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Transmission o f an  Analog Signal Over a  
F ixed Bit-Rate Channe l 

K. STEIGLITZ, MEMBER, IEEE 

Abstrocf-The transmission of a  nonbandl imited analog signal 
over a  digital channel  with a  fixed bit-rate is considered. The  trade- 
off between the mean-square error due  to quantizing and  the mean-  
square error due  to the process of sampling and  reconstructing the 
signal is investigated. Simple approximations to these errors, which 
are valid in most practical situations, are derived, and  simple ex- 
pressions are obtained from which the opt imum sampling interval 
and  number  of bits per  sample can be  calculated. Results for first-, 
second-,  and  third-order Butterworth and  flat bandlimited spectra, 
together with the zero-order hold and  the linear point connector,  
are included. The  resulting mean-square error goes  to zero with 
large channel  bit-rates in a  slower manner  than the Shannon limit, 
which assumes a  strictly bandlimited signal and  perfect reconstruc- 
tion. 

I. INTRODUCTION 

1  

N ORDER TO SEND a continuous signal over a 
noisy channel, some overall error must be tolerated. 
In particular, if a  digital link is used and the bit 

error rate is kept very small by proper coding, the pre- 
dominant errors will be caused by the quantizing process 
and by the process of sampling at discrete times and 
reconstructing the continuous signal. The conflicting 
requirements imposed by these two errors for a  fixed 
bit-rate channel are evident. On the one hand, if we 
quantize very finely, we need to send long words and 
hence cannot afford to sample fast. On the other hand, 
if we sample very fast, we can afford to quantize only 
coarsely. We  are therefore presented with the problem 
of optimizing our choice of sampling interval and quantiz- 
ing fineness. 

In this paper, an approximate solution to the problem 
is derived with reasonable assumptions about the nature 
of the signals and reconstruction devices. This solution 
can be used as a general guide in the choice of quantizing 
fineness and sampling rate in practical situations. 

We  will assume that the continuous signal to be trans- 
mitted, f(t), is a  sample function of a  wide-sense station- 
ary, ergodic random process with correlation function 
s(t) and power spectral density %(o). This signal will be 
quantized uniformly into 2N levels and then sampled at 
a  uniform rate corresponding to a sampling interval T. 
Thus, each sample point of f will be coded into an N-bit 
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word. When we impose the restriction that the binary 
coded version of f is to be sent over a channel at a  rate 
R bps, we arrive at the constraint 

The fundamental problem of this paper will be to choose 
N and T  subject to the constraint (1) so as to minimize 
the mean-square error between the reconstructed signal 
and the original signal j(t). 

II. THE TOTAL MEAN-SQUARE ERROR 

Figure 1 is a block diagram of the system to be con- 
sidered, with the quantizing errors represented by addi- 
tive noise before the sampler. Quantizing noise can always 
be so represented, but will be, strictly speaking, statisti- 
cally dependent on the signal f(t). However, Katzenelson 
[l], [2] and Watts [2] have shown that, in the Gaussian 
case with relatively small quantization grain Q, the corre- 
lation between the signal and the quantization noise is 
extremely small: of the order of lo-’ compared with the 
autocorrelation function p(t) of the signal. For our pur- 
poses, the quantization noise will be represented by 
uncorrelated additive noise with correlation function 
%z (t> * 

W ith reference to Fig. 1, using well-known techniques 
of sampled-data analysis [3], [4] we can write the mean- 
square error as 

- + KG, T) + G(-w, T)l,(u)}du 

QUANTIZING 
NOISE , n  

f(f) E(T) 

Fig. 1. The  quantizing, sampling, and  reconstruction process. 
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where G(w, T) is the transfer function of the linear re- 
construction filter. On introducing in the summation 
the change of variable 

2sT w-n---w T 

and rearranging terms, we find that this becomes 

+2 
-w-n$,T 

?A=--m T2 

KG, T> + G(--w, T>l dw + $ l; @ m (w) 

-w-n$,T 
dw. (3) 

We will now make the assumption that the recon- 
struction filter does not change its shape as T varies, 
that is, that 

G(w, T) = TH(wT) . 

The function H(u) will be referred to as the normalized 
reconstruction filter. Most of the commonly used recon- 
struction filters can be represented in this way. With 
this assumption, the mean-square error can be written 

- h(2’)=$ _ s { a(w) 1 + 2 N(wT + n27r) 
m  n.a-m 

.H(-wT - n2r) - [H(wT) + H(-wT)] dw 

H(wT + n2n)H(-wT - 122719 do, 1 
(4) 

or, letting u = UT, 

where 

r(u) = 5 jH(u + n27r)j’ 
+a=-co 

and 

JW = 1 + W-4 - [H(u) + H(-41 

= 11 - H(z# + 2 jH(u + 1227191’. p&=--m 
7L#O 

The first integral in (5) $@) represents only the effect 
-z--- of sampling and reconstruction; the second integral e*(T) 

represents only the effect of quantizing. 

It is interesting to examine the mean-square error due 
to the sampling-reconstruction process as T + 0. When 
the variance of the signal f(t) is kept fixed at unity, the 
contracted spectral density approaches a delta function 

so that 

lim E2R(T) = P(0) = 11 - H(O)\’ -I- 2 IH(n27r)l”. (6) 
T-0 ?a=-- 

TM0 

Let us call any normalized reconstruction filter H(u) 
asymptotically perfect if 

lim E2H(T) = 0. 
T-0 

Then, from (6), we can conclude the following. 

Theorem 

The normalized reconstruction filter H(u) will be 
asymptotically perfect if, and only if, the following two 
conditions hold. 

1) H(0) = 1 
2) H(n2a) = 0, n z 0. 

This is a kind of sampling condition in the frequency 
domain, ensuring that, as T + 0, H(u) selects, only the 
baseband alias of the sampled function. 

Using Parseval’s relation and the fact that 

3-‘r(u) = 2 6 - 0 k=- m  Ic) /- h(dh(T + Ic) dT, -@a 

we can write (5) in the time domain, as done by Katzenel- 
son [I] and Liff [4], 

- M4 + N--41 
and 

-y(x) = 2 6(x - k) I-- h(T)h(T + k) dr. (8) k=-co -m 

The functions #(x) and -r(x) determine the weighting 
function by means of which the mean-square errors of 
reconstruction and quantizing are obtained from the 
correlation functions of the signal and quantizing noise 
near the origin. Note that r(x) consists of the impulse 
portions of #(CC) without the unit impulse at the origin. 
Figure 2 gives the normalized reconstruction filter H(u) 
and the corresponding #(r) for four of the most frequently 
encountered reconstruction filters. All of these are asymp- 
totically perfect. 
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ZERO -ORDER HOLD H (4’ ju 

LINEAR POINT CONNECTOR H 

FIRST-ORDER HOLD H (u)’ 

Fig. 2. Asymptotically perfect reconstruction filters 
and corresponding @L(z). 

III. THE QUANTIZING NOISE 

As discussed by Katzenelson [I], the autocorrelation 
function of the quantizing noise can be represented 
closely by 

cp svz (t) = L,-bl,I 
12 ’ (9) 

where q is the quantizing grain size, and b is large enough 
so that this correlation function decreases with t much 
faster than the correlation function of the signal f(t). 
We will make the assumption that the sampling interval 
T is large enough that the quantizing noise is effectively 
uncorrelated for lags of T or greater, which is reasonable 
if successive samples are not redundant. In this case we 
obtain, from (7) and (8), 

EZO(T)=L m  2 12 s h (4 dx. _ m  
The integral in (10) can be calculated for the four re- 
construction filters considered above, with the following 
results. 

Zero-Order Hold 

(ZOH): j- h’(x) dx = 1 
-co 

Linear Point Connector 

(LPC): /m h2(x) dx = $ 
-m 

(11) 

First-Order Hold 

(FOH) : /- h’(x) dx = 8 
-a 

Cardinal Hold 

(CH): srn h’(x) dx = 1. 
-co 

To evaluate q, we will assume that the signal ampli- 
tude can be limited to the range of values between 
-Al/cp(O) and + Adp(O), where ~(0) is the variance 
of the signal f(t), and that this range is quantized uni- 
formly. For a Gaussian signal, we can take A = 3 with 
little error involved in truncating the probability distri- 
bution of f(l). Hence, 

and 

q = 2A z/cp(O) 2-N 02) 

EZg(T) A2 - = -- 
cp(O) 3 

2-2N (13) 

using (10). This method of quantizing is realistic so long 
as the quantizing grain is small compared with the 
standard deviation of f, which amounts to the requirement 

2N>>2A. (14) 

IV. THE RECONSTRUCTION ERROR FOR SMALL T 
2- In this section the reconstruction error +(T) will be 

expanded. in a power series in T about T = 0. In many 
practical situations, with asymptotically perfect recon- 
struction filters, the reconstruction error will be approxi- 
mated by the lowest-order nonzero term in this expansion. 
This approximation will enable us to obtain relatively 
simple expressions for the optimum sampling interval and 
the resulting mean-square error. 

Expanding the even function p(xT) in a power series 
about the origin, we obtain 

PW’) = n$ dn)(O+) 5 1~1~. 

Substituting in (7) yields 

(15) 

my 
P(0) 

2 dn)@+> T” e 
n=O p(0) n! n’ 

WY 

where 

e, = 
s -1 1x1” Y%> dx. (17) 

The power series (16) deserves close attention, first to 
determine what the lowest order nonzero term may be, 
and second to determine how well this first term may 
approximate the reconstruction error for T in the region 
of interest. We begin by tabulating values of e, and 
(p(“)(O+) for different reconstruction devices and power 
spectra. For the reconstruction filters of Fig. 2, we have 
the following values for e, through es. 
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e. el ez e3 e4 es for the zero-order hold, and 

ZOH a.+ 0 -1 -2/3 -l/2 -2/5 -l/3 e3 
I I 

(woV 

LPC e.0 0 -l/3 0 
6 

2/15 I/5 5/21 (18) 
6 

FOH ..a 0 -5/3 0 7/3 93/15 13 
for the other reconstruction filters, since, in these cases, 
e, = 0. These ratios will become small if w,T << 1, and this 

CH ... 0 -4/?r2 0 8,‘7r” 0 -96/r6. will be so for sufficiently large bit-rates R. A more exact 

All of these reconstruction filters are asymptotically 
check of (21) can always be obtained by evaluating more 

perfect, and hence, for all of these, e, = 0. 
terms in (20), or by an exact calculation using (7). 

The power spectra of practical importance to which 
Similar remarks hold for other spectrum-hold combi- 

we will give special attention here are the ideal flat band- 
nations. Consider, for example, the third-order Butter- 

limited spectrum 
worth spectrum using the linear point connector as a 
reconstruction filter. Equation (15) yields 

@ (w) = T/wo 
i 

IWI < wo 

0 IWI > wo 

and the nth order Butterworth spectra 

@ (w> = l 

0 

2n , n = 1,2,3, --- . 
1+ & 

2-m - = &- (woTJ4, 
do) 

where the ratio of the next term to this term is in mag- 
nitude 

?moT. 

In the following, we will use the approximation 

The following tabulation gives some pertinent values 
of (pcn)(O+). 

(22) 

Flat Bandlimited 

Butterworth, n = 1 

Butterworth, n = 2 

Butterworth, n = 3 

P(O) do+) d’@+) p”‘(O+) (PYo+) cpYo+) 
1 0 -&/3 0 w:/5 0 

l/2 ---WC42 d/2 -w;/2 d/2 -w:/2 
(19) 

l/22/2 0 -w;/2 v5 WV2 -w:/22/2 0 

l/3 0 -WE/~ 0 w:/3 -w,5/2. 

The first special case that should be investigated is 
that of a bandlimited spectrum with a cardinal hold, for 
which ER2(T) must be identically zero in a neighborhood 
of the origin given by /Tj < m/w,. Here, every term of 
(15) must vanish. This is, indeed, the case, since the 
+D(“’ (0’) vanish for n odd, and the e, vanish for n even. 

Now consider the case of the first-order Butterworth 
spectrum (the so-called Markov spectrum) for which 

p(t) = se-“““‘. 

Equation (15) yields 

m - = -e,w,T + e, q - e3 q + * * - . 
P(O) 

(20) 

For our purposes, we wish to use the approximation 

E2Ro - m  -elwoT. 
0) (21) 

If we use this approximation to obtain an optimum 
sampling interval T = T,,, (subject to the fixed bit-rate 
constraint), it is necessary to verify that this is, indeed, 
a valid approximation for this T,,,. One crude indication 
of the validity of (21) is the ratio of the next term in the 
series to the first term. This ratio is in magnitude 

I I 

9 woT 

el 
- = $w,T 2 

where the lcth term is the lowest order nonzero term 
in (15). The appropriate values of lc for various spectrum- 
hold combinations are listed below. 

ZOH LPC FOH CH 

Flat Bandlimited 2 4 4 02 

Butterworth, n = 1 1 1 1 1 

Butterworth, n = 2 2 3 3 3 . (23) 

Butterworth, n = 3 2 4 4 5 

V. THE OPTIMUM CHOICE OF N AND T 

The total normalized mean-square error can now be 
written approximately as 

which shows clearly the tradeoff between quantizing 
fineness and sampling rate. We have written this as a 
function of N, using the constraint N = RT. Setting 
the derivative of this with respect to N equal to zero, 
we obtain the condition 

Nk-‘22N 1 l/k 

(A”/3)(./ h2 ds)2 In 2 (25) 
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NORMALIZED BIT- RATE, R/W, 

which gives the bit-rate R(N) when N is the optimum 
number of bits per sample. Substituting (25) in (24), we 
obtain 

s joli = $ (1 h’dx)[l + N9]2-zN, (26) 

which is the mean-square error when N is optimum. It is 
not possible, in this general case, to eliminate N between 
(25) and (26) to obtain ?/~(0)]..~ explicitly as a function 
of the bit-rate R. It is very simple, however, to evaluate 
(25) and (26) for integral values of N in the range of 
interest, and in this way obtain a plot of ?//t(0)jl,,, vs. R 
parametrically. Such curves are shown in Fig. 3 for the 
spectra of (19) and for the zero-order hold and the linear 
point connector. Also shown is the mean-square error vs. 
normalized bit-rate R/w, in the idealized bandlimited 
case considered by Shannon [5]. In this case, the sampling 
rate is fixed at T = g/w0 by the bandwidth of the signal; 
the only error is that due to quantization, which, by (13) 
and (11) for the cardinal hold, is 

-5 
EQ- A” 2- 2*R,id. 
p(o)-3 * (27) 

As can be seen, the mean-square error, in this case, lies 
below the other curves and goes to zero much faster, 
reflecting the fact that we have taken into account the 
reconstruction error. In fact, as can be seen from (26), 
the mean-square error due to reconstruction is, with an 
optimum choice of sampling rate, 2N(ln 2)/k times that 
due to quantization. 

Fig. 3. Curves of optimum mean-square 
error vs. bit-rate, using the approximation 
of (22). Curves A through D are for the 
zero-order hold and first- through third- 
order Butterworth and flat bandlimited 
spectra. Curves E through H are for 
the same spectra but the linear point 
connector. Curve I is the Shannon limit 
with a flat band-limited spectrum and 
a cardinal hold. A = 3 for all curves. 

To illustrate the accuracy of the approximation made 
to obtain (25) and (26), consider curve B-a second-order 
Butterworth spectrum with a zero-order hold. From (7), 
(8), and (13), the total normalized error can be calculated 
exactly as 

-4-L f t 49 s P(O) -1 cp(xT) dx + 3 .2-2N 

= 2 Q - 1 + e-’ cos Q 
Q + 3.2-2N, (2% 

where 

Q = Ai,wo- 
A digital computer program was written to minimize 
this as a function of N for various fixed R/we, and the 
results are shown in Fig. 3 as open circles. The agreement 
is quite good for R/w, > 8, which corresponds to a 
sampling interval of w,T = N/(R/w,) < 0.43. 

VI. THE CASE WHEN ~‘(0’) # 0 

The special case k = 1, illustrated by curves A and 
E, arises only when ~‘(0’) z 0, i.e., when the spectral 
density falls off as l/w” for large w. This is the most 
pessimistic situation, since the aliasing errors caused by 
sampling are most severe. Of particular interest, however, 
is the fact that (24)-(26) can, in this case, be solved 
explicitly for T/p(O) loDt as a function of R. For con- 
venience, define a normalized sampling interval 
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.,. 5 T(-s) , 

a normalized bit rate 

p A 2Rln2(-$), 

and a constant depending only on the reconstruction 
filter 

&A2 3(-e,) 
Then, the normalized total mean-square error (24) be- 
comes 

P cpo = (-el)[aeepT + 71- 

The optimum sampling interval is 

In ap 
To,t = - 

P  * 

The optimum number of bits per sample is 

No,, = S  log, a~, 

and the optimum normalized mean-square error is 

f Iopt = (-ell[l +rup]- 

(29) 

(30) 

(31) 

(32) 

This goes to zero slower than l/p, in sharp contrast with 
the Shannon limit (27). 

VII. CONCLUSION 

The purpose of this analysis has been to find the best 
tradeoff between sampling rate and quantizing fineness 
for the transmission of an analog signal over a fixed 
bit-rate digital channel. 

An approximate solution to this problem, valid for 
large bit-rates, was obtained by approximating the recon- 
struction error by an appropriate power of the sampling 
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interval T. The results, which take into account the error 
of reconstructing nonbandlimited signals by realizable 
filters, yield considerably higher total mean-square errors 
than an analysis which assumes ideal bandlimited signals 
and perfect reconstruction. 

It is hoped that the results will be of some use as a 
guide to the utilization of data channels. Suppose, for 
example, that it is desired to transmit voice with a band- 
width of 4 kc/s over a data channel with a bit-rate of 
100 kilobits/s. Assuming that the voice signal is very 
nearly bandlimited, and that a linear point connector is 
used, curve H applies with R/w, = 3.93. This corre- 
sponds to 5 bits per sample, a sampling rate of 20 kc/s 
(2.5 times the Nyquist frequency), and a mean-square 
error of 0.0052. These numbers are typical of performance 
now being achieved, although, in practice, a reconstruc- 
tion filter with sharper cutoff characteristics than a 
linear point connector might be used. 
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