices
adjacent to i in G. This list is identical to the suc-
cessor vertices of vertex i' in G +, (with a double-
prime assumed); as well as the predecessor ver-
tices of vertex i" in G + (with a prime assumed).

E (I : N , I :N) - - a matrix which describes a flow in the directed
graph G +. The diagonal element 2'(i,i) is 1 or 0
depending on whether there is or is not unit flow in
the edge from vertex i" to vertex i', respectively.
The off-diagonal term F(i,j) (i #j) is I or 0 de-
pending on whether there is or is not unit flow in
the edge from vertex i' to vertex j". Notice that
there is a one-to-one correspondence between the
entries of F and possible edges of G +.

INFLO W(1 :N) - - This list will allow us to scan doubleprime vertices
of G + without searching the N E A R array. If there

96 KENNETH STEIGLITZ AND JOHN BRUNO

is a unit flow in an edge (j',i") of G +, then
INFLOW(i)=j . Note that there is at most one
such edge for each doubleprime vertex of G+.

When the FFLA is applied to G +, it is only necessary to use one label
on each vertex: the number of an adjacent vertex from which an incre-

PROCEDURE FRISCH

begin

', READ N, II,I2,
NEAR, NADJ

I F:=O
NF~'=O I

I

i ~ NEXT <TOP

~end

1 II=L's~(NExT, r
, NEXT:: NEXT +1

I

1
I ~F::N~+, I

I

1
I RESETLABELS I

.

Fig. 1. Procedure F R I S C H .

A N E W D E R I V A T I O N O F F R I S C H ' S A L G O R I T H ~ I . . . 97

ment of flow can be brought. I t is not necessary to record the size of the
flow increment, since this is always 1. Furthermore, since a prime vertex
can be labelled only from a double prime vertex, and vice-versa, it is not
necessary to record whether a label is prime or double-prime.

L1(1 :N) - - This list contains in position i the label of vertex i' in G +,
or 0 if vertex i' is unlabelled.

L2(1 :N) - - This list contains in position i the label of vertex i " in G +,
or 0 if vertex i" is unlabelled.

LIST(1 : N) - - T h i s is a list of labelled but unscanned vertices of G +.
Since double-prime vertices will be scanned as soon as
they are labelled, this list contains only prime vertices.
Hence LIST need only have a capacity of N, and it is
not necessary to record whether an entry is prime or
double-prime. LIST will be managed as a stack, where
LIST(NEXT) is the next vertex to be scanned, and
LIST(TOP) is the next available space. Thus when
NEXT=TOP, there are no more labelled, unscanned
vertices in G +.

Having described the arrangement of data for the flow calculation in
G +, we now turn to the program. Fig. 1 shows a diagram of main pro-
gram FRISCH. The execution starts at the top and proceeds down-

PROCEDURE RESETLABELS

B I T 11 - - 7

,l begin

LI := L 2 : = 0

LI(II):= L2(II):=I
LIST(1)=II
N E X T : = I

TOP: = 2

lend
F i g . 2. P r o c e d u r e R E S E T L A B E L S .

98 KEI~rNETH STEIGLITZ AND JOHN BRUNO

PROCEDURE SCAN

F(I,I); I I begin
&L2(I) :0
I

i L2(1):=I I
I LI(INFLOW (I)) #0

LI(INFLOW (1)): = I
LIST (TOP):=INFLOW(I)
TOP:: TOP + I

C_<NADJ(1)

L2(J)=O
81 F(II,J)=,O
[

LI(J) ~0

LKJ):=J
LIST(TOP):= d
TOP:= TOP+I

I

Fig. 3. Procedure S C A N .

I

I

IK. ,N'FLOW (j)
I LI(K): = J
I LIST(TOP},= K
I TOP:= TOP +I

I
i c,--c÷, I

6
ward, with straight-line code or other procedures enclosed in boxes.
The junction indicated by "®" indicates a "while-do" control state-
ment; the branch to the right is executed repeatedly as long as the c o n -

A NE~,V D E R I V A T I O N O F F R I S C H ' S A L G O R I T H M . . . 99

dition on the branch, " N E X T < TOP", is satisfied. When the condition
is violated for the first time, control continues downward from the "®".
The 2-way branch following the box enclosing the procedure S C A N
indicates an "if-then-else" control statement, with the condition indi-
cated on the appropriate branch. This programming style has been ad-
vocated by Dijkstra [3] and has the distinction of not using "go to"
statements. I t has the advantage of indicating quite clearly exactly
what conditions hold at each point, and the diagram can be translated

PROCEDURE AUGMENT

T begin

i Kp:=,2'i"~2i"!
F(KP, I2~-=! I

end

KP¢II
l

KPP = KP I KPP :f KP

I I
i ~(~.~):--' i ! ~l~,~;--° i

I I
I

i
KP =KPP I KP ~KPP

t
I ~cK",!"~--oi l~c~P, KPP~:--, t

INFLOW (KPP) = KP I

L J

F i g , 4. P r o c e d u r e AUGMENT.

100 KENNETH STEIGLITZ AND JOHN BRUNO

into languages such as FORTRAN, ALGOL, PL1, and PL360 in a
mechanical way.

Procedure FRISCH is a straightforward version of the FFLA, using
the stack LIST described above, and procedures RESETLABELS,
SCAN, and AUGMENT.

Procedure RESETLABELS, shown in Fig. 2, simply sets all the labels
to 0 except those on I1 ' and 11" and places I1 ' on LIST. This is used
at the beginning of FRISCH, and after each flow augmentation.

Procedures SCAN and AUGMENT, shown in Figs. 3 and 4, respec-
tively, are specially suited to the structure of G + and are described in
the next two sections.

4. 2-Ply Scanning and Procedure SCAN.

Procedure SCAN scans vertex I ' in G +. First the predecessor vertex
I" is examined. If vertex I " is unlabelled, and if there is a flow from I"
to I ' , then I " can be labelled by setting L2(I)=I. At this point, I"
becomes labelled and unscanned, and in the general FFLA would be
put on the stack LIST together with other vertices in this state. How-
ever, I" can be scanned immediately as follows: since a unit flow exists
from I" to I', this flow has been brought to I" from the vertex
INFLO W(I)'. Furthermore, INFLOW(I)' cannot at this point be already
labelled, since it could have been labelled only from INFLOW(I)" or
I " , both of which are impossible. Hence INFLOW(I)' can be labelled
with I, and LI(INFLOW(I)) need not be tested. The unnecessary test
is shown in Fig. 3 as a dotted branch in the program.

We call this process of labelling from prime vertex to double-prime
vertex to prime vertex, "2-ply" scanning.

Similarly, we can label forward from I" to a successor vertex J"=
NEAR(I,c)", provided tha t L 2 (J) = 0 and F(I,J)= O. Vertex J " can be
scanned immediately, and furthermore the label of the prime vertex to
be labelled need not be tested first since we can show tha t it cannot have
been labelled before. The two possible unnecessary tests are shown in
Fig. 3 as dotted branches.

We thus can scan the vertex I ' , adding only prime vertices to LIST.

5. 2-ply Backtracking and Procedure AUGMENT.

When I2" becomes labelled, a breakthrough has been found, and the
flow from I1' to 12" can be augmented by 1. This is accomplished by
Procedure AUGMENT. This procedure backtracks from vertex to ver-
tex by labels, in the same way as the general FFLA, except tha t it

A NEW DERIVATION OF FRISCH'S ALGORITHM . . . I01

proceeds in a 2-ply step from prime vertex to double-prime vertex to
prime vertex. At each point we must determine whether or not we are
backtracking from a vertex to its "companion" vertex (that is--prime-
to-double-prime or double-prime-to-prime), and this tells us whether
the flow should be augmented or cancelled. In one case, if we augment
the flow from a prime vertex to a double-prime vertex, we need to set
the appropriate entry of I N F L O W .

6. An Algol Program.
Fig. 5 shows an ALGOL program with the procedure FRISCH, RE-

S E T L A B E L S , S C A N and A U G M E N T . The three unnecessary tests
in S C A N have not, of course, been programmed. Notice tha t the
"while-do" control statement has been programmed as a for clause,
with a dummy for-list as follows:

for N := N while (condition) do

Fig. 5. The complete ALGOL procedure F R I S C H . The p a r a m e t e r s and variables are

described in Sections 2 and 3.

integer procedure FRISCH(N, I1, I2, N E A R , N A D J) ;
value N, I1, I2;
integer N, I1, I2;
integer array N E A R , NADJ;
begin

integer NODE, N E X T , TOP, NF, I, J, K, KP, K P P , C;
integer array F [I : N , 1 :N], L1, L2, L I S T , I N F L O W [I : N] ;

procedure R E S E T L A B E L S ;
begin

for J := 1 step 1 until N do LI[J] := L2[J] := 0;
LI[I1] := L2[I1] := 1;
LIST[l] : = I1 ;
N E X T : -= 1 ;
TOP := 2

end R E S E T L A B E L S ;

procedure SCAN;
begin

if F[I , I] = 1 ^ L2[I] = 0 then
begin

L2[I] := I ;

102 K E N N E T H S T E I G L I T Z A N D J O H N B R U N O

LI[INFLOW[I]] : = I ;
L I S T [T O P] : = I N F L O W [I] ;
TOP : = TOP + 1

end if;
C : = I ;
for N : = N while C < NA DJ[I] do
begin

J : = N E A R [I , C];
if L2 [J] = 0 ^ F[I, J] = 0 then
beg in

L 2 [J] : = I ;
if F[J, J] = 0 then
begin

L I [J] : = J ;
LIST[TOP] := J ;
TOP := TOP + 1

end
else

begin

K := I N F L O W [J] ;
L I [K] : = J ;
LIST[TOP] := K;
TOP : = TOP + 1

end

end if;
C : = C + I

end for
end S C A N ;

procedure A U G M E N T ;
begin

K P : = L2[I2] ;
F[KP, I2] : = 1 ;
for N : = N while K P ~ I1 do
begin

K P P := LI[KP];
if K P P = K P then F[KP, KP] := 1

else F[KP, KPP] := 0;
K P := L2[KPP];
if K P = K P P then F[KP, KP] := 0

else beg in

A N E W D E R I V A T I O N O F F R I S C H ' S A L G O R I T H M . . .

end f o r
end A U G M E N T ;

F [K P , K P P] := 1 ;

I N F L O W [K P P] := K P
end

c o m m e n t Star t o f F R I S C H ;
for J := 1 step 1 until N do
for K := 1 step 1 until N do
F [J , K] := 0;
N F : = 0;
R E S E T L A B E L S ;
for N := N while N E X T < T O P do
begin

I : = L I S T [N E X T] ;

N E X T : = N E X T + 1 ;

S C A N ;
if L2[I2] # 0 then

begin
N F : = N F + 1 ;

A U G M E N T ;
R E S E T L A B E L S

end i f

end for ;
F R I S C H := N F

end F R I S C H ;

103

7. Analysis of the Algorithm.

Dijkstra's "go-to-less" programming style has the advantage that the
number of times each part of the resulting program is executed can be
measured in a very straightforward way. We need only place counters
in the initial branch, at the beginning of each "while-do" branch, and
in one of each of the pairs of "if-then-else" branches. Fig. 6 shows the
skeleton of the entire connectivity algorithm, with the counters indicated
by N l, i = 1 ,10. By convention we always place the counter in the
loft branch of an "if-then-else" branch.

As an example the connectivity was calculated between every pair of
the 58-vertex 6-connected graph given in [4]. In this graph every vertex
has a valence of 6. The results are shown in Fig. 6. These numbers have
the following interpretation. First,

104 K E N N E T H S T E I G L I T Z A N D J O H N B R U N O

PROCEDURE FRISCH

rAUGMENT
N9= I10~

N2= 672,565

{-N.---- 7"

I
I
I
I
L

N3-- 19,836_~_

) I':N'8~ i

SCAN

N 5 = 4,035,390
N6= 815,781.

w - J

L -.-4

Fig. 6. Analysis of the algorithm for all vertex-pairs of a 58-vertex 6-connected graph.

_h71 = number of vertex-pairs = (57)(58).

Next ,

_N" 2 = N I. N . F . S , where S = average number of
vertices scanned per breakthrough.

We can calculate S = 33.9 ver t ices/breakthrough. Next ,

A NEW DERIVATION OF FRISCH'S ALGORITHM . . . 105

Further,

and

N 5 = N~-V, where V = average valence = 6 .

N a = total number of breakthroughs = N 1. N F ,

N s = N a" A, where A = average number of 2-ply
backtracking steps per augmentation path.

Here, we can calculate

A = 6.0.

The ratio N4/N 2 = . 12% represents the probability of labelling back from
I ' to I " when I ' is being scanned, and is quite small for this graph.
N~/Ns=20.0°/O represents the probability of labelling forward to J" .
N: /Ne= 77.5~o represents the probabili ty of labelling forward from J "
to J ' as opposed to labelling back to I N F L O W (J) ' .

Turning to A U G M E N T , Ng/N 8 = 92.2% represents the probabili ty of
backtracking from K' to K " (augmenting flow) as opposed to back-
tracking from K' to some other double-prime vertex (cancelling flow).
N10/Ns= 0 represents the probabili ty of backtracking from K " to K'
(cancelling flow) as opposed to backtracking from K " to some other
prime vertex (augmenting flow). This last branch is never executed in
this relatively highly connected graph. Fig. 7 shows a graph in which the

5

I 9 2

7

Fig. 7. A tes t case which exercises all the branches in the program. The connect ivi ty

be tween vertices 5 and 7 is 3, while the connect ivi ty be tween all o ther pairs is 2.

106 K E N N E T H STEIGLITZ AND J O H N BRUNO

branch labelled Nl0 is executed, in the flow calculation for vertex pair
1-2, for example. This occurs because the initial 1-2 path requires a
subsequent backup through vertex 6.

The running time of the algorithm depends, of course, on how much
code is in each branch, as well as the number of times each branch is
executed. We may use the largest Ni, N 5, as an estimate of the asymptotic
dependence of the running time on the graph parameters:

~V 5 = N f N F . V. S .

Thus, we may expect running time per vertex-pair to be proportional
to N F . V .S . Since S is of the order of N, and V is of the order of N F ,
this yields N-(NF) ~'.

8. Comments.

The algorithm can be used to calculate the connectivity of directed
graphs by defining the arrays N A D J and N E A R to correspond to the
appropriate G +.

Furthermore, the idea of 2-ply scanning and 2-ply backtracking can
be extended to graphs with arbitrary branch and vertex capacities, by
virtue of the special structure of G +.

Actual running time for the 58-vertex 6-connected example using a
Fortran IV coding with counting, was about 27.5 vertex-pairs per second
on the IBM 360/91.

9. Acknowledgment.
The authors wish to thank Dr. Ivan T. Frisch for helpful discussions

about this problem, and the referee for improving the ALGOL program.

REFERENCES

i. I. T. Friseh, An Algorithm for Vertex.Pair Connectivity, Internatl. J. Control, vol. 6,

no. 6, pp . 579-593; 1967.
2. L. R . F o r d a n d D . R . Fu lke r son , Flows ,in Networks, P r i n c e t o n U n i v e r s i t y Press ,

P r ince ton , N e w J e r s e y ; 1962.
3. E . W. D i jk s t r a , Go To Statement Considered Harmful, (Le t t e r -To-The-Edi to r) , C o m m .

of t h e ACM, vo.. I1, no. 3, pp. 147-8; M a r c h 1968.
4. :K. Steigli tz , P . Weine r , a n d D. J . K l e i t m a n , The Design of Minimum-Cost Survivable

Networks, I E E E Trans . on Circui t Theory , vol. CT-16, no. 4, pp. 455-460; Nov. 1969.

DEPARTMENT OF ELECTRICAL ENGINEERING
PRINCETON UNIVERSITY
PRINCETO17, NEW JERSEY 08540
USA

