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Then A’ is 

4567123 

For simplicity, we assume that Y = D(7~~y~y~y,y~y~y~). 
Since A is already a form of a fundamental cut-set matrix, 
we have directed tree l,, = { y,y,y, } . Thus from A 0 A’ = A’ 

TvLY’(tO) can 

T”(k) = IY7Y2Y31 

T’(b) = iY4YlY31 

T’W = I IYIYIYZI ~Y6YlYZl I * 

be obtained by forming A(12) from A as 

4 5 6 7 

’ ’ ’ 

l-l 0 0 1 
and 

4 5 6 7 

A+(12) = 

Only columns 4 and 7 make a nonzero major determinant 
of A+(12), thus 
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TY’YYt,) = f Y4Y7Ys 1. 

Similarly, 

TY’““(kJ = I tYsY7Yzl ~YsY7Yzlf 

T”VJ = I IYaYsY1 I IY4YSYl I I 

and 

T Y1Y2Y’(tO) = I Y7Y4Yo I. 

It is easily seen that the procedure becomes simpler 
if we only need to obtain all trees of a graph. Furthermore, 
obtaining two-trees corresponding to calculating the 
cofactors of the coefficient matrix of a node basis equation 
can be accomplished by using the same procedure with 
properly modified incidence matrices. 
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A Class of Finite Memory Interpolation Filters 

J. E. HOPCROFT, MEMBER, IEEE, AND K. STEIGLITZ, MEMBER, IEEE 

Abstract-SufIicient conditions are given for 84 interpolation 
filter to have an impulse response that vanishes outside a finite inter- 
val of the time axis, that is to have a finite memory. These conditions 
are that the transfer function be of the form G(s)/G(z), where G(s) is 
proper, rational, and has poles limited to the strip IIm sj < 75; and 
where l/G(z) is a polynomial. The filters Rmp are included in this 
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class, and these are characterized by the fact that their effect is to 
interpolate an (m +p - l)-order polynomial in each interval throughp 
past and m future points. The interpolation titers described can be 
used to derive digital filters that approximate an arbitrary linear time- 
invariant continuous-time operator. It is shown that in the case of 
integration, the Rmr lilters lead to well-known Lagrangian inte- 
gration formulas. 

I. INTRODUCTION 

I 

NTERPOLATION filters-linear operators that pro- 
duce continuous output signals from discrete input 
sequences-are of interest to the systems analyst. 
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This is especially true since the digital computer has been 
used to simulate and analyze continuous systems. One 
application is the derivation of numerical operators that 
approximate continuous operators.“’ This is done by 
introducing hypothetical samplers and interpolation 
filters in continuous systems and then using z-transform 
techniques to derive a sampled-data approximation to 
the original system. This method is classical in numerical 
analysis, [” where, for example, integration formulas are 
derived by integrating and sampling a polynomial re- 
construction of a numerical sequence. 

The main purpose of this paper is to derive the transfer 
functions of a class of interpolation filters with certain 
desirable properties. These properties are 1) that they 
are linear time-invariant operators, 2) that they reproduce 
certain polynomials precisely from their samples, and 
3) that they have a finite memory in the sense that their 
response to a unit sample vanishes outside an interval 
of the time axis. Special cases of these filters are the 
familiar zero-order and first-order holds, and the linear 
point connector. We begin with certain preliminary 
material concerning digital signals and z-transforms. 

II. PRELIMINARIES 

Two types of signals, analog and digital, will be con- 
sidered.’ Analog signals will be defined as real functions 
of a continuous time parameter t, and will be assumed to 
be identically zero for 1 < 0. It will also be assumed that 
every analog signal f(2) is dominated in magnitude by an 
exponential function, t,hat is, 

If(t)1 < Me”’ M > 0, t 2 0, 

so that the Laplace transform of f(t) and F(s) will be 
analytic in the half-plane Re (s) > a. 

Digital signals will be defined as real sequences on the 
non-negative integers; each may or may not represent 
samples of an analog signal. As in the analog case, every 
digital signal fn will be assumed to be dominated in magni- 
tude by 

lfnl < MK” M > 0, 

so that the z-transform, defined by 
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is a function of esT and is equal to the z-transform of f,,, 
provided we make the identification x = esT. The z- 
transform of fn is related to the Laplace transform of 
f(t), when F(s) is proper and rational, by 

F(z) = 2 f&-“, 
n=ll 

will be analytic in the region j.z( > K. 
In the case that a digital signal, f,,, is obtained from an 

analog signal, f(t), by sampling it at the time instants 
t = nT, n 2 0, the digital signal f,, can be interpreted as 
the impulse train 

I z fW) Ht - nT) . 

The Laplace transform of this impulse train, 

This operation is also called, by an abuse of notation, the 
z-transform. In what follows, z will be substituted freely 
for eaT. 

Equation (1) is derived by using the contour integral 
formula for complex convolution in t,he frequency domain, 
and by closing the contour of integration at infinity to 
the left. It is assumed that F(s) is replaced by F(s)e’“, 
where E is arbitrarily small, to ensure that the integral 
on the infinite radius path is zero; this implies that we 
adopt the convention that the time function is sampled 
at the times t = nT + E. 

A time-invariant linear operator on analog signals will 
be called an analog filter, and is represented in the time 
domain by convolution with the impulse response, and in 
the Laplace transform domain by multiplication by the 
transfer function. Thus, if f(t) and g(t) denote, respec- 
tively, the input and output of an analog filter H, 

g(t) = [=- h(t - df(d dT, -m 

and 

G(s) = H(s)F(s), 

where H(s) is the Laplace transform of the impulse 
response h(t). In complete analogy, a time-invariant 
linear operator on digital signals will be called a digital 
filter. If f,, and gn denote the input and output, ‘respec- 
tively, of a digital filter H, then 

and 

where H(z) is the x-transform of the impulse response h,. 

III. INTERPOLATION FILTERS 

A reconstruction jilter is defined to be a time-invariant 
linear operator that accepts digital signals as inputs and 
produces analog signals as outputs. By “time-invariant” 
it is meant that a shift in the input sequence of m samples 
results in a shift in the output of mT. If h(t) is the response 
of a reconstruction filter H to a unit input at t = 0, then 
the response of H to the digital signal f,, is 

g(t) = g h(t - n2?fn. 
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The Laplace transform of the output is thus 

G(s) = %$ H(s)eesnTfn = H(s)F(x). 

An interpolation jilter is defined to be a reconstruction 
filter that has the property that sample values of the 
output at times t = nT coincide with the values of the 
input digital signal at those times. This means that 

G(z) = Z[H(s)F(z)] = F(z). 

Since the z-transform operator commutes with multiplica- 
tion by a function of z, it follows that for a reconstruction 
filter to be an interpolation filter, it is necessary and suf- 
ficient that H(z) = 1. 

A finite memory interpolation Jilter is defined to be an 
interpolation filter that has the property that the response 
to a unit sample at t = 0 is identically zero outside some 
finite region. This means that the reconstructed signal 
will depend only on a finite number of neighboring sample 
values at any time. 

If one wishes to reconstruct a function g(t) from its 
samples g,, one may use an interpolation filter whose 
response to a unit input at t = 0 has the transform 
G(s)/G(z). This will result in reconstructing g(t) perfectly, 
since the response to the digital signal with x-transform 
G(z) will have a Laplace transform G(s). It is instructive 
to consider some examples. From now on we assume that 
the sampling period, T, is one, 

Example 1 

To reconstruct the Heaviside step function u(t) per- 
fectly, one would use the filter with transfer function 

G(s) __ = f (1 - z-l>, 
G(z) 

since the Laplace transform of u(t) is l/s and the z- 
transform is l/(1 - z-l). This gives rise to the familiar 
zero-order hold. 

Example 2 

To reconstruct h(t) perfectly, one would use 

G(s) -= 1 (1 - 2-1)2* 
G(z) ? x-l 

This is called the linear point connector, since it connects 
successive input samples with straight lines. 

Example 3 

To reconstruct h(t) perfectly, one would use 

G(s) 2 2(1 - 2-y -=- 
G(z) s3 x-,(1 + z-l> * 

In Example 1 the filter is a finite memory interpolation 
filter that is physically realizable in the sense that the 
output does not depend on future input values. In Exam- 
ple 2 the filter is still finite memory but is not physically 
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realizable. In Example 3 the filter is neither finite memory 
nor physically realizable. In order to simulate a filter on 
a computer, one does not need physical realizability. 
The requirement of having a finite memory is of great 
importance, however, in problems of computation, since 
the interpolated function can be calculated in terms of a 
finite number of sample values without truncation error. 
This is also a sufficient, but not necessary, condition that 
numerical formulas derived from these filters depend on 
only a finite number of sample values. For this reason, 
we shall investigate sufficient conditions to ensure the 
finite memory property of interpolation filters. 

IV. A SUFFICIENT CONDITION FOR FINITE MEMORY 

INTERPOLATION FILTERS 

We need the following: 

Lemma 1 

Let G(s) be a proper rational function of s with n 
poles, all within the strip Jim s/ < r. Then no more than 
the first n - 1 consecutive sample values of g(k) can vanish 
simultaneously, unless g(t) is identically zero. 

Proof: Assume G(s) has p distinct poles al, aZ, . . . , a,, 
with multiplicities ml, m,, . . . , m,, respectively. Let 
n = cy=1 mj. Then 

g(k) = 2 2 biik(i-l)eaik. 
i=l j=l 

Let gii be an n-dimensional vector whose kth coordinate 
is k ,-‘eaik. The output g(k) for the first n sample points 
can be represented as a vector that is a linear sum of the 
gii’s. It can be shown that the giiJs are linearly indepen- 
dent (see Appendix). Thus for g(t) to vanish for the first 
n sample points, all the bii’s must be zero, and hence 
g(t) itself must be identically zero. Q.E.D. 

With this we can state: 

Theorem 1 

Sufficient conditions for an interpolation filter of the 
form G(s)/G(z) to be finite memory, having a response 
that vanishes identically in the ranges t < -m and 
t > n - m, are 

1) G(s) be a proper rational function of s with n poles 
all within the strip (Im SI < r; 

2) l/G(x) be a finite polynomial in positive and nega- 
tive powers of x, with highest power term am. 

Proof. By Condition 2), we may write G(x) in the form 

G(z) = /-I 

C akZk 
a, # 0, 0 _< m 5 n. (2) 

k-0 

The response of G(s)/G(z) to a unit sample at n = 0 
is then 

h(t) = 5 a,g(t - k + m)u(t - k + m). 
k=O 
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This vanishes for t < -m, since the unit step functions 
all vanish in this range. For t > n - m this becomes 

h(t) = 2 akg(t - k + m) t>n-mm, 
k-0 

since the unit step functions are all unity in this range. 
We may write in general 

Hence 

h(j) = 2 a, 2 2 b,,(j - k + m)‘-‘e”““-k+“’ 

k-0 j=l j-1 

t>n-m- 

The function h(t + n - m)u(t) vanishes at all sample 
points because h(t) is the response of an interpolation 
filter. But this function has a proper rational Laplace 
transform, with poles (Y,.. By Lemma 1 this is impossible 
unless h(t + n - m)u(t) = 0. Hence h(t) vanishes iden- 
tically for t > n - m. Q.E.D. 

Examples 1 and 2 illustrate this theorem for the cases 
n = 1, m = 0; and n = 2, m = 1, respectively. 

The filters G(s)/G(z) are analogous to least-mean- 
square reconstruction filters where G(s) and G(z) are 
spectral densities. Theorem 1, in fact, corresponds to the 
condition of an all-pole sampled spectral density, and 
this theorem is similar to that given in a statistical con- 
text. 13’ 

V. THE CLASS R,,, 

.(t + p + m - 1 - i)! 
(t - i)!(m + p - l)! u(t + m - 21. 

Most of the interpolation formulas used in numerical 
analysis employ polynomials as the interpolating func- 
tions. This corresponds to a G(s) with poles only at s = 0 
and to a G(z) with poles only at z = 1. The most general 
such functions that satisfy the conditions of the preceding 
‘lemma correspond to a choice of 

For t < -m and for t > p, h(t) is identically zero, by 
Theorem 1. We shall show that for -m i j I p - 1, 
in the time interval j < t < j + 1, h(t) is the .unique 
polynomial P(t), of order m + p - 1 with 

G@) = Z-m(l - Z-l)-(m+P) 

m 2 0, P 2 0’ m+p>O, (3) 

I 1 t=o 

P(t)= 

1 

0 t= j-p+l, j-p+2;--,j+m 

except t = 0. 

The theorem then follows trivially by linearity. For 

where Z! is defined formally to be r(z + 1) if z is not an 
integer. 

Proof: Since g(n) = 0 for n < m 

=2 
-m 2 (k + m + p - l>! Zbk 

k=O k! (m + p - l)! 

=.Z 
-“(1 _ Z-l)-(m+P). Q.E.D. 

The central property of, the interpolation filters R, 
is expressed in the following. 

Theorem 2 

Consider the digital signal with samples f,,. If this is 
used as an input to the interpolation filter R,,, the output 
in the time interval j < t < j + 1 is the unique polynomial 
of order m + p - 1 through the m + p points fi--p+l, 
fi-9+2, .” , fi+m. 

Proof: For R,, filters 

z -m 2 -m 
(1 _ z-l)m+P = m+p 

g (-l>i (m ; P) (z-l);’ 

and the impulse response 

h(t) = mg (-l)i (m ; p, 

.rn and the resulting finite memory interpolation filters will j = - 
henceforth be called R,,. Of interest is the corresponding 
time function g(t). h(t) = 

Lemma 2 
(m + i - l)! 8J&+, (t - 4 

.S#O 

With G(z) given by (3) an G(s) a rational function 
of s, we have 

for -m<t<-mfl 

as claimed. Assume for j = -m + I,0 I 1 5 m -I- P - 1, 

g(j) = 0 + P - Nt + P - 2) - - - (j - m + 1) u(t) 
(mfp-ll)(m+p-22) ---(l) h(t) = c-0’ 

(m + p - 1 - l)! I! 
1 

(t + p - I>! u(t) 
= (t - m)! (m + p - l)! (4) for j<t<j+l* (5) 
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Then for j = -m+z+1, 

(-1)” 
W) = (m + p - I - l)! Z! [..-piJ+l+l ct - $1 + (m 5;): l)! 

sfo 
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m+P 
i I z+1 

.-ji+,+2 @ - s, 

[ 
..Ji+z+2 ct - 4 II (-l)‘(t + p + m - 2 - 1) 

+(m+p 
(-l)‘“(m + p)! t = 

(m + p - 2 - l)! I! - l)! (I + l)! (m + p - 1 - l)! 1 
#fO 

(-l)‘+* Cm + dt 
=(m+p-Z-2)!(1+1)! 

1 
.__i!+l+, ct - 4 1 -(I + l)(t + P + m - 2 - 1) + 

(m+p-Z-l) (m+p-z-11) 1 ata 
(-#+l 

= (m + p - Z - 2)! (I + l)! [*mmp&+l+2 0 - 511 [t - (I + 111 
a#0 

(-l)l+l 
= (m + p - I - 2)! (1 + l)! [..-ng+l+2 @ - q* (6) 

a#0 

But (6) is (5) with Z replaced by Z + 1 and thus the claim An important case is that of integration. Consider 
follows by induction on 1. Q.E.D. first the linear point connector of Example 2. The digital 

From the explicit expression (4) for the functions integration filter becomes 
g,,&), there follow the useful recursion relations involving 

1 [ 1 11 +.2-l 
2 R110; = Fjl _ z-1, the Laplace transforms G,,(s) : 

G ,.,+1(s) = p$j- [ -$ + P] Gw(s) 

G ,+1,,(~) = & [ -$ - m] Gmh9, 

(7) and corresponds to the following pattern of weights for 
definite integration 

(8) +, 1, 1, * * * ) 1, +, 

which is the trapezoidal rule.‘*’ 
The filter Rzz leads similarly to the digital integration 

(g) filter 

2 R,,(s) + = c 1 -2 + 13 + 13x-l - x-2 
24(1 - x-‘) 

and in the symmetrical case when m = p 

G 

To derive the G,,(s) for example, we start with 

G,,(s) = 5 

and find from (9) 

G,,(s) = 5 [$ - $1 

G,,(s) = & f - ji + 5 1 --- etc., 

and these together with (3) give R,,. 
The filters R,,(s) correspond to realizable polynomial 

extrapolators, such as the zero- and fir&order holds. 

and the weights 

VI. DERIVATION OF NUMERICAL OPERATORS 

USING FILTERS R,, 
An immediate application of the filters R, is the 

derivation of numerical formulas for simulating continuous 
operations on a digital computer.“’ Suppose we wish to 
simulate a linear operator with transfer function G(s). 
Introduce a hypothetical sampler and interpolation 
filter R,, before G(s), and then sample the output. The 
overall effect is equivalent to a digital filter with transfer 
function Z[R,,(s)G(s)]. 

This uses one point outside the integration interval and 
is the modified trapezoidal rule.[4’ 

Similarly, Rs3 yields the digital integration filter 

= 112’ - 93.z + 802 + 8022-l - g3z-2 + 112-3 
1440(1 - a-‘) 

and the weights 

11 
__ --82 1 1522 1429 . . . 1440 ’ 1440 ’ 2 ’ 1440 ’ 1440 ’ l,l, , 191, 

1429 1522 1 -82 11 
‘1440 ’ ---- 1440 ’ 2 ’ 1440 ’ 1440 

using two points outside the interval of integration. 
The numerator coeflicients of the last two integration 
filters can be found in a table of Lagrangian integration 
coefficients. r5’ 
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VII. SUMMARY 

We have described a class of finite memory interpola- 
tion filters characterized by the transfer functions 
G(s)/G(x), where G(s) and G(x) have the restrictions 
stated in Theorem 1. Of particular interest is the class 
R n&P? which represents interpolation filters whose effect 
in each interval is to interpolate an (m + p - 1)-order 
polynomial through p points in the past and m future 
points. Such filters are useful in deriving digital filters 
that approximate arbitrary time- invariant linear opera- 
tors. In order to approximate an operator with transfer 
function H(s), the digital filter with transfer function 
Z[R,,(s)H(s)] is used. In the simple case of integration, 
this yields the well-known Lagrangian integration formu- 
las. Such an approach provides a link between sampled- 
data theory and classical numerical analysis. 

APPENDIX 

The nth-order Vandermonde determinant is 

1 a1 a: * 9 . m-1 a, 
n-1 1 a, ai . . . a2 

n--l 1 a, a: . . . a, 

This determinant arises in discrete linear systems with 
distinct poles. For discrete linear systems with nondis- 
tinct poles, determinants similar to Vandermonde’s 
determinant appear. We shall call these determinants 
generalized Vandermonde determinants. 

Let 

be the generalized Vandermonde determinant. Thus by the induction hypothesis 
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1 a, a: .. * n-1 
al 

0 a, 2af . . . (n - l)a;-’ 

0 a, y’-la; . . . (n - l)"'-'($-' 

2 1 a, a2 . . * n-l a2 

0 a, 2”‘-‘af . . . (n - l)"r-'a:-' 

where 

& mi = n, mi 2 1 

Theorem 3 

D, al a2 ‘. * a, 

[ ml m2 . .. m, 1 
Proof: The proof is by induction on r. For the special 

case r = n, mi = 1 for all mi, and we get the usual Vander- 
monde determinant. Note 

D, al 
i 

a’ ’ * ’ an = fi n (ai - ai) 
1 1 .** 1 I i=l i<i 

which is indeed the value of the Vandermonde deter- 
minant. 

Now assume the theorem true for all D, with n Lr> p 
and show that this implies that the theorem is true for 
all D, with r = p. 

D, al 

[ 

a2 * -. ap 

m, m, -a. mD + 1 1 

Note that m,,, = 1. Thus 

D, a, a, . - - ap 

ml mz . -. I m,+l 

= 

* Note that interchanging the order of the parameters leaves the 
formula unchanged. Thus without loss of generality we consider 
only the case where the multiplicity of a, is greater than 1. 
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al a2 - * * a, 

ml m, -‘. m, + 1 1 { 

= fj a [(mi - k)!] aim’(mi-1)“2 ;I<! (ai - ai)mimi} a:‘mp! g (a, - aJmi 

zz jj { fJ [(m; - k)!] a~mi(ni-*)1’2 JJ (ai - aj)mim’} 

* fi [(m, - k) !] a~mD(mp-1)1’2 r]: (a, - ai)“pmja~pmD! n (a, - ai)mi 
k=1 i<P i<P 

zz fj {a [(mi - k)!] aimi(mi-1)1’2 g (ai - aJmim’} 

V++1 
* n [(m, + 1 - k) !] a~‘“~+“‘“~‘1’2 n (a, - ai)(m~+l)mi, 

E=, i<P 

Now (a,+1 ~/daP+l)““D can be expanded in the form 

where b,, = 1. 
Since a,,, - a, appears m, times in the product term 

that we are going to differentiate and since we are going 
to set a,,, = a,, the only nonzero term of 

will be 

which is 

ar’m,! n (a, - aJni. 
i<p 

Thus 

c0r011ury 3 

D, 
a, a, . . . up 

ml m, . . . m, 

111 

Q.E.D. 

is singular if, and only if, ui = ai for some i and j or 
ai = 0 for some i such that mi > 1. 

Proof: Follows immediately from Theorem 3. Q.E.D. 

It then follows in the proof of Lemma 1 that the gii’s 
are linearly independent, since the ui = eai are distinct 
and nonzero. It will also be noted that the condition 
II m ail < ?r can be relaxed to the condition eai # eai 
unless i = j. 
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